CN113061022A - 一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法 - Google Patents

一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法 Download PDF

Info

Publication number
CN113061022A
CN113061022A CN202110191824.1A CN202110191824A CN113061022A CN 113061022 A CN113061022 A CN 113061022A CN 202110191824 A CN202110191824 A CN 202110191824A CN 113061022 A CN113061022 A CN 113061022A
Authority
CN
China
Prior art keywords
calcium silicate
powder
preparing
magnesium oxide
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110191824.1A
Other languages
English (en)
Inventor
沈理达
张寒旭
焦晨
何志静
梁绘昕
邱明波
陈志鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202110191824.1A priority Critical patent/CN113061022A/zh
Priority to PCT/CN2021/086078 priority patent/WO2022174507A1/zh
Publication of CN113061022A publication Critical patent/CN113061022A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5029Magnesia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transplantation (AREA)
  • Manufacturing & Machinery (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,属于生物医学材料技术领域,采用原位法制得金属氧化物与硅酸钙陶瓷的混合粉末,利用DLP成型技术和高温脱脂烧结法制得陶瓷支架,然后在陶瓷支架表面均匀涂覆一层含有金属的浆料,使用激光扫描支架表面,最后经高温烧结后制得生物骨支架成品。利用原位法制得的混合粉体,氢氧化镁颗粒可以均匀的粘附在陶瓷颗粒表面,使得打印的坯体经过烧结后出现众多微孔结构,而陶瓷支架表面的金属浆料涂层,不仅可以起到增强结构、降低降解速率的作用,而且表面的金属离子能够产生抗菌效果,能够应用于骨组织工程领域,作为骨填充物、置换物或者作为体外培养细胞的支架。

Description

一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法
技术领域
本发明属于生物医学材料技术领域,尤其涉及一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法。
技术背景
骨损伤作为一种常见的疾病,给病人的生活带来了极大的负面影响。传统的治疗手段有自体骨移植与异体骨移植,但都各自存在缺陷,人工骨替代材料的研究为骨修复提供了一条新的可行路径。利用3D成形技术制造的生物骨支架,具有良好的生物相容性、一定的力学性能以及适当生物降解性,且支架结构利于骨细胞长入,具有一定的骨传导性与骨诱导性,是一种性能优良的骨替代材料。
硅酸钙类陶瓷与自然骨的无机成分相似,具有良好的生物相容性。该类支架植入人体后,表现出良好的骨传导性,成骨细胞在支架表面可以正常的生长繁殖。此外,硅酸钙类陶瓷具有优良的生物降解能力,并且释放的硅酸根离子可以促进类羟基磷灰石沉积,从而使其与生物组织产生良好的化学键合,进而表现出优良的生物活性,而硅离子更被认为可以有效促进骨骼再生。硅酸钙类陶瓷是一种非常有潜力的生物活性材料,但仍存在着力性能较差,降解速度过快的缺陷。
镁在人体中是一种非常重要的微量元素,参与人体内一系列的新陈代谢反应,且与骨骼、肌肉、心脏以及神经功能密切相关。此外,与其他材料相比,镁及镁合金的力学性能最接近人骨,与骨组织匹配性良好。研究人员在硅酸钙类陶瓷中掺杂镁元素,发现烧结后的材料机械性能得到提升,并且发现镁掺杂支架可以促进成骨分化和血管生成分化,对细胞活性的促进作用更加显著。
如今,多孔生物骨支架多数采用传统的方法生产,例如,在混合浆料中添加造孔剂、将坯体进行冷冻干燥、泡沫浸渍等方法生产多孔支架。尽管传统方法生产多孔生物骨支架具有良好的孔隙率,但作为生物骨支架需要复杂的形状以匹配骨修复部位,传统方法生产的支架很容易产生杂质的残留,并且传统方法生产的多孔支架形状和孔径不一,很难适应临床骨修复所需的单一孔径的支架。此外,传统方法生产的支架,复合支架往往是采用直接将两种粉末进行混合,尽管将多种粉末进行了一系列的球磨或者搅拌,但是很难保证两种粉末充分接触,均匀性很难保证。当粉末均匀性无法保证时,很容易使支架产生强度下降或者使支架的生物促进细胞增殖和分化不均一,从而影响整个生物骨支架的植入效果。传统方法制备生物骨支架形状单一,精度较差,并且生产针对诸如可控多孔结构方面较为困难。
发明内容
本发明提供了一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,利用原位法制得金属氧化物与硅酸钙陶瓷混合粉体,氢氧化镁颗粒可以均匀的粘附在陶瓷颗粒表面,使得打印的坯体经过烧结后出现众多微孔结构,而陶瓷支架表面的金属浆料涂层,不仅可以起到增强结构、降低降解速率的作用,而且表面的金属离子能够产生抗菌效果。
为实现以上目的,本发明采用一下技术方案:
一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,包括以下步骤:
步骤1:粉末混合:将氯化镁粉体、硅酸钙粉体加入去离子水中,搅拌混合,再加入氢氧化钠溶液,磁力搅拌得到混合溶液;
步骤2:粉末干燥:将步骤1得到的混合溶液静置,除去上层清液,加入等量去离子水,重新得到混合溶液,重复此操4-10次,去除上层清液,将剩下溶液烘干,将得到的块状粉体球磨;
步骤3:浆料制备:将步骤2球磨后的粉体加入光敏树脂和分散剂搅拌混合均匀得到浆料;
步骤4:陶瓷坯体成形:将步骤3得到的浆料用DLP成型技术打印出陶瓷支架坯体;
步骤5:脱脂烧结:将步骤4得到的陶瓷坯体脱脂烧结,冷却到室温后取出得到陶瓷支架;
步骤6:表层嵌入金属:将步骤5得到的陶瓷支架表面浸没在含有金属的有机浆料中,使用激光扫描陶瓷支架表面,将金属熔化嵌入到陶瓷支架表面;
步骤7:烧结:将步骤6得到的带涂层陶瓷支架进行烧结,去除多余的有机物溶剂,冷却后取出得到氧化镁强化硅酸钙陶瓷生物骨支架。
以上所述步骤中,步骤1中所述氯化镁粉体包括无水氯化镁、六水氯化镁中的至少一种,所述硅酸钙、氯化镁粉体的粉末粒径为50nm~1000nm,所述硅酸钙的质量百分比为50%~95%,氯化镁和氢氧化钠的含量按反应有效镁和有效氢氧根加入,两者加入的总质量占比为5%-50%,所述氯化镁粉体、硅酸钙粉体总质量和去离子水之比为1:1~5,氢氧化钠配置溶液浓度未达到饱和溶液,磁力搅拌的时间为30分钟;
步骤2中静置的时间为4~24小时,保存的环境温度为15℃-50℃,烘干的温度为30℃-80℃,烘干的时间为12h~36h,球磨时粉末和氧化锆球的质量比为1:1~10,球磨的时间为2h-6h;
步骤3中浆料中混合粉末的质量百分比为30%-80%,光敏树脂质量百分比为15%-50%,分散剂质量百分比为1%-3%;
步骤4中光固化打印的层厚为0.02mm-0.1mm,曝光时间为6s-12s;
步骤5中脱脂的温度为300℃-900℃,保温3h-5h,烧结的温度为1250℃-1350℃之间,保温时间为1h-3h,升温速率为0.5℃-3℃/min;
步骤6中含有金属的浆料为金属盐或金属氧化物的有机溶液,所述金属盐或金属氧化物的质量百分比为5%-50%,有机物溶剂质量百分比为50%-95%,所述金属盐或金属氧化物为氧化镁、氧化锌、氢氧化锌、氢氧化镁、氧化铜、氢氧化铜、氯化银中至少一种;
所述有机溶剂包括PVA、PMMA、环氧树脂、丙烯酸树脂中的至少一种;
步骤6中所述激光扫描的功率为20-200W,光斑直径为0.1mm-2.5mm,扫描速度为0.5mm/s-5mm/s;
步骤7中烧结的温度为500℃-900℃,保温时间为1h-5h,升温速率为0.5℃-3℃/min。
有益效果:本发明提供了一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,采用原位法制得金属氧化物与硅酸钙陶瓷的混合粉末,利用DLP成型技术和高温脱脂烧结法制得陶瓷支架,然后在陶瓷支架表面均匀涂覆一层含有金属的浆料,使用激光扫描支架表面,最后经高温烧结后制得生物骨支架成品;利用原位法制得的混合粉体,氢氧化镁颗粒可以均匀的粘附在陶瓷颗粒表面,使得打印的坯体经过烧结后出现众多微孔结构,而陶瓷支架表面的金属浆料涂层,不仅可以起到增强结构、降低降解速率的作用,而且表面的金属离子能够产生抗菌效果,能够应用于骨组织工程领域,作为骨填充物、置换物或者作为体外培养细胞的支架。与现有技术相比较,本发明具体具有以下几方面有益效果:
(1)本发明采用原位法的原理,制得氧化镁和硅酸钙类陶瓷的混合粉体,使氧化镁颗粒均匀的粘附在陶瓷颗粒表面,提升了结构的致密程度,增强了生物陶瓷骨支架的力学性能;
(2)本发明采用3D打印的方法成型,制备的支架具有梯度孔结构,支架的形状和孔隙率等参数可可控,能够满足骨修复过程中的个性化定制;
(3)本发明利用氢氧化镁加热分解产生微小孔洞,提高了支架整体的孔隙率,便于营养物质和代谢产物的输送;
(4)本发明在生物陶瓷支架表面另涂覆一层金属涂层,起到增强结构强度、降低降解速率的作用。
(5)本发明使用的是硅酸钙作为陶瓷支架的基体材料,具有良好的生物相容性。
附图说明
图1是本发明实施例中所述的生物骨支架的制备流程图;
图2是本发明实施例中使用SEM观察混合粉末的微观形貌;
图3是本发明实施例中支架基体的实物图;
图4是本发明实施例中支架表面带有涂层材料的实物图;
图5是本发明实施例中MC3T3-E1前成骨细胞与支架共同培养状态图;
图6是本发明实施例中将多孔支架和MC3T3-E1细胞共同培养14天后,使用茜素红-S染色效果图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明:
实施例1
如图1所示,一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,通过以下步骤实现的:
步骤1:粉末混合:氯化镁、氢氧化钠粉末按照1:2的比例称取25g和50g,称取粒径50nm-1000nm硅酸钙粉末100g,将氯化镁和硅酸钙加入到含有500ml的去离子水中,搅拌均匀后加入氢氧化钠50g,加入的同时进行搅拌,待溶液中没有氢氧化钠颗粒后使用磁力搅拌器搅拌30分钟;
步骤2:粉末干燥:将步骤1得到的混合溶液静置12小时,除去上层清液,加入等量去离子水,重新得到混合溶液,重复此操作5次,去除中性溶液上层清液,将剩下溶液放入到烘干箱中烘干12小时,烘干的温度为60℃,得到的块状粉体,放入球磨机中球磨4小时,球磨时粉末和氧化锆球的质量比为1:1~10;图2是使用SEM观察硅酸钙表面粘附的氢氧化镁颗粒,其中大颗粒是硅酸钙颗粒,表面球状颗粒为利用原位法生成的氢氧化镁颗粒;
步骤3:浆料制备:将步骤2得到的混合粉体加入光敏树脂和分散剂搅拌混合均匀,浆料的各项组分质量占比为:混合陶瓷粉末50%,光敏树脂48%,分散剂为2%;
步骤4:陶瓷坯体成形:将步骤3得到的浆料用DLP成型技术打印出陶瓷支架坯体,打印机工作的参数为:打印层厚为0.04μm,曝光时间为8s;
步骤5:脱脂烧结:将步骤4得到的陶瓷坯体脱脂烧结,炉冷却到室温后取出得到如图3所示的陶瓷支架,其中脱脂温度为650℃和900℃,保温时间为3小时,升温速率为0.5℃/min,烧结温度为1325℃,保温时间为2小时,升温速率为1℃/min;
步骤6:表层嵌入金属氧化物:将步骤5得到的陶瓷支架表面浸没在含有氧化镁的浆料,使用激光扫描支架表面,将金属氧化物嵌入到支架表面,含有金属的浆料为金属盐或金属氧化物的有机溶液,所述金属盐或金属氧化物的质量百分比为5%-50%,有机物溶剂质量百分比为50%-95%,所述金属盐或金属氧化物为氧化镁、氧化锌、氢氧化锌、氢氧化镁、氧化铜、氢氧化铜、氯化银中至少一种;所述有机溶剂包括PVA、PMMA、环氧树脂、丙烯酸树脂中的至少一种;所述激光扫描的功率为20-200W,光斑直径为0.1mm-2.5mm,扫描速度为0.5mm/s-5mm/s;
步骤7:烧结:将步骤6得到的带涂层支在900℃下烧结1小时,升温速率为3℃/min,去除多余的有机物溶剂,冷却后取出得到氧化镁强化硅酸钙陶瓷生物骨支架,如图4所示,是支架表面嵌入氧化镁的实物图。
验证多孔支架生物相容性
使用上述得到的多孔支架与MC3T3-E1细胞进行共同培养14天,每隔2-3天更换一次培养基,使用光学显微镜观察细胞的粘附情况,其粘附效果如5所示,细胞在含有支架的培养板中生长良好,并且粘附在支架周围。
支架与MC3T3-E1细胞进行共同培养14天后,使用茜素红-S对细胞进行染色30分钟,其染色结果如图6所示,可以发现细胞分化效果良好,有显著的钙结节生成,进一步验证该支架能够有效促进细胞的分化。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或暗示这些实体或操作之间存在任何这种实际的关系或顺序。而且,术语“包括”、“包含”或者对其任何其他变体在涵盖非排他性的包含,从而使得一系列要素的过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由术语“包括一个······”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本保护范围。

Claims (10)

1.一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,其特征在于,包括以下步骤:
步骤1:粉末混合:将氯化镁粉体、硅酸钙粉体加入去离子水中,搅拌混合,再加入氢氧化钠溶液,磁力搅拌得到混合溶液;
步骤2:粉末干燥:将步骤1得到的混合溶液静置,除去上层清液,加入等量去离子水,重新得到混合溶液,重复此操4-10次,去除上层清液,将剩下溶液烘干,将得到的块状粉体球磨;
步骤3:浆料制备:将步骤2球磨后的粉体加入光敏树脂和分散剂搅拌混合均匀得到浆料;
步骤4:陶瓷坯体成形:将步骤3得到的浆料用DLP成型技术打印出陶瓷支架坯体;
步骤5:脱脂烧结:将步骤4得到的陶瓷坯体脱脂烧结,冷却到室温后取出得到陶瓷支架;
步骤6:表层嵌入金属:将步骤5得到的陶瓷支架表面浸没在含有金属的有机浆料中,使用激光扫描陶瓷支架表面,将金属熔化嵌入到陶瓷支架表面;
步骤7:烧结:将步骤6得到的带涂层陶瓷支架进行烧结,去除多余的有机物溶剂,冷却后取出得到氧化镁强化硅酸钙陶瓷生物骨支架。
2.根据权利要求1所述的基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,其特征在于,步骤1中所述氯化镁粉体包括无水氯化镁、六水氯化镁中的至少一种,所述硅酸钙、氯化镁粉体的粉末粒径为50nm~1000nm;步骤1中磁力搅拌的时间为30分钟。
3.根据权利要求1或2所述的基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,其特征在于,步骤1中所述硅酸钙的质量百分比为50%~95%,所述氯化镁和氢氧化钠的含量按反应有效镁和有效氢氧根加入,两者加入的总质量质量百分比为5%-50%,所述氯化镁粉体、硅酸钙粉体总质量和去离子水之比为1:1~5。
4.根据权利要求1所述的基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,其特征在于,步骤2中静置的时间为4~24小时,静置保存的环境温度为15℃-50℃,烘干的温度为30℃-80℃,烘干的时间为12h~36h,球磨时粉末和氧化锆球的质量比为1:1~10,球磨的时间为2h-6h。
5.根据权利要求1所述的基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,其特征在于,步骤3中浆料中混合粉末的质量百分比为30%-80%,光敏树脂质量百分比为15%-50%,分散剂质量百分比为1%-3%。
6.根据权利要求1所述的基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,其特征在于,步骤4中光固化打印的层厚为0.02mm-0.1mm,曝光时间为6s-12s。
7.根据权利要求1所述的基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,其特征在于,步骤5中脱脂的温度为300℃-900℃,保温3h-5h,烧结的温度为1250℃-1350℃之间,保温时间为1h-3h,升温速率为0.5℃-3℃/min。
8.根据权利要求1所述的基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,其特征在于,步骤6中所述激光扫描的功率为20-200W,光斑直径为0.1mm-2.5mm,扫描速度为0.5mm/s-5mm/s;所述含有金属的有机浆料为金属盐或金属氧化物的有机溶液,所述金属盐或金属氧化物的质量百分比为5%-50%,有机物溶剂质量百分比为50%-95%。
9.根据权利要求8所述的基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,其特征在于,所述金属盐或金属氧化物为氧化镁、氧化锌、氢氧化锌、氢氧化镁、氧化铜、氢氧化铜、氯化银中至少一种;所述有机溶剂包括PVA、PMMA、环氧树脂、丙烯酸树脂中的至少一种。
10.根据权利要求1所述的基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法,其特征在于,步骤7中烧结的温度为500℃-900℃,保温时间为3h-5h,升温速率为0.5℃-3℃/min。
CN202110191824.1A 2021-02-19 2021-02-19 一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法 Pending CN113061022A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110191824.1A CN113061022A (zh) 2021-02-19 2021-02-19 一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法
PCT/CN2021/086078 WO2022174507A1 (zh) 2021-02-19 2021-04-09 一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110191824.1A CN113061022A (zh) 2021-02-19 2021-02-19 一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法

Publications (1)

Publication Number Publication Date
CN113061022A true CN113061022A (zh) 2021-07-02

Family

ID=76559313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110191824.1A Pending CN113061022A (zh) 2021-02-19 2021-02-19 一种基于原位法制备硅酸钙/氧化镁多孔生物骨支架的方法

Country Status (2)

Country Link
CN (1) CN113061022A (zh)
WO (1) WO2022174507A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710188A (zh) * 2015-03-02 2015-06-17 浙江大学 一种钙硅酸盐生物陶瓷多孔材料、制备方法及应用
CN107296985A (zh) * 2017-05-15 2017-10-27 广东工业大学 一种基于光固化成型三维打印生物陶瓷支架的方法和应用
CN109336630A (zh) * 2018-08-29 2019-02-15 宁波华源精特金属制品有限公司 一种支架及其制备方法
CN110683842A (zh) * 2019-10-12 2020-01-14 华中科技大学 一种用于高性能dlp打印的生物陶瓷浆料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009052583A1 (en) * 2007-10-24 2009-04-30 The University Of Sydney Biocompatible material and uses thereof
AU2012262674B2 (en) * 2011-06-01 2016-09-22 Allegra Orthopaedics Limited Biocompatible material and uses thereof
CN109910131A (zh) * 2019-04-08 2019-06-21 南京航空航天大学 一种增强型硅酸盐多孔陶瓷支架的浆料及成形方法
CN110092652A (zh) * 2019-04-23 2019-08-06 四川大学 基于dlp面曝光成型技术的生物活性多孔陶瓷制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710188A (zh) * 2015-03-02 2015-06-17 浙江大学 一种钙硅酸盐生物陶瓷多孔材料、制备方法及应用
CN107296985A (zh) * 2017-05-15 2017-10-27 广东工业大学 一种基于光固化成型三维打印生物陶瓷支架的方法和应用
CN109336630A (zh) * 2018-08-29 2019-02-15 宁波华源精特金属制品有限公司 一种支架及其制备方法
CN110683842A (zh) * 2019-10-12 2020-01-14 华中科技大学 一种用于高性能dlp打印的生物陶瓷浆料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN JIAO等: "Preparation of Al2O3-ZrO2 scaffolds with controllable multi-level pores via digital light processing", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *

Also Published As

Publication number Publication date
WO2022174507A1 (zh) 2022-08-25

Similar Documents

Publication Publication Date Title
Cao et al. Fabrication and properties of zirconia/hydroxyapatite composite scaffold based on digital light processing
Wang et al. Nano-hydroxyapatite coating promotes porous calcium phosphate ceramic-induced osteogenesis via BMP/Smad signaling pathway
Yao et al. High performance hydroxyapatite ceramics and a triply periodic minimum surface structure fabricated by digital light processing 3D printing
Liu et al. Role of implants surface modification in osseointegration: A systematic review
Pei et al. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering
Liu et al. Effects of pore size on the mechanical and biological properties of stereolithographic 3D printed HAp bioceramic scaffold
Zhang et al. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds
Laranjeira et al. Innovative macroporous granules of nanostructured‐hydroxyapatite agglomerates: Bioactivity and osteoblast‐like cell behaviour
Sakthiabirami et al. Hybrid porous zirconia scaffolds fabricated using additive manufacturing for bone tissue engineering applications
Jamshidi Adegani et al. Coating of electrospun poly (lactic‐co‐glycolic acid) nanofibers with willemite bioceramic: improvement of bone reconstruction in rat model
Zadehnajar et al. Recent advances on akermanite calcium‐silicate ceramic for biomedical applications
Bellucci et al. Processing and characterization of innovative scaffolds for bone tissue engineering
Mallick et al. Three‐dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study
Zhang et al. 3D-printed composite, calcium silicate ceramic doped with CaSO4· 2H2O: degradation performance and biocompatibility
Abdurrahim et al. Recent progress on the development of porous bioactive calcium phosphate for biomedical applications
CN114452439B (zh) 一种仿生天然骨矿组成的羟基磷灰石/白磷钙石生物活性陶瓷支架及其制备方法
Wei et al. Comparison of physical, chemical and cellular responses to nano-and micro-sized calcium silicate/poly (ϵ-caprolactone) bioactive composites
CN112500150A (zh) 一种镁合金/生物陶瓷多孔支架及其制备方法和应用
Kim et al. Hard‐tissue‐engineered zirconia porous scaffolds with hydroxyapatite sol–gel and slurry coatings
KR20070063114A (ko) 금속 임플란트 및 그 제조방법
Liu et al. Effect of polycaprolactone impregnation on the properties of calcium silicate scaffolds fabricated by 3D printing
Zhao et al. Porous tantalum scaffold fabricated by gel casting based on 3D printing and electrolysis
CN112430086A (zh) 一种生物陶瓷表面涂覆医学植入体的制备方法
Islam et al. Excellency of hydroxyapatite composite scaffolds for bone tissue engineering
Clavell et al. In vitro assessment of the biological response of Ti6Al4V implants coated with hydroxyapatite microdomains

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210702