CN113058035B - 替莫唑胺及其活性产物mtic的声动力新应用 - Google Patents
替莫唑胺及其活性产物mtic的声动力新应用 Download PDFInfo
- Publication number
- CN113058035B CN113058035B CN202110302764.6A CN202110302764A CN113058035B CN 113058035 B CN113058035 B CN 113058035B CN 202110302764 A CN202110302764 A CN 202110302764A CN 113058035 B CN113058035 B CN 113058035B
- Authority
- CN
- China
- Prior art keywords
- temozolomide
- tmz
- mtic
- active product
- ultrasound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4188—1,3-Diazoles condensed with other heterocyclic ring systems, e.g. biotin, sorbinil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0028—Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
- A61K41/0033—Sonodynamic cancer therapy with sonochemically active agents or sonosensitizers, having their cytotoxic effects enhanced through application of ultrasounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明属于医药技术领域,具体涉及一种替莫唑胺及其活性产物MTIC的声动力新应用,替莫唑胺及其活性产物MTIC的声动力新应用具体为利用超声协同替莫唑胺用于治疗肿瘤,能够通过引起单线态氧1O2的产生进而增强替莫唑胺抗肿瘤疗效;激发的超声频率为50kHz‑1MHz;超声强度为0.5W/cm2‑2W/cm2;激发的超声时间为30‑60s。TMZ(替莫唑胺)具有较好的声敏性,超声协同TMZ能够通过引起单线态氧的产生进而增强TMZ对胶质瘤和黑色素瘤细胞的毒性作用。本发明利用超声激发TMZ活性产物MTIC声动力开发抗肿瘤作用的新疗法,将具有不可估量的临床应用价值。
Description
技术领域
本发明属于医药技术领域,具体涉及一种替莫唑胺及其活性产物MTIC的声动力新应用。
背景技术
目前替莫唑胺(TMZ)是被广泛应用于抗脑恶性胶质瘤和黑色素瘤治疗的一线常用药物,属于第2代口服烷化剂。口服后吸收迅速,平均半衰期为1.8小时,生物利用度接近100%,可透过血脑屏障,其脑脊液/血浆药物浓度比接近30%~40%。TMZ本身没有直接的抗肿瘤活性,其通过在体循环生理pH状态下开环转化为中间活性产物MTIC(3-甲基-(三嗪-1-)咪唑-4-甲酰胺),MTIC进一步分解为AIC和重氮甲烷,从而产生抗肿瘤作用。然而,逐渐获得的TMZ耐药性在很大程度上限制了TMZ对肿瘤患者的益处。贸然提高药物浓度来实现药效会对正常组织细胞造成伤害。因此,开发新的安全的提高TMZ抗肿瘤作用的新疗法,迫在眉睫。
声动力疗法(Sonodynamic Therapy,简称SDT)是一种无创而精准的新的肿瘤治疗方法,是在无创条件下用超声激活声敏剂,使发生超声化学反应产生单线态氧,从肿瘤细胞夺取电子破坏肿瘤细胞。声敏剂也成为SDT的关键角色,除了声敏性,还应该具有安全性好、容易操作、能被人体快速吸收且不会产生永久性伤害等特点。对于适用于脑恶性胶质瘤治疗的声敏剂,还应该具有易于穿透血脑屏障等特点。目前尚没有应用于临床脑恶性胶质瘤治疗的有效声敏剂。
发明内容
本发明的目的在于克服现有技术中的缺点,提供一种替莫唑胺及其活性产物MTIC的声动力新应用。
为实现上述目的,本发明采用的技术方案为:
一种替莫唑胺及其活性产物MTIC的声动力新应用,具体包括:利用超声协同莫唑胺用于治疗肿瘤,能够通过引起单线态氧1O2的产生进而增强替莫唑胺抗肿瘤疗效;激发的超声频率为50kHz-1MHz;超声强度为0.5W/cm2-2W/cm2;激发的超声时间为30-60s。
作为优选,激发的超声强度1W/cm2,超声时间60s。
本发明还包括制备作为治疗肿瘤的药物的应用。
所述的肿瘤为脑胶质瘤和黑色素瘤。
与现有技术相比,本发明的有益效果是:
TMZ(替莫唑胺)具有较好的声敏性,超声协同TMZ能够通过引起单线态氧的产生进而增强TMZ对胶质瘤和黑色素瘤细胞的毒性作用。本发明利用超声激发TMZ活性产物MTIC声动力开发抗肿瘤作用的新疗法,将具有不可估量的临床应用价值。
附图说明
图1是不同超声条件对肿瘤细胞存活率的影响;
图2是超声结合TMZ对肿瘤细胞存活率的影响;
图3是超声结合TMZ体内肿瘤生长曲线图;
图4是超声结合TMZ对肿瘤细胞内单线态氧产生的影响图;
图5是TMZ、MTIC、AIC体外单线态氧生成检测图。
具体实施方式
为了使本技术领域的技术人员更好地理解本发明的技术方案,下面结合附图和最佳实施例对本发明作进一步的详细说明。
实施例1:分析不同超声条件对肿瘤细胞存活率的影响。
以胶质瘤细胞U87为模型,取对数生长期的U87胶质瘤细胞,经胰酶消化后,按1×105的密度接种到12孔板里,细胞贴壁后,给予超声(强度为0、0.5、1、1.5、2W/cm2;超声时间为30s和60s)激发。24小时后,每孔加入CCK-8溶液,孵育1小时后吸取上清转移至96孔板后酶标仪测定OD450。
如图1所示,随着超声强度的增加,细胞的存活率明显降低,尤其到达1.5W/cm2以上时,超声30s的存活率为60%,而超声60s的存活率仅为40%;而当超声强度保持一致时,超声60s的存活率均低于超声30s的存活率。由此,从安全性出发,我们后续实验选取超声强度1W/cm2,超声时间60s。
实施例2:分析超声结合TMZ对U87肿瘤细胞存活率的影响。
以胶质瘤细胞U87为模型,取对数生长期的U87胶质瘤细胞,经胰酶消化后,按1×105的密度接种到12孔板里,细胞贴壁后,加入不同浓度TMZ(Solarbio,IT1330)(0、50、100、200、400、800μM),1小时后给予超声(强度为1W/cm2,时间为60s)激发。24小时后,每孔加入CCK-8溶液,孵育1小时后吸取上清转移至96孔板后酶标仪测定OD450。
如图2所示,随着TMZ浓度的增加,细胞的活力明显降低,TMZ浓度400μM时细胞存活率为下降到60%;而联合超声干预后,明显增强了TMZ的毒性作用,TMZ浓度400μM时细胞存活率仅为37%。该部分实验说明,超声增强了肿瘤细胞对TMZ的敏感性。
实施例3:超声结合TMZ体内肿瘤生长曲线图:
将U87(TMZ耐药细胞株)按照107个/100μL植入1只Bal-c裸鼠(4周Bal-c裸鼠)右侧腹股沟处,待最大直径约为10mm时,于无菌条件下取出,修剪去除脂肪和坏死组织,立即置入无血清培养液中,将瘤体剪碎至1-2mm3大小,植入第2批次24只裸鼠。将24只随机分成4组,空白对照组、单纯超声组、替莫唑胺组、超声+替莫唑胺组,每组6只。植瘤第7天腹腔注射TMZ(5mg/kg),在注射药物1h后对小鼠进行超声治疗(1.0MHz,2W/cm2,2min);TMZ是连续注射5天,超声是2天干预1次。分别在0days,2days,4days,6days,用游标卡尺测量肿瘤结节的最长径(a)和最短径(b),根据公式V=1/6π(ab2)计算肿瘤体积,绘制肿瘤生长曲线。
如图3所示,因选择的肿瘤是TMZ耐药U87细胞株,所以,单纯TMZ疗效并不理想,同时单纯超声的抑瘤效果也不明显。但是,超声+替莫唑胺联合组效果显著,皮下肿瘤生长明显受到抑制。该部分结果说明,超声结合替莫唑胺起到了协同的抑制肿瘤生长的效果。
实施例4:分析超声结合TMZ对肿瘤细胞内单线态氧产生的影响:
以U87胶质瘤细胞为模型,利用单线态氧试剂盒(贝博,BB-47055)检测空白对照组、单纯超声组、TMZ组和TMZ联合超声组细胞中单线态氧浓度。具体步骤如下:
取对数生长期的U87胶质瘤细胞,经胰酶消化后,按2×104的密度接种到已铺入细胞爬片的24孔板里,细胞贴壁后,加入含200μM TMZ的完全培养基,1小时后给予超声(强度为1W/cm2,时间为60s)激发。6小时后,弃去含药培养基,加入含单线态氧检测试剂的无血清培养基,孵育1小时后,加入PBS冲洗,待多聚甲醛固定后,取出爬片,在用含DAPI的防荧光淬灭剂封片后,放置于共聚焦显微镜下观察并拍照。
如图4所示,空白对照组、TMZ组和抑制剂组,细胞内单线态氧的表达量很低;而TMZ联合超声组细胞中单线态氧的表达量最高,强于单纯超声组。结果说明,超声激发了TMZ的声动力。
实施例5:分析TMZ、MTIC、AIC体外单线态氧生成情况
具体步骤:取浓度为4mg/ml的TMZ溶于PBS(0.01M,pH 5.5)中,震荡混匀后在室温下避光静置1小时,使用酸性PBS来确保TMZ不会水解成MTIC;取浓度为4mg/ml的TMZ溶于PBS(0.01M,pH 7.4)中,震荡混匀后在室温下避光静置1小时,以完全转化为MTIC(MW 182.18);取浓度为2.6mg/ml的AIC(MW126.12)溶于PBS(0.01M,pH 7.4)中,震荡混匀后在室温下避光静置1小时。分别向以上试剂中加入单线态氧检测试剂SOSG,震荡混匀后置于超声探头上。于超声的第0、2、4、6、8、10分钟取出部分液体,于分光光度仪中检测该溶液在激发波长Ex=504nm,发射波长Em=525nm下的紫外吸收,获得吸光度值;
如图5所示,随着超声时间的延长,MTIC产生单线态氧的浓度明显增加,超声10分钟MTIC单线态氧浓度增加了20倍,远远超过TMZ和AIC产生的单线态氧浓度。结果表明,TMZ声动力指的是在体循环生理pH状态下TMZ的活性产物MTIC的声动力,而不是TMZ本身。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (5)
1.一种替莫唑胺及其活性产物MTIC作为制备声敏剂的应用。
2.根据权利要求1所述的替莫唑胺及其活性产物MTIC作为制备声敏剂的应用,其特征在于,利用超声协同替莫唑胺用于治疗肿瘤,能够通过引起单线态氧1O2的产生进而增强替莫唑胺抗肿瘤疗效;激发的超声频率为50kHz-1MHz;超声强度为0.5W/cm2-2W/cm2;激发的超声时间为30-60s。
3.根据权利要求2所述的替莫唑胺及其活性产物MTIC作为制备声敏剂的应用,其特征在于,激发的超声强度1W/cm2,超声时间60s。
4.根据权利要求1所述的替莫唑胺及其活性产物MTIC作为制备声敏剂的应用,其特征在于,制备用于肿瘤声动力治疗。
5.根据权利要求4所述的替莫唑胺及其活性产物MTIC作为制备声敏剂的应用,其特征在于,所述的肿瘤为脑胶质瘤和/或黑色素瘤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110302764.6A CN113058035B (zh) | 2021-03-22 | 2021-03-22 | 替莫唑胺及其活性产物mtic的声动力新应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110302764.6A CN113058035B (zh) | 2021-03-22 | 2021-03-22 | 替莫唑胺及其活性产物mtic的声动力新应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113058035A CN113058035A (zh) | 2021-07-02 |
CN113058035B true CN113058035B (zh) | 2022-11-04 |
Family
ID=76562931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110302764.6A Active CN113058035B (zh) | 2021-03-22 | 2021-03-22 | 替莫唑胺及其活性产物mtic的声动力新应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113058035B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000033823A2 (en) * | 1998-12-07 | 2000-06-15 | Schering Corporation | Methods of using temozolomide in the treatment of cancers |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070212298A1 (en) * | 2004-08-25 | 2007-09-13 | Prefix Suffix | Use of the combination comprising temozolomide and tnf-alpha for treating glioblastoma |
-
2021
- 2021-03-22 CN CN202110302764.6A patent/CN113058035B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000033823A2 (en) * | 1998-12-07 | 2000-06-15 | Schering Corporation | Methods of using temozolomide in the treatment of cancers |
Non-Patent Citations (2)
Title |
---|
Biological reactive intermediates that mediate dacarbazine cytotoxicity;Jalal Pourahmad 等;《Cancer Chemother Pharmacol》;20090428;第65卷(第1期);全文 * |
有机化合物血卟啉及其衍生物被物理因素――超声激活机理研究;尚志远等;《化学学报》;20050215(第14期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113058035A (zh) | 2021-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer | |
Zhang et al. | Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy | |
CN110743012A (zh) | 一种葡萄糖氧化酶修饰的介孔二氧化锰药物组合物的制备方法及应用 | |
Jiang et al. | Stimuli responsive nanosonosensitizers for sonodynamic therapy | |
CN113599520B (zh) | 一种卟啉脂质-全氟化碳纳米制剂及其制备方法和用途 | |
Wu et al. | Targeted delivery of chemo‐sonodynamic therapy via brain targeting, glutathione‐consumable polymeric nanoparticles for effective brain cancer treatment | |
Osaki et al. | Bleomycin enhances the efficacy of sonodynamic therapy using aluminum phthalocyanine disulfonate | |
Cheng et al. | Nanosonosensitizers with ultrasound-induced reactive oxygen species generation for cancer sonodynamic immunotherapy | |
Zhu et al. | Sonodynamic cancer therapy by novel iridium-gold nanoassemblies | |
Zhang et al. | Modulation of tumor hypoxia by pH-responsive liposomes to inhibit mitochondrial respiration for enhancing sonodynamic therapy | |
Wu et al. | Tirapazamine encapsulated hyaluronic acid nanomicelles realized targeted and efficient photo-bioreductive cascading cancer therapy | |
Huang et al. | IR780 based sonotherapeutic nanoparticles to combat multidrug-resistant bacterial infections | |
Yang et al. | Synergistic anticancer strategy of sonodynamic therapy combined with PI-103 against hepatocellular carcinoma | |
CN109125723B (zh) | 复合声敏剂、其制备方法、应用、使用方法、用途及药物组合物 | |
Luo et al. | Recent advances and prospects of metal–organic frameworks in cancer therapies | |
WO2019050963A1 (en) | SONODYNAMIC THERAPY USING MICROBULLES AND METHODS AND SYSTEMS ULTRASOUNDED WITH PULSED WAVES | |
Zhang et al. | A self-supplied O2 versatile nanoplatform for GOx-mediated synergistic starvation and hypothermal photothermal therapy | |
Feng et al. | Intracellular marriage of bicarbonate and Mn ions as “immune ion reactors” to regulate redox homeostasis and enhanced antitumor immune responses | |
Yin et al. | Live bio-nano-sonosensitizer targets malignant tumors in synergistic therapy | |
CN113058035B (zh) | 替莫唑胺及其活性产物mtic的声动力新应用 | |
Yu et al. | Sono‐Triggered Cascade Lactate Depletion by Semiconducting Polymer Nanoreactors for Cuproptosis‐Immunotherapy of Pancreatic Cancer | |
Xu et al. | MnO2 coated multi-layer nanoplatform for enhanced sonodynamic therapy and MR imaging of breast cancer | |
CN116421743A (zh) | 靶向清除细菌生物被膜的纳米复合材料及其制备方法和用途 | |
CN109620801B (zh) | 多模式治疗鼻咽癌的复合纳米胶束及其制备方法和应用 | |
CN115364235A (zh) | 一种锌离子驱动氧气节约和基因沉默的生物活性纳米载体及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |