CN113056912A - 用于对图像信号进行编码/解码的方法及其装置 - Google Patents
用于对图像信号进行编码/解码的方法及其装置 Download PDFInfo
- Publication number
- CN113056912A CN113056912A CN202080005994.XA CN202080005994A CN113056912A CN 113056912 A CN113056912 A CN 113056912A CN 202080005994 A CN202080005994 A CN 202080005994A CN 113056912 A CN113056912 A CN 113056912A
- Authority
- CN
- China
- Prior art keywords
- block
- parallel
- information
- motion information
- slice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
- H04N19/436—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation using parallelised computational arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/117—Filters, e.g. for pre-processing or post-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/119—Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/174—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/593—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/625—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/96—Tree coding, e.g. quad-tree coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
根据本公开的一种视频解码方法可包括:将当前画面分区为多个并行块;对表示条带类型的分区信息进行解码,其中,所述分区信息表示矩形条带是否被应用;并且当分区信息表示矩形条带被应用时,对条带的第一宽度信息和第一高度信息进行解码。
Description
技术领域
本公开涉及一种视频信号编码/解码方法及其装置。
背景技术
随着显示面板变得更大,需要更高质量的视频服务。高清视频服务的最大问题是数据量大大地增加。为了解决以上问题,正在积极进行提高视频压缩率的研究。作为代表性示例,视频编码联合协作组(JCT-VC)在2009年由国际电信联盟-电信(ITU-T)下的运动图像专家组(MPEG)和视频编码专家组(VCEG)组建。JCT-VC提出高效视频编码(HEVC),一种压缩性能是H.264/AVC的约两倍且在2013年1月25日被批准为标准的视频压缩标准。然而,随着高清视频服务的快速发展,HEVC的性能逐渐显示出它的局限性。
发明内容
技术目的
本公开的目的在于提供一种用于在对视频信号进行编码/解码时将画面分区为多个并行块或多个条带的方法以及用于执行所述方法的装置。
本公开的目的在于提供一种用于在将画面分区为多个并行块时基于并行块索引对条带进行分区的方法以及用于执行所述方法的装置。
本公开的目的在于提供一种用于在将画面分区为多个条带时基于与先前条带的差信息对条带进行分区的方法以及用于执行所述方法的装置。
可从本公开获得的技术目的不限于上述技术目的,并且本公开所属技术领域的普通技术人员可从以下描述清楚地理解其他未提及的技术目的。
技术方案
根据本公开的一种视频信号解码方法包括:将当前画面分区为多个并行块;对表示条带类型的分区信息进行解码,其中,所述分区信息表示矩形条带是否被应用;并且当所述分区信息表示矩形条带被应用时,对条带的第一宽度信息和第一高度信息进行解码。在这种情况下,当第一宽度信息指示一个并行块列并且第一高度信息指示一个并行块行时,可基于包括所述条带的并行块的高度来确定是否对数量信息进行解析。
根据本公开的一种视频信号编码方法可包括:将当前画面分区为多个并行块;确定矩形条带是否被应用;并且当矩形条带被应用时对条带的第一宽度信息和第一高度信息进行编码。在这种情况下,当第一宽度信息指示一个并行块列并且第一高度信息指示一个并行块行时,可基于包括所述条带的并行块的高度来确定是否对数量信息进行编码。
在根据本公开的视频信号解码方法中,当所述并行块利用一个编码树单元行来配置时,可省略对所述数量信息的解析。
在根据本公开的视频信号解码方法中,当所述并行块利用多个编码树单元行来配置时,可对所述数量信息进行解析,并且所述数量信息可表示高度信息应被显式地用信号发送的条带的数量。
在根据本公开的视频信号解码方法中,针对所述并行块中包括的至少一个条带中的索引小于由所述数量信息指示的数量的第一条带,可对第二高度信息进行解析。
在根据本公开的视频信号解码方法中,针对索引等于或大于由所述数量信息指示的数量的第二条带,可不对第二高度信息进行解析。
在根据本公开的视频信号解码方法中,第二条带的高度可被设置为以下项中的较小值:第二高度信息被最后解析的第三条带的高度或所述并行块中的剩余高度。
将理解,前述概括的特征是本公开的以下详细描述的示例性方面,而不限制本公开的范围。
技术效果
根据本公开,可通过将画面分区为多个并行块或多个条带来提高编码/解码效率。
根据本公开,可通过基于并行块索引对条带进行分区来提高编码/解码效率。
根据本公开,可通过基于与先前条带的差信息对条带进行分区来提高编码/解码效率。
可从本公开获得的效果可不受上述效果的限制,并且本公开所属技术领域的普通技术人员可从以下描述清楚地理解其他未提及的效果。
附图说明
图1是示出根据本公开的实施例的视频编码装置(编码器)的框图的示图。
图2是示出根据本公开的实施例的视频解码装置(解码器)的框图的示图。
图3是示出根据本公开的实施例的基本编码树单元的示图。
图4是示出编码块的各种分区类型的示图。
图5是示出对CTU进行分区的方面的示例的示图。
图6是根据本公开的实施例的帧间预测方法的流程图。
图7是示出对象的非线性运动的示图。
图8是根据本公开的实施例的基于仿射运动的帧间预测方法的流程图。
图9是示出针对每个仿射运动模型的仿射种子矢量的示图。
图10是示出4参数运动模型中的子块的仿射矢量的示图。
图11是示出用于推导合并候选的候选块的示图。
图12是用于解释运动信息表的更新方面的示图。
图13是用于解释运动信息表的更新方面的示图。
图14是示出运动信息表的更新方面的示图。
图15是示出保存的运动信息候选的索引被更新的示例的示图。
图16是示出仅针对一部分合并候选执行冗余校验的示例的示图。
图17是示出对特定合并候选的冗余校验被省略的示例的示图。
图18是示出与当前块包括在同一合并处理区域中的候选块被设置为不可用作合并候选的示例的示图。
图19是示出当当前块被包括在合并处理区域中时推导针对当前块的合并候选的示例的示图。
图20是示出临时运动信息表的示图。
图21是示出使运动信息表和临时运动信息表一致的示例的示图。
图22是根据本公开的实施例的帧内预测方法的流程图。
图23是示出帧内预测模式的示图。
图24和图25是示出参考样点被排列为一行的一维阵列的示例的示图。
图26是示出由方向帧内预测模式与平行于x轴的直线形成的角度的示图。
图27是示出在当前块具有非正方形形状的情况下获得预测样点的方面的示图。
图28是示出广角帧内预测模式的示图。
图29是示出按子块确定是否执行变换跳过的示例的示图。
图30是示出子块使用相同的变换类型的示例的示图。
图31是示出确定块强度(blocking strength)的处理的流程图。
图32示出预定义滤波器候选。
图33是示出根据本公开的实施例的画面分区方法的示图。
图34示出画面被分区为多个并行块的示例。
图35是用于解释分块的生成方面的示图。
图36和图37是示出基于光栅顺序定义条带的示例的示图。
图38是示出仅矩形形状的条带被允许的示例的示图。
具体实施方式
在下文中,将参照附图详细描述本公开的实施例。
基于块来执行图像编码和解码。在示例中,对于编码块、变换块或预测块,可执行编码/解码处理,诸如变换、量化、预测、环内滤波、重建等。
在下文中,编码/解码目标块被称为“当前块”。在示例中,当前块可表示根据编码/解码的当前处理的编码块、变换块或预测块。
此外,本说明书中使用的术语“单元”表示用于执行特定编码/解码处理的基本单元,并且“块”可被理解为表示具有预定尺寸的样点阵列。除非另有说明,否则“块”和“单元”可被可互换地使用。在示例中,在稍后描述的示例中,编码块和编码单元可被理解为具有彼此相同的含义。
图1是示出根据本公开的实施例的图像编码设备(编码器)的框图的示图。
参照图1,图像编码设备100可包括画面分区单元110、预测单元120和125、变换单元130、量化单元135、重排单元160、熵编码单元165、反量化单元140、逆变换单元145、滤波器单元150和存储器155。
图1中描述的组件被独立地示出,以便示出图像编码设备中的不同特征功能,并且该图不表示每个组件由单独的硬件或一个软件单元构成。也就是说,每个组件仅是为了便于解释而被列举出的,各个组件中的至少两个组件可构成一个组件,或者一个组件可被划分为可执行其功能的多个组件。甚至对各个组件进行集成的实施例以及对组件进行划分的实施例也被包括在本公开的范围中,除非它们脱离本公开的精神。
此外,一些组件不是执行本公开的必要功能的必需部件,而是仅用于提升性能的可选组件。本公开可利用除了仅用于提升性能的组件之外的用于实现本公开的精神的必要组件来实现,并且仅包括除了仅用于提升性能的可选组件之外的必要组件的结构也被包括在本公开的范围内。
画面分区单元110可将输入画面分区为至少一个处理单元。就此而言,处理单元可以是预测单元(PU)、变换单元(TU)或编码单元(CU)。在画面分区单元110中,可将单个画面分区为多个编码单元、预测单元和变换单元的组合,并且可通过根据预定条件(例如,代价函数)选择编码单元、预测单元和变换单元的组合来对画面进行编码。
例如,可将单个画面分区为多个编码单元。为了将画面分区为编码单元,可使用诸如四叉树结构的递归树结构,并且源自诸如单个图像或最大编码单元的根的编码单元可被分区为其他编码单元,并且可具有与分区出的编码单元一样多的子节点。根据特定限制不再被分区的编码单元成为叶节点。即,当假设仅正方形分区可用于单个编码单元时,单个编码单元可被分区为最多四个其他编码单元。
在下文中,在本公开的实施例中,编码单元可被用作用于编码的单元或可被用作用于解码的单元。
可通过将单个编码单元分区为具有相同尺寸的至少一个正方形或矩形来获得预测单元,或者可以以一个预测单元在形状和/或尺寸上可与另一预测单元不同的方式将单个编码单元分区为预测单元。
在基于正被执行帧内预测的编码块生成预测单元时,当编码单元不是最小编码单元时,可在不执行分区为多个N×N的预测单元的情况下执行帧内预测。
预测单元120和125可包括执行帧间预测的帧间预测单元120以及执行帧内预测的帧内预测单元125。可确定是对预测单元执行帧间预测还是帧内预测,并且可确定根据每种预测方法的详细信息(例如,帧内预测模式、运动矢量、参考画面等)。就此而言,被执行预测的处理单元可与确定了预测方法及其细节的处理单元不同。例如,可基于预测单元来确定预测方法、预测模式等,并且可基于变换单元来执行预测。所生成的预测块与原始块之间的残差值(残差块)可被输入到变换单元130。此外,用于预测的预测模式信息、运动矢量信息等可由熵编码单元165使用残差值来编码,且可被发送到解码器。当使用特定编码模式时,原始块在不通过预测单元120或125生成预测块的情况下被按原样编码并被发送到解码单元。
帧间预测单元120可基于关于当前画面的先前画面和后续画面中的至少一个的信息来对预测单元进行预测,或者在一些情况下,可基于关于当前画面中的一些编码区域的信息来对预测单元进行预测。帧间预测单元120可包括参考画面插值单元、运动预测单元和运动补偿单元。
参考画面插值单元可从存储器155接收参考画面信息,并且从参考画面生成整数像素或更小像素的像素信息。在亮度像素的情况下,可使用具有不同系数的8抽头的基于DCT的插值滤波器,以便生成关于整数像素或针对1/4像素单位的更小像素的像素信息。在色度信号的情况下,可使用具有不同滤波器系数的4抽头的基于DCT的插值滤波器,以便生成关于整数像素或针对1/8像素单位的更小像素的像素信息。
运动预测单元可基于由参考画面插值单元插值的参考画面来执行运动预测。作为用于计算运动矢量的方法,可使用各种方法,诸如基于全搜索的块匹配算法(FBMA)、三步搜索(TSS)算法、新三步搜索(NTS)算法等。基于经过插值的像素,运动矢量可具有以1/2像素或1/4像素为单位的运动矢值。运动预测单元可通过改变运动预测方法来对当前预测单元进行预测。作为运动预测方法,可使用各种方法,诸如跳过方法、合并方法、高级运动矢量预测(AMVP)方法、帧内块复制方法等。
帧内预测单元125可基于关于当前块周围的参考像素的信息(是当前画面中的像素信息)生成预测单元。当当前预测单元的邻近块是被执行帧间预测的块,并且因此参考像素是被执行帧间预测的像素时,可通过关于被执行帧内预测的邻近块的参考像素的信息来替换包括在被执行帧间预测的块中的参考像素。换句话说,当参考像素不可用时,可使用可用参考像素中的至少一个参考像素来替换不可用参考像素信息。
帧内预测中的预测模式可包括根据预测方向使用参考像素信息的方向预测模式以及在执行预测时不使用方向信息的非方向模式。用于对亮度信息进行预测的模式可不同于用于对色度信息进行预测的模式。为了对色度信息进行预测,可使用关于用于对亮度信息进行预测的帧内预测模式的信息或关于预测的亮度信号的信息。
在执行帧内预测时,当预测单元的尺寸与变换单元相同时,可基于位于预测单元的左侧、左上方和上方的像素对预测单元执行帧内预测。然而,在执行帧内预测时,当预测单元的尺寸与变换单元不同时,可通过使用参考像素基于变换单元来执行帧内预测。此外,使用N×N分区的帧内预测可仅被用于最小编码单元。
在帧内预测方法中,可在根据预测模式将自适应帧内平滑(AIS)滤波器应用于参考像素之后生成预测块。应用于参考像素的AIS滤波器的类型可变化。为了执行帧内预测方法,可从当前预测单元周围存在的预测单元的帧内预测模式对针对当前预测单元的帧内预测模式进行预测。在通过使用从邻近预测单元预测出的模式信息对针对当前预测单元的预测模式进行预测时,当针对当前预测单元的帧内预测模式与邻近预测单元的帧内预测模式相同时,可通过使用预定标志信息来发送指示当前预测单元和邻近预测单元具有相同预测模式的信息。当针对当前预测单元的预测模式与邻近预测单元的预测模式不同时,可执行熵编码以对关于针对当前块的预测模式的信息进行编码。
此外,可生成包括关于残差值的信息的残差块,其中,所述残差值是通过预测单元120或125而被执行预测的预测单元与该预测单元的原始块之间的差值。所生成的残差块可被输入到变换单元130。
变换单元130可通过使用诸如离散余弦变换(DCT)或离散正弦变换(DST)的变换方法来对残差块执行变换,其中,所述残差块包括关于原始块与由预测单元120或125生成的预测单元之间的残差值的信息。就此而言,DCT变换核包括DCT2或DCT8中的至少一个,并且DST变换核包括DST7。可基于关于用于生成残差块的预测单元的帧内预测模式的信息来确定是应用DCT还是DST以便对残差块执行变换。可跳过针对残差块的变换。可对指示是否跳过针对残差块的变换的标志进行编码。对于尺寸小于或等于阈值的残差块、亮度分量的残差块或4:4:4格式下的色度分量的残差块,可允许变换跳过。
量化单元135可对由变换单元130变换到频域的值执行量化。量化系数可根据块或图像的重要性而变化。在量化单元135中计算出的值可被提供给反量化单元140和重排单元160。
重排单元160可对针对量化的残差值的系数值执行重排。
重排单元160可通过系数扫描方法将二维块形式的系数改变为一维矢量形式的系数。例如,重排单元160可通过使用Z字形扫描方法从DC系数扫描到高频域中的系数,以便将系数改变为一维矢量的形式。根据变换单元的尺寸和帧内预测模式,可使用垂直方向扫描或水平方向扫描,而不是Z字形扫描,其中,在垂直方向扫描中在列方向上对二维块形式的系数进行扫描,在水平方向扫描中在行方向上对二维块形式的系数进行扫描。换句话说,可根据变换单元的尺寸和帧内预测模式来确定使用Z字形扫描、垂直方向扫描和水平方向扫描中的哪种扫描方法。
熵编码单元165可基于由重排单元160计算出的值来执行熵编码。熵编码可使用各种编码方法,例如,指数哥伦布编码、上下文自适应可变长度编码(CAVLC)或上下文自适应二进制算术编码(CABAC)。
熵编码单元165可对从重排单元160以及预测单元120和125获得的各种类型的信息(诸如关于残差值系数的信息和关于编码单元的块类型的信息、关于预测模式的信息、关于分区单元的信息、关于预测单元的信息和关于发送单元的信息、关于运动矢量的信息、关于参考帧的信息、关于块插值的信息、滤波信息等)进行编码。
熵编码单元165可对从重排单元160输入的编码单元的系数进行熵编码。
反量化单元140可对在量化单元135中量化的值执行反量化,并且逆变换单元145可对在变换单元130中变换的值执行逆变换。由反量化单元140和逆变换单元145生成的残差值可与由包括在预测单元120和125中的运动估计单元、运动补偿单元或帧内预测单元预测出的预测单元相加,以便生成重建块。
滤波器单元150可包括去块滤波器、偏移校正单元和自适应环路滤波器(ALF)中的至少一个。
去块滤波器可去除由于重建画面中的块之间的边界而发生的块失真。为了确定是否执行去块,可基于块中包括的若干行和若干列中所包括的像素来确定是否将去块滤波器应用于当前块。当去块滤波器被应用于块时,根据所需的去块滤波强度应用强滤波器或弱滤波器。此外,在应用去块滤波器时,当执行水平方向滤波和垂直方向滤波时,水平方向滤波和垂直方向滤波可被配置为被并行处理。
偏移校正单元可通过相对于被执行去块的图像的以像素为单位的偏移来校正原始图像。为了对特定画面执行偏移校正,将偏移应用于在将图像的像素分区为预定数量的区域之后确定的区域的方法或者根据每个像素的边缘信息应用偏移的方法可被使用。
可基于通过将经过滤波的重建图像与原始图像进行比较而获得的值来执行自适应环路滤波(ALF)。可将图像中包括的像素分区为预定组,将被应用于所述组中的每个组的滤波器可被确定,并且可对每个组单独执行滤波。可针对亮度信号的每个编码单元(CU)发送关于是否应用ALF的信息,并且将被应用的ALF滤波器的形状和滤波器系数可基于每个块而变化。可选地,可应用具有相同形状(固定的形状)的ALF滤波器,而不管将被应用滤波器的块的特征如何。
在存储器155中,可存储通过滤波器单元150计算出的重建块或画面。当执行帧间预测时,可将所存储的重建块或画面提供给预测单元120或125。
图2是示出根据本公开的实施例的图像解码设备(解码器)的框图的示图。
参照图2,图像解码设备200可包括:熵解码单元210、重排单元215、反量化单元220、逆变换单元225、预测单元230和235、滤波器单元240和存储器245。
当从编码器输入了图像比特流时,可根据图像编码设备的逆处理对输入的比特流进行解码。
熵解码单元210可根据由图像编码器的熵编码单元进行的熵编码的逆处理来执行熵解码。例如,与由图像编码器设备执行的方法相关联,可应用各种方法,诸如指数哥伦布编码、上下文自适应可变长度编码(CAVLC)或上下文自适应二进制算术编码(CABAC)。
熵解码单元210可对关于由编码器执行的帧内预测和帧间预测的信息进行解码。
重排单元215可基于在编码器中使用的重排方法对由熵解码单元210熵解码的比特流执行重排。以一维矢量形式表示的系数可被重建并被重排为二维块形式的系数。重排单元215可通过下述方法来执行重排:接收与在编码器中执行的系数扫描相关的信息并基于在编码器中执行的扫描顺序进行逆扫描。
反量化单元220可基于从编码器接收到的量化参数和经过重排的块的系数值来执行反量化。
逆变换单元225可执行与由图像编码器中的变换单元对量化结果执行的变换(即,DCT或DST)相反的逆变换(即,逆DCT或逆DST)。就此而言,DCT变换核可包括DCT2或DCT8中的至少一个,并且DST变换核可包括DST7。可选地,当在图像编码器中跳过了变换时,也不在逆变换单元225中执行逆变换。可基于由图像编码器确定的发送单元来执行逆变换。图像解码器的逆变换单元225可根据诸如预测方法、当前块的尺寸、预测方向等的多条信息选择性地执行变换方法(例如,DCT或DST)。
预测单元230或235可基于从熵解码单元210接收到的与预测块相关的信息以及从存储器245接收到的关于先前解码的块或画面的信息来生成预测块。
如上所述,作为图像编码器的操作,在执行帧内预测时,当预测单元的尺寸与变换单元相同时,可基于位于预测单元的左侧、左上方和上方的像素对预测单元执行帧内预测。然而,在执行帧内预测时,当预测单元的尺寸与变换单元不同时,可通过使用参考像素基于变换单元来执行帧内预测。此外,使用N×N分区的帧内预测可仅被用于最小编码单元。
预测单元230和235可包括PU确定模块、帧间预测单元和帧内预测单元。PU确定模块可接收从熵解码单元210输入的各种类型的信息(诸如关于预测单元的信息、关于帧内预测方法的预测模式的信息、关于帧间预测方法的运动预测的信息等),对当前编码单元中的预测单元进行划分,并且确定对预测单元执行帧间预测还是帧内预测。通过使用从图像编码器接收到的在当前预测单元的帧间预测中所需的信息,帧间预测单元230可基于关于包括当前预测单元的当前画面的先前画面和后续画面中的至少一个的信息来对当前预测单元执行帧间预测。可选地,可基于关于包括当前预测单元的当前画面中的一些预重建区域的信息来执行帧间预测。
为了执行帧间预测,可基于编码单元确定将跳过模式、合并模式、AMVP模式或帧内块复制模式中的哪种方法用作针对包括在编码单元中的预测单元的运动预测方法。
帧内预测单元235可基于关于当前画面内的像素的信息来生成预测块。当预测单元是已被执行帧内预测的预测单元时,可基于从图像编码器接收到的关于预测单元的帧内预测模式的信息来执行帧内预测。帧内预测单元235可包括自适应帧内平滑(AIS)滤波器、参考像素插值模块或DC滤波器。AIS滤波器可对当前块的参考像素执行滤波,并且可根据针对当前预测单元的预测模式来确定是否应用滤波器。当对当前块的参考像素执行AIS滤波时,可使用从图像编码器接收到的关于AIS滤波器的信息和预测单元的预测模式。当针对当前块的预测模式是不应用AIS滤波的模式时,可不应用AIS滤波器。
当预测单元的预测模式是基于通过对参考像素进行插值而获得的像素值执行帧内预测的预测模式时,参考像素插值单元可对参考像素进行插值以便生成具有整数或更小的单位的参考像素。当针对当前预测单元的预测模式是在不对参考像素进行插值的情况下生成预测块的预测模式时,可不对参考像素进行插值。当针对当前块的预测模式是DC模式时,DC滤波器可通过滤波来生成预测块。
可将重建块或重建画面提供给滤波器单元240。滤波器单元240可包括去块滤波器、偏移校正模块和ALF。
可从图像编码器接收关于去块滤波器是否已被应用于对应块或对应画面的信息以及关于当去块滤波器被应用时是应用强滤波器还是弱滤波器的信息。图像解码器的去块滤波器可从图像编码器接收关于去块滤波器的信息,并且图像解码器可对对应块执行去块滤波。
偏移校正单元可基于在执行编码时应用于图像的偏移校正的类型、关于偏移值的信息等对重建图像执行偏移校正。
可基于从编码器接收到的关于是否应用ALF的信息、关于ALF系数的信息等将ALF应用于编码单元。以上ALF信息可通过被包括在特定参数集中而被提供。
在存储器245中,可存储重建画面或重建块以便用作参考画面或参考块,并且可将重建画面提供给输出单元。
图3是示出根据本公开的实施例的基本编码树单元的示图。
最大编码块可被定义为编码树块。可将单个画面分区为多个编码树单元(CTU)。CTU可以是最大尺寸的编码单元,并且可被称作最大编码单元(LCU)。图3是示出将单个画面分区为多个CTU的示例的示图。
可在画面级或序列级定义CTU的尺寸。同样,可通过画面参数集或序列参数集用信号发送表示CTU的尺寸的信息。
在示例中,针对序列内的整个画面的CTU的尺寸可被设置为128×128。可选地,可将128×128或256×256中的任意一个确定为画面级的CTU的尺寸。在示例中,CTU可被设置为在第一画面具有128×128的尺寸,并且在第二画面具有256×256的尺寸。
可通过对CTU进行分区来生成编码块。编码块表示用于执行编码/解码的基本单元。在示例中,可针对每个编码块执行预测或变换,或者可针对每个编码块确定预测编码模式。就此而言,预测编码模式表示生成预测图像的方法。在示例中,预测编码模式可包括帧内预测、帧间预测、当前画面参考(CPR)、帧内块复制(IBC)或组合预测。对于编码块,可通过使用帧内预测、帧间预测、当前画面参考或组合预测中的至少一个的预测编码模式来生成编码块的预测块。
可以以比特流用信号发送表示针对当前块的预测编码模式的信息。在示例中,该信息可以是表示预测编码模式是帧内模式还是帧间模式的1比特标志。当针对当前块的预测编码模式被确定为帧间模式时,当前画面参考或组合预测可以是可用的。
当前画面参考将当前画面设置为参考画面,并且从当前画面内的已被编码/解码的区域获得当前块的预测块。就此而言,当前画面表示包括当前块的画面。可以以比特流用信号发送表示当前画面参考是否被应用于当前块的信息。在示例中,该信息可以是1比特标志。当该标志为真时,可将针对当前块的预测编码模式确定为当前画面参考,并且当该标志为假时,可将针对当前块的预测编码模式确定为帧间预测。
可选地,可基于参考画面索引来确定当前块的预测编码模式。在示例中,当参考画面索引指示当前画面时,可将针对当前块的预测编码模式确定为当前画面参考。当参考画面索引指示除了当前画面之外的画面时,可将针对当前块的预测编码模式确定为帧间预测。换句话说,当前画面参考是使用关于当前画面内的已被编码/解码的区域的信息的预测方法,并且帧间预测是使用关于已被编码/解码的另一画面的信息的预测方法。
组合预测表示将帧内预测、帧间预测和当前画面参考中的至少两个进行组合的组合编码模式。在示例中,当组合预测被应用时,可基于帧内预测、帧间预测或当前画面参考中的任意一个来生成第一预测块,并且可基于帧内预测、帧间预测或当前画面参考中的另一个来生成第二预测块。当生成了第一预测块和第二预测块时,可通过计算第一预测块和第二预测块的平均值或加权和来生成最终预测块。可以以比特流用信号发送表示是否将组合预测应用于当前块的信息。该信息可以是1比特标志。
图4是示出编码块的各种分区类型的示图。
可基于四叉树分区、二叉树分区或三叉树分区将编码块分区为多个编码块。可基于四叉树分区、二叉树分区或三叉树分区将分区出的编码块再次分区为多个编码块。
四叉树分区表示将当前块分区为四个块的方法。作为四叉树分区的结果,当前块可被分区为四个正方形分区(参照图4(a)的“SPLIT_QT”)。
二叉树分区表示将当前块分区为两个块的方法。沿着垂直方向(即,使用穿过当前块的垂直线)将当前块分区为两个块的操作可被称为垂直方向二叉树分区,并且沿着水平方向(即,使用穿过当前块的水平线)将当前块分区为两个块的操作可被称为水平方向二叉树分区。作为二叉树分区的结果,当前块可被分区为两个非正方形分区。图4(b)的“SPLIT_BT_VER”是示出垂直方向二叉树分区的结果的示图,并且图4(c)的“SPLIT_BT_HOR”是示出水平方向二叉树分区的结果的示图。
三叉树分区表示将当前块分区为三个块的方法。沿着垂直方向(即,使用穿过当前块的两条垂直线)将当前块分区为三个块的操作可被称为垂直方向三叉树分区,并且沿着水平方向(即,使用穿过当前块的两条水平线)将当前块分区为三个块的操作可被称为水平方向三叉树分区。作为三叉树分区的结果,当前块可被分区为三个非正方形分区。就此而言,位于当前块的中心的分区的宽度/高度可以是其他分区的宽度/高度的两倍。图4(d)的“SPLIT_TT_VER”是示出垂直方向三叉树分区的结果的示图,而图4(e)的“SPLIT_TT_HOR”是示出水平方向三叉树分区的结果的示图。
CTU的分区次数可被定义为分区深度。CTU的最大分区深度可在序列级或画面级被确定。因此,CTU的最大分区深度可基于序列或画面而变化。
可选地,可针对每种分区方法独立地确定最大分区深度。在示例中,允许四叉树分区的最大分区深度可与允许二叉树分区和/或三叉树分区的最大分区深度不同。
编码器可以以比特流用信号发送表示当前块的分区类型和分区深度中的至少一个的信息。解码器可基于通过对比特流进行解析而获得的该信息来确定CTU的分区类型和分区深度。
图5是示出对CTU进行分区的方面的示例的示图。
通过使用四叉树分区、二叉树分区和/或三叉树分区来对编码块进行分区的操作可被称为多树分区。
通过应用多树分区对编码块进行分区而生成的编码块可被称为子编码块。当编码块的分区深度为k时,子编码块的分区深度被设置为k+1。
相反,对于分区深度为k+1的编码块,分区深度为k的编码块可被称为父编码块。
可基于父编码块的分区类型和邻近编码块的分区类型中的至少一个来确定当前编码块的分区类型。就此而言,邻近编码块可以是与当前编码块相邻的块,并且包括上方邻近块、左侧邻近块或与当前编码块的左上角相邻的邻近块中的至少一个。就此而言,所述分区类型可包括是否应用四叉树分区、是否应用二叉树分区、二叉树分区的方向、是否应用三叉树分区或三叉树分区的方向。
为了确定编码块的分区类型,可以以比特流用信号发送表示编码块是否被分区的信息。该信息是1比特标志“split_cu_flag”,并且当该标志为真时,它可表示编码块通过多树分区方法被分区。
当split_cu_flag为真时,可以以比特流用信号发送表示编码块是否通过四叉树分区被分区的信息。该信息是1比特标志split_qt_flag,并且当该标志为真时,编码块可被分区为四个块。
在示例中,在图5中所示的示例中,CTU通过四叉树分区被分区,并且因此生成分区深度为1的四个编码块。此外,示出了再次将四叉树分区应用于通过四叉树分区生成的四个编码块中的第一编码块和第四编码块。结果,可生成分区深度为2的四个编码块。
此外,通过再次将四叉树分区应用于分区深度为2的编码块,可生成分区深度为3的编码块。
当四叉树分区不被应用于编码块时,可根据编码块的尺寸、编码块是否位于画面边界、最大分区深度或邻近块的分区类型中的至少一个来确定是否针对编码块执行二叉树分区或三叉树分区。当确定针对编码块执行二叉树分区或三叉树分区时,可以以比特流用信号发送表示分区方向的信息。该信息可以是1比特标志mtt_split_cu_vertical_flag。可基于该标志确定分区方向是垂直方向还是水平方向。此外,可以以比特流用信号发送表示二叉树分区或三叉树分区中的哪一个被应用于编码块的信息。该信息可以是1比特标志mtt_split_cu_binary_flag。可基于该标志确定是二叉树分区被应用于编码块还是三叉树分区被应用于编码块。
在示例中,在图5中所示的示例中,垂直方向二叉树分区被应用于分区深度为1的编码块,垂直方向三叉树分区被应用于通过分区生成的编码块中的左侧编码块,并且垂直方向二叉树分区被应用于右侧编码块。
帧间预测是一种通过使用关于先前画面的信息对当前块进行预测的预测编码模式。在示例中,先前画面内的与当前块相同位置处的块(在下文中,同位块)可被设置为当前块的预测块。在下文中,基于当前块的同位块生成的预测块可被称为同位预测块。
相反,当存在于先前画面中的对象已移动到当前画面中的另一位置时,可通过使用对象的运动来有效地预测当前块。例如,当通过将先前画面与当前画面进行比较来确定对象的运动方向和尺寸时,可根据对象的运动信息生成当前块的预测块(或预测图像)。在下文中,通过使用运动信息生成的预测块可被称为运动预测块。
可通过从当前块减去预测块来生成残差块。就此而言,在对象移动的情况下,可通过使用运动预测块而不是使用同位预测块来减小残差块的能量,因此可提高残差块的压缩性能。
如上,通过使用运动信息生成预测块的操作可被称为运动估计预测。在大多数帧间预测中,可基于运动补偿预测来生成预测块。
运动信息可包括运动矢量、参考画面索引、预测方向和双向加权因子索引中的至少一个。运动矢量表示对象的运动方向和大小。参考画面索引指定参考画面列表中包括的参考画面中的当前块的参考画面。预测方向指示单向L0预测、单向L1预测或双向预测(L0预测和L1预测)中的任意一个。可根据当前块的预测方向使用L0方向运动信息和L1方向运动信息中的至少一个。双向加权因子索引指定应用于L0预测块的加权因子和应用于L1预测块的加权因子。
图6是根据本公开的实施例的帧间预测方法的流程图。
参照图6,帧间预测方法包括:确定针对当前块的帧间预测模式(S601),根据所确定的帧间预测模式获得当前块的运动信息(S602),并且基于所获得的运动信息执行针对当前块的运动补偿预测(S603)。
就此而言,帧间预测模式可表示用于确定当前块的运动信息的各种方法,并且包括使用平移运动信息的帧间预测模式、使用仿射运动信息的帧间预测模式。在示例中,使用平移运动信息的帧间预测模式可包括合并模式和运动矢量预测模式,并且使用仿射运动信息的帧间预测模式可包括仿射合并模式和仿射运动矢量预测模式。可基于与当前块邻近的邻近块或通过对比特流进行解析而获得的信息来确定关于当前块的运动信息。可从另一块的运动信息推导当前块的运动信息。就此而言,另一块可以是在当前块之前通过帧间预测被编码/解码的块。将当前块的运动信息设置为与另一块的运动信息相同的操作可被定义为合并模式。此外,将另一块的运动矢量设置为当前块的运动矢量的预测值的操作可被定义为运动矢量预测模式。
在下文中,详细描述使用仿射运动信息的帧间预测方法。
图7是示出对象的非线性运动的示图。
在视频中,可能发生对象的非线性运动。在示例中,如在图7中所示的示例中,可能发生对象的非线性运动,诸如相机放大、缩小、旋转或仿射变换等。对于对象的非线性运动,平移运动矢量可能无法有效地表示对象的运动。因此,对于发生对象的非线性运动的区域,可通过使用仿射运动而不是平移运动来提高编码效率。
图8是根据本公开的实施例的基于仿射运动的帧间预测方法的流程图。
可基于从比特流解析的信息确定基于仿射运动的帧间预测方法是否被应用于当前块。具体地,基于指示仿射合并模式是否被应用于当前块的标志或者指示仿射运动矢量预测模式是否被应用于当前块的标志中的至少一个,基于仿射运动的帧间预测方法是否被应用于当前块将被确定。
当基于仿射运动的帧间预测方法被应用于当前块时,可确定针对当前块的仿射运动模型S801。仿射运动模型可被确定为6参数仿射运动模型或4参数仿射运动模型中的至少一个。6参数仿射运动模型通过使用6个参数来表示仿射运动,并且4参数仿射运动模型通过使用4个参数来表示仿射运动。
等式1通过使用6个参数来表示仿射运动。仿射运动表示针对由仿射种子矢量确定的预定区域的平移运动。
【等式1】
vx=ax-by+e
vy=cx+dy+f
在通过使用6个参数来表示仿射运动的情况下,复杂运动可被表示,但是由于需要更多的比特来对每个参数进行编码,因此编码效率可能降低。因此,可通过使用4个参数来表示仿射运动。等式2通过使用4个参数来表示仿射运动。
【等式2】
vx=ax-by+e
vy=bx+ay+f
可以以比特流编码并用信号发送用于确定当前块的仿射运动模型的信息。在示例中,该信息可以是1比特标志“affine_type_flag”。如果该标志的值为0,则可表示4参数仿射运动模型被应用,并且如果该标志的值为1,则可表示6参数仿射运动模型被应用。可以以条带、并行块或块(例如,编码块或编码树单元)为单位对该标志进行编码。当在条带级用信号发送标志时,在条带级确定的仿射运动模型可被应用于属于该条带的所有块。
可选地,基于当前块的仿射帧间预测模式,可确定当前块的仿射运动模型。在示例中,当仿射合并模式被应用时,当前块的仿射运动模型可被确定为4参数运动模型。另一方面,当仿射运动矢量预测模式被应用时,可以以比特流编码并用信号发送用于确定当前块的仿射运动模型的信息。在示例中,当仿射运动矢量预测模式被应用于当前块时,可基于1比特标志“affine_type_flag”确定当前块的仿射运动模型。
接下来,可推导当前块的仿射种子矢量S802。当4参数仿射运动模型被选择时,可推导针对当前块的两个控制点处的运动矢量。另一方面,当6参数仿射运动模型被选择时,可推导针对当前块的三个控制点处的运动矢量。控制点处的运动矢量可被称为仿射种子矢量。控制点可包括当前块的左上角、右上角或左下角中的至少一个。
图9是示出针对每个仿射运动模型的仿射种子矢量的示图。
在4参数仿射运动模型中,可推导针对左上角、右上角或左下角中的两个的仿射种子矢量。在示例中,如在图9的(a)中所示的示例中,当4参数仿射运动模型被选择时,可通过使用针对当前块的左上角(例如,左上样点(x1,y1))的仿射种子矢量sv0和针对当前块的右上角(例如,右上样点(x1,y1))的仿射种子矢量sv1来推导仿射矢量。可使用针对左下角的仿射种子矢量而不是针对左上角的仿射种子矢量或者使用针对左下角的仿射种子矢量而不是针对右上角的仿射种子矢量。
在6参数仿射运动模型中,可推导针对左上角、右上角和左下角的仿射种子矢量。在示例中,如在图9的(b)中所示的示例中,当6参数仿射运动模型被选择时,可通过使用针对当前块的左上角(例如,左上样点(x1,y1))的仿射种子矢量sv0、针对当前块的右上角(例如,右上样点(x1,y1))的仿射种子矢量sv1和针对当前块的左上角(例如,左上样点(x2,y2))的仿射种子矢量sv2来推导仿射矢量。
在稍后描述的实施例中,在4参数仿射运动模型下,左上控制点和右上控制点处的仿射种子矢量分别被称为第一仿射种子矢量和第二仿射种子矢量。在稍后描述的使用第一仿射种子矢量和第二仿射种子矢量的实施例中,第一仿射种子矢量和第二仿射种子矢量中的至少一个可利用左下控制点处的仿射种子矢量(第三仿射种子矢量)或右下控制点处的仿射种子矢量(第四仿射种子矢量)来替换。
此外,在6参数仿射运动模型下,左上控制点、右上控制点和左下控制点处的仿射种子矢量分别被称为第一仿射种子矢量、第二仿射种子矢量和第三仿射种子矢量。在稍后描述的使用第一仿射种子矢量、第二仿射种子矢量和第三仿射种子矢量的实施例中,第一仿射种子矢量、第二仿射种子矢量和第三仿射种子矢量中的至少一个可利用右下控制点处的仿射种子矢量(第四仿射种子矢量)来替换。
可通过使用仿射种子矢量针对每个子块推导仿射矢量S803。就此而言,仿射矢量表示基于仿射种子矢量推导出的平移运动矢量。子块的仿射矢量可被称为仿射子块运动矢量或子块运动矢量。
图10是示出4参数运动模型下的子块的仿射矢量的示图。
可基于控制点的位置、子块的位置和仿射种子矢量推导子块的仿射矢量。在示例中,等式3表示推导仿射子块运动矢量的示例。
【等式3】
在等式3中,(x,y)表示子块的位置。就此而言,子块的位置表示包括在子块中的基本样点的位置。基本样点可以是位于子块的左上角处的样点或者是x轴或y轴坐标中的至少一个坐标在中心位置处的样点。(x0,y0)表示第一控制点的位置,并且(sv0x,sv0y)表示第一仿射种子矢量。此外,(x1,y1)表示第二控制点的位置,并且(sv1x,sv1y)表示第二仿射种子矢量。
当第一控制点和第二控制点分别对应于当前块的左上角和右上角时,x1-x0可被设置为与当前块的宽度相同的值。
之后,可通过使用每个子块的仿射矢量来执行针对每个子块的运动补偿预测S804。作为执行运动补偿预测的结果,可生成针对每个子块的预测块。子块的预测块可被设置为当前块的预测块。
可基于与当前块邻近的邻近块的仿射种子矢量推导当前块的仿射种子矢量。当当前块的帧间预测模式为仿射合并模式时,包括在合并候选列表中的合并候选的仿射种子矢量可被确定为当前块的仿射种子矢量。此外,当当前块的帧间预测模式为仿射合并模式时,包括当前块的参考画面索引、特定方向预测标志或双向权重中的至少一个的运动信息也可被设置为与合并候选相同。
接下来,将详细描述使用平移运动信息的帧间预测方法。
可从另一块的运动信息推导当前块的运动信息。就此而言,另一块可以是在当前块之前通过帧间预测被编码/解码的块。将当前块的运动信息设置为与另一块的运动信息相同的操作可被定义为合并模式。此外,将另一块的运动矢量设置为当前块的运动矢量的预测值的操作可被定义为运动矢量预测模式。
图11是在合并模式下推导当前块的运动信息的处理的流程图。
可推导当前块的合并候选S1101。可从在当前块之前通过帧间预测被编码/解码的块推导当前块的合并候选。
图12是示出用于推导合并候选的候选块的示图。
候选块可包括邻近块或非邻近块中的至少一个,其中,所述邻近块包括与当前块相邻的样点,所述非邻近块包括与当前块不相邻的样点。在下文中,确定候选块的样点被定义为基本样点。此外,与当前块相邻的基本样点被称作邻近基本样点,并且与当前块不相邻的基本样点被称作非邻近基本样点。
邻近基本样点可被包括在当前块的最左侧列的邻近列或当前块的最上方行的邻近行中。在示例中,当当前块的左上样点的坐标为(0,0)时,包括位置(-1,H-1)、(W-1,-1)、(W,-1)、(-1,H)或(-1,1)处的基本样点的块中的至少一个可被用作候选块。参照示图,索引0至4的邻近块可被用作候选块。
非邻近基本样点表示距与当前块相邻的基本样点的x轴距离或y轴距离中的至少一个具有预定义值的样点。在示例中,包括距左基本样点的x轴距离是预定义值的基本样点的块、包括距上基本样点的y轴距离是预定义值的非邻近样点的块或者包括距左上基本样点的x轴距离和y轴距离是预定义值的非邻近样点的块中的至少一个块可被用作候选块。预定义值可以是诸如4、8、12、16等的自然数。参照附图,索引5至26的块中的至少一个块可被用作候选块。
可将不位于与邻近基本样点相同的垂直线、水平线或对角线上的样点设置为非邻近基本样点。
合并候选的运动信息可被设置为与候选块的运动信息相同。在示例中,候选块的运动矢量、参考画面索引、预测方向或双向权重索引中的至少一个可被设置为合并候选的运动信息。
可生成包括合并候选的合并候选列表S1102。
可根据预定顺序分配合并候选列表中的合并候选的索引。在示例中,可按照从左侧邻近块推导出的合并候选、从上方邻近块推导出的合并候选、从右上方邻近块推导出的合并候选、从左下方邻近块推导出的合并候选、从左上方邻近块推导出的合并候选和从时间邻近块推导出的合并候选的顺序分配索引。
当多个合并候选被包括在合并候选中时,可选择多个合并候选中的至少一个合并候选S1103。具体地,可以以比特流用信号发送用于指定多个合并候选中的任意一个合并候选的信息。在示例中,可以以比特流用信号发送表示合并候选列表中包括的合并候选中的任意一个合并候选的索引的信息merge_idx。
当包括在合并候选列表中的合并候选的数量小于阈值时,包括在运动信息表中的运动信息候选可作为合并候选被添加到合并候选列表。就此而言,所述阈值可以是可被包括在合并候选列表中的合并候选的最大数量或者从所述合并候选的最大数量减去偏移的值。偏移可以是诸如1或2等的自然数。
运动信息表包括从当前画面中的基于帧间预测被编码/解码的块推导出的运动信息候选。在示例中,包括在运动信息表中的运动信息候选的运动信息可被设置为与基于帧间预测被编码/解码的块的运动信息相同。就此而言,运动信息可包括运动矢量、参考画面索引、预测方向或双向权重索引中的至少一个。
包括在运动信息表中的运动信息候选也可被称作帧间区域合并候选或预测区域合并候选。
可在编码器和解码器中预定义可被包括在运动信息表中的运动信息候选的最大数量。在示例中,可被包括在运动信息表中的运动信息候选的最大数量可以是1、2、3、4、5、6、7、8或更大(例如,16)。
可选地,可以以比特流用信号发送表示可被包括在运动信息表中的运动信息候选的最大数量的信息。可以以序列级、画面级或条带级用信号发送所述信息。所述信息可表示可被包括在运动信息表中的运动信息候选的最大数量。可选地,所述信息可表示可被包括在运动信息表中的运动信息候选的最大数量与可被包括在合并候选列表中的合并候选的最大数量之间的差。
可选地,可根据画面尺寸、条带尺寸或编码树单元尺寸来确定可被包括在运动信息表中的运动信息候选的最大数量。
运动信息表可以以画面、条带、并行块(tile)、分块(brick)、编码树单元或编码树单元线(行或列)为单位被初始化。在示例中,当条带被初始化时,运动信息表也被初始化,因此运动信息表可不包括任何运动信息候选。
可选地,可以以比特流用信号发送表示运动信息表是否将被初始化的信息。可在条带级、并行块级、分块级或块级用信号发送所述信息。可使用预配置的运动信息表,直到所述信息指示运动信息表的初始化为止。
可选地,关于初始运动信息候选的信息可在画面参数集或条带头中被用信号发送。尽管条带被初始化,但是运动信息表可包括初始运动信息候选。因此,可针对作为条带中的第一编码/解码目标的块使用初始运动信息候选。
可选地,可将包括在先前编码树单元的运动信息表中的运动信息候选设置为初始运动信息候选。在示例中,可将先前编码树单元的运动信息表中包括的运动信息候选中的具有最小索引或具有最大索引的运动信息候选设置为初始运动信息候选。
按照编码/解码顺序对块进行编码/解码,并且可按照编码/解码顺序将基于帧间预测被编码/解码的块顺序地设置为运动信息候选。
图13是用于解释运动信息表的更新方面的示图。
对于当前块,当执行帧间预测S1301时,可基于当前块推导运动信息候选S1302。运动信息候选的运动信息可被设置为与当前块的运动信息相同。
当运动信息表为空时S1303,可将基于当前块推导出的运动信息候选添加到运动信息表S1304。
当运动信息表已包括运动信息候选S1303时,可执行针对当前块的运动信息(或基于当前块推导出的运动信息候选)的冗余校验S1305。冗余校验在于确定运动信息表中的预存储的运动信息候选的运动信息是否与当前块的运动信息相同。可针对运动信息表中的所有预存储的运动信息候选执行冗余校验。可选地,可针对运动信息表中的预存储的运动信息候选中的索引超过或低于阈值的运动信息候选执行冗余校验。可选地,可针对预定义数量的运动信息候选执行冗余校验。在示例中,可将具有最小索引或具有最大索引的2个运动信息候选确定为用于冗余校验的目标。
当不包括与当前块具有相同运动信息的运动信息候选时,可将基于当前块推导出的运动信息候选添加到运动信息表S1308。可基于运动信息候选的运动信息(例如,运动矢量/参考画面索引等)是否相同来确定运动信息候选是否相同。
就此而言,当最大数量的运动信息候选已被存储在运动信息表中时S1306,可删除最老的运动信息候选S1307,并且可将基于当前块推导出的运动信息候选添加到运动信息表S1308。就此而言,最老的运动信息候选可以是具有最大索引或最小索引的运动信息候选。
运动信息候选可由相应索引标识。当从当前块推导出的运动信息候选被添加到运动信息表时,可将最小索引(例如,0)分配给该运动信息候选,并且预存储的运动信息候选的索引可增加1。就此而言,当最大数量的运动信息候选已被存储在运动信息表中时,去除具有最大索引的运动信息候选。
可选地,当将从当前块推导出的运动信息候选添加到运动信息表时,可将最大索引分配给该运动信息候选。在示例中,当运动信息表中的预存储的运动信息候选的数量小于最大值时,可将与预存储的运动信息候选的数量具有相同的值的索引分配给该运动信息候选。可选地,当运动信息表中的预存储的运动信息候选的数量等于最大值时,可将从最大值减去1得到的索引分配给该运动信息候选。可选地,去除具有最小索引的运动信息候选,并且将其余的预存储的运动信息候选的索引减小1。
图14是示出运动信息表的更新方面的示图。
假设当将从当前块推导出的运动信息候选添加到运动信息表时,将最大索引分配给该运动信息候选。此外,假设最大数量的运动信息候选已被存储在运动信息表中。
当将从当前块推导出的运动信息候选HmvpCand[n+1]添加到运动信息表HmvpCandList时,可删除预存储的运动信息候选中的具有最小索引的运动信息候选HmvpCand[0],并且其余的运动信息候选的索引可减小1。此外,可将从当前块推导出的运动信息候选HmvpCand[n+1]的索引设置为最大值(对于图14中所示的示例,n)。
当预存储了与基于当前块推导出的运动信息候选相同的运动信息候选时S1305,可不将基于当前块推导出的运动信息候选添加到运动信息表S1309。
可选地,在将基于当前块推导出的运动信息候选添加到运动信息表时,可去除与该运动信息候选相同的预存储的运动信息候选。在这种情况下,产生与预存储的运动信息候选的索引被重新更新时相同的效果。
图15是示出预存储的运动信息候选的索引被更新的示例的示图。
当与从当前块推导出的运动信息候选mvCand相同的预存储的运动信息候选的索引为hIdx时,可去除该预存储的运动信息候选,并且索引大于hIdx的运动信息候选的索引可减小1。在示例中,图15中所示的示例示出了在运动信息表HvmpCandList中删除与mvCand相同的HmvpCand[2],并且从HmvpCand[3]到HmvpCand[n]的索引减小1。
而且,可将基于当前块推导出的运动信息候选mvCand添加到运动信息表的末尾。
可选地,分配给与基于当前块推导出的运动信息候选相同的预存储的运动信息候选的索引可被更新。例如,可将预存储的运动信息候选的索引改变为最小值或最大值。
可将包括在预定区域中的块的运动信息设置为不被添加到运动信息表。在示例中,可不将基于包括在合并处理区域中的块的运动信息推导出的运动信息候选添加到运动信息表。由于针对包括在合并处理区域中的多个块的编码/解码顺序未被定义,因此将所述多个块中的任意一个块的运动信息用于所述多个块中的另一块的帧间预测是不合适的。因此,可不将基于包括在合并处理区域中的块推导出的运动信息候选添加到运动信息表。
可选地,可将小于预设尺寸的块的运动信息设置为不被添加到运动信息表。在示例中,可不将基于宽度或高度小于4或8的编码块的运动信息或者4×4尺寸的编码块的运动信息推导出的运动信息候选添加到运动信息表。
基于当前块的帧间预测模式,可确定当前块是否将被用作运动信息候选。在示例中,基于仿射运动模型被编码/解码的块可被设置为不可用作运动信息候选。因此,尽管通过帧间预测对当前块进行编码/解码,但是当当前块的帧间预测模式是仿射预测模式时,可不基于当前块更新运动信息表。
运动信息候选可被设置为包括除了运动信息之外的附加信息。在示例中,块的尺寸、形状或分区信息中的至少一个可被另外存储在运动信息候选中。当配置当前块的合并候选列表时,可仅使用运动信息候选中的尺寸、形状或分区信息与当前块相同或相似的运动信息候选,或者可将尺寸、形状或分区信息与当前块相同或相似的运动信息候选预先添加到合并候选列表。
当包括在当前块的合并候选列表中的合并候选的数量小于阈值时,包括在运动信息表中的运动信息候选可作为合并候选被添加到合并候选列表。按照按升序或降序反映运动信息候选的索引的排序的顺序执行附加处理。在示例中,首先可将具有最大索引的运动信息候选添加到当前块的合并候选列表。
当包括在运动信息表中的运动信息候选被添加到合并候选列表时,可执行运动信息候选与合并候选列表中的预存储的合并候选之间的冗余校验。作为冗余校验的结果,可不将与预存储的合并候选具有相同的运动信息的运动信息候选添加到合并候选列表。
可仅针对包括在运动信息表中的运动信息候选中的一部分运动信息候选执行冗余校验。在示例中,可仅针对索引超过或低于阈值的运动信息候选执行冗余校验。可选地,可仅针对具有最大索引或最小索引的N个运动信息候选执行冗余校验。
可选地,可仅针对合并候选列表中的预存储的合并候选中的一部分合并候选执行冗余校验。在示例中,可仅针对索引超过或低于阈值的合并候选或从特定位置处的块推导出的合并候选执行冗余校验。就此而言,特定位置可包括当前块的左侧邻近块、上方邻近块、右上方邻近块或左下方邻近块中的至少一个。
图16是示出仅针对一部分合并候选执行冗余校验的示例的示图。
当运动信息候选HmvpCand[j]被添加到合并候选列表时,可针对运动信息候选执行对具有最大索引的2个合并候选mergeCandList[NumMerge-2]和mergeCandList[NumMerge-1]的冗余校验。就此而言,NumMerge可示出可用空间合并候选和时间合并候选的数量。
不同于所示的示例,当运动信息候选HmvpCand[j]被添加到合并候选列表时,可针对运动信息候选执行对具有最小索引的2个合并候选的冗余校验。例如,可检查mergeCandList[0]和mergeCandList[1]是否与HmvpCand[j]相同。
可选地,可仅针对从特定位置推导出的合并候选执行冗余校验。在示例中,可针对从位于当前块的左侧或当前块的上方的邻近块推导出的合并候选中的至少一个执行冗余校验。当在合并候选列表中不存在从特定位置推导出的合并候选时,可在不进行冗余校验的情况下将运动信息候选添加到合并候选列表。
当运动信息候选HmvpCand[j]被添加到合并候选列表时,可针对运动信息候选执行对具有最大索引的2个合并候选mergeCandList[NumMerge-2]和mergeCandList[NumMerge-1]的冗余校验。就此而言,NumMerge可示出可用空间合并候选和时间合并候选的数量。
可仅针对运动信息候选中的一部分运动信息候选执行对合并候选的冗余校验。在示例中,可仅针对运动信息表中包括的运动信息候选中的具有大索引或最小索引的N个运动信息候选执行冗余校验。在示例中,可仅针对具有包括在运动信息表中的运动信息候选的编号和差低于阈值的索引的运动信息候选执行冗余校验。当所述阈值为2时,可仅针对运动信息表中包括的运动信息候选中的具有最大索引值的3个运动信息候选执行冗余校验。对于除了上述3个运动信息候选之外的运动信息候选,可省略冗余校验。当省略冗余校验时,可将运动信息候选添加到合并候选列表,而不管是否存在与合并候选相同的运动信息。
相反,将冗余校验设置为仅针对具有包括在运动信息表中的运动信息候选的编号和差超过所述阈值的索引的运动信息候选来执行。
可在编码器和解码器中重新定义执行冗余校验的运动信息候选的数量。在示例中,所述阈值可以是诸如0、1或2的整数。
可选地,可基于包括在合并候选列表中的合并候选的数量或包括在运动信息表中的运动信息候选的数量中的至少一个来确定所述阈值。
当发现与第一运动信息候选相同的合并候选时,可在针对第二运动信息候选的冗余校验中省略对与第一运动信息候选相同的合并候选的冗余校验。
图17是示出省略对特定合并候选的冗余校验的示例的示图。
当索引为i的运动信息候选HmvpCand[i]被添加到合并候选列表时,执行该运动信息候选与合并候选列表中的预存储的合并候选之间的冗余校验。就此而言,当发现与运动信息候选HmvpCand[i]相同的合并候选mergeCandlist[j]时,可在不将运动信息候选HmvpCand[i]添加到合并候选列表的情况下执行索引为i-1的运动信息候选HmvpCand[i-1]与合并候选之间的冗余校验。就此而言,可省略运动信息候选HmvpCand[i-1]与合并候选mergeCandList[j]之间的冗余校验。
在示例中,在图17中所示的示例中,确定HmvpCand[i]和mergeCandList[2]相同。因此,可在不将HmvpCand[i]添加到合并候选列表的情况下执行针对HmvpCand[i-1]的冗余校验。就此而言,可省略HmvpCand[i-1]与mergeCandList[2]之间的冗余校验。
当包括在当前块的合并候选列表中的合并候选的数量小于阈值时,除了运动信息候选之外,可另外包括成对合并候选或零合并候选中的至少一个。成对合并候选表示具有从对多于2个合并候选的运动矢量求平均而获得的值作为运动矢量的合并候选,并且零合并候选表示运动矢量为0的合并候选。
对于当前块的合并候选列表,可按照以下顺序添加合并候选。
空间合并候选-时间合并候选-运动信息候选-(仿射运动信息候选)-成对合并候选-零合并候选
空间合并候选表示从邻近块或非邻近块中的至少一个推导出的合并候选,并且时间合并候选表示从先前参考画面推导出的合并候选。仿射运动信息候选表示从通过仿射运动模型被编码/解码的块推导出的运动信息候选。
还可在运动矢量预测模式下使用运动信息表。在示例中,当包括在当前块的运动矢量预测候选列表中的运动矢量预测候选的数量小于阈值时,包括在运动信息表中的运动信息候选可被设置为针对当前块的运动矢量预测候选。具体地,运动信息候选的运动矢量可被设置为运动矢量预测候选。
如果包括在当前块的运动矢量预测候选列表中的运动矢量预测候选中的任意一个被选择,则可将所选的候选设置为当前块的运动矢量预测因子。然后,在对当前块的运动矢量残差值进行解码之后,可通过将运动矢量预测因子和运动矢量残差值相加来获得当前块的运动矢量。
可按照以下顺序配置当前块的运动矢量预测候选列表。
空间运动矢量预测候选-时间运动矢量预测候选-运动信息候选-(仿射运动信息候选)-零运动矢量预测候选
空间运动矢量预测候选表示从邻近块或非邻近块中的至少一个推导出的运动矢量预测候选,并且时间运动矢量预测候选表示从先前参考画面推导出的运动矢量预测候选。仿射运动信息候选表示从通过仿射运动模型被编码/解码的块推导出的运动信息候选。零运动矢量预测候选表示运动矢量的值为0的候选。
大于编码块的合并处理区域可被定义。合并处理区域中包括的编码块可被并行地处理,而不被顺序地编码/解码。就此而言,不被顺序地编码/解码表示编码/解码的顺序未被定义。因此,可独立地对合并处理区域中包括的块的编码/解码处理进行处理。可选地,包括在合并处理区域中的块可共享合并候选。就此而言,可基于合并处理区域推导合并候选。
根据上述特征,合并处理区域可被称为并行处理区域、共享合并区域(SMR)或合并估计区域(MER)。
可基于编码块推导当前块的合并候选。但是,当当前块被包括在大于当前块的合并处理区域中时,包括在与当前块相同的合并处理区域中的候选块可被设置为不可用作合并候选。
图18是示出包括在与当前块相同的合并处理区域中的候选块被设置为不可用作合并候选的示例的示图。
在图18的(a)中所示的示例中,在CU5的编码/解码中,包括与CU5相邻的基本样点的块可被设置为候选块。就此而言,包括在与CU5相同的合并处理区域中的候选块x3和x4可被设置为不可用作CU5的合并候选。但是,未包括在与CU5相同的合并处理区域中的候选块x0、x1和x2可被设置为可用作合并候选。
在图18的(b)中所示的示例中,在CU8的编码/解码中,包括与CU8相邻的基本样点的块可被设置为候选块。就此而言,包括在与CU8相同的合并处理区域中的候选块x6、x7和x8可被设置为不可用作合并候选。但是,未包括在与CU8相同的合并处理区域中的候选块x5和x9可被设置为可用作合并候选。
可选地,当当前块被包括在合并处理区域中时,可将与当前块和合并处理区域相邻的邻近块设置为候选块。
图19是示出当当前块被包括在合并处理区域中时推导针对当前块的合并候选的示例的示图。
如在图19的(a)所示的示例中,与当前块相邻的邻近块可被设置为用于推导当前块的合并候选的候选块。就此而言,包括在与当前块相同的合并处理区域中的候选块可被设置为不可用作合并候选。在示例中,在推导针对编码块CU3的合并候选时,包括在与编码块CU3相同的合并处理区域中的上方邻近块y3和右上方邻近块y4可被设置为不可用作编码块CU3的合并候选。
通过按照预定义顺序对与当前块相邻的邻近块进行扫描,可推导合并候选。在示例中,所述预定义顺序可以是y1、y3、y4、y0和y2的顺序。
当可从与当前块相邻的邻近块推导的合并候选的数量小于从合并候选的最大数量减去偏移的值或所述最大数量时,可如图19的(b)中所示的示例通过使用与合并处理区域相邻的邻近块来推导针对当前块的合并候选。在示例中,与包括编码块CU3的合并处理区域相邻的邻近块可被设置为针对编码块CU3的候选块。就此而言,与合并处理区域相邻的邻近块可包括左侧邻近块x1、上方邻近块x3、左下方邻近块x0、右上方邻近块x4或左上方邻近块x2中的至少一个。
通过按照预定义顺序对与合并处理区域相邻的邻近块进行扫描,可推导合并候选。在示例中,所述预定义顺序可以是x1、x3、x4、x0和x2的顺序。
总之,可通过按照以下扫描顺序对候选块进行扫描来推导针对包括在合并处理区域中的编码块CU3的合并候选。
(y1,y3,y4,y0,y2,x1,x3,x4,x0,x2)
但是,上面示出的候选块的扫描顺序仅示出了本公开的示例,并且可按照与以上示例不同的顺序对候选块进行扫描。可选地,可基于当前块或合并处理区域的尺寸或形状中的至少一个来自适应地确定扫描顺序。
合并处理区域可以是正方形或非正方形的。可以以比特流用信号发送用于确定合并处理区域的信息。该信息可包括表示合并处理区域的形状的信息或表示合并处理区域的尺寸的信息中的至少一个。当合并处理区域是非正方形时,可以以比特流用信号发送表示合并处理区域的尺寸的信息、表示合并处理区域的宽度或高度的信息或者表示合并处理区域的宽高比的信息中的至少一个。
可基于以比特流用信号发送的信息、画面分辨率、条带的尺寸或并行块的尺寸中的至少一个来确定合并处理区域的尺寸。
如果针对包括在合并处理区域中的块执行运动补偿预测,则可将基于被执行运动补偿预测的块的运动信息推导出的运动信息候选添加到运动信息表。
但是,如果从包括在合并处理区域中的块推导出的运动信息候选被添加到运动信息表,则可能发生在对合并处理区域中的编码/解码实际上比该块慢的其它块的编码/解码中使用从该块推导出的运动信息候选的情况。换句话说,虽然应该在合并处理区域中包括的块的编码/解码中排除块之间的依赖性,但是可能发生通过使用合并处理区域中包括的其他块的运动信息来执行运动预测补偿的情况。为了解决这样的问题,虽然完成了对合并处理区域中包括的块的编码/解码,但是可不将完成了编码/解码的块的运动信息添加到运动信息表。
可选地,可仅使用合并处理区域内的预定义位置处的块来更新运动信息表。所述预定义位置的示例可包括位于合并处理区域的左上方的块、位于合并处理区域的右上方的块、位于合并处理区域的左下方的块、位于合并处理区域的右下方的块、位于合并处理区域的中心的块、与合并处理区域的右边界相邻的块和与合并处理区域的下边界相邻的块中的至少一个。作为示例,可仅利用与合并处理区的右下角相邻的块的运动信息来更新运动信息表,并且可不利用其它块的运动信息来更新运动信息表。
可选地,在完成了对包括在合并处理区域中的所有块的解码之后,可将从所述块推导出的运动信息候选添加到运动信息表。也就是说,虽然包括在合并处理区域中的块被编码/解码,但可不更新运动信息表。
在示例中,如果针对合并处理区域中包括的块执行运动补偿预测,则可按照预定义顺序将从所述块推导出的运动信息候选添加到运动信息表。就此而言,可按照合并处理区域或编码树单元中的编码块的扫描顺序来确定所述预定义顺序。扫描顺序可以是光栅扫描、水平扫描、垂直扫描或Z字形扫描中的至少一个。可选地,可基于每个块的运动信息或具有相同运动信息的块的数量来确定所述预定义顺序。
可选地,包括单向运动信息的运动信息候选可在包括双向运动信息的运动信息候选之前被添加到运动信息表。相反,包括双向运动信息的运动信息候选可在包括单向运动信息的运动信息候选之前被添加到运动信息表。
可选地,可按照在合并处理区域或编码树单元中高使用频率或低使用频率的顺序将运动信息候选添加到运动信息表。
当当前块被包括在合并处理区域中且包括在当前块的合并候选列表中的合并候选的数量小于最大数量时,可将包括在运动信息表中的运动信息候选添加到合并候选列表。就此而言,可将从包括在与当前块相同的合并处理区域中的块推导出的运动信息候选设置为不被添加到当前块的合并候选列表。
可选地,当当前块被包括在合并处理区域中时,可设置为不使用包括在运动信息表中的运动信息候选。换句话说,虽然包括在当前块的合并候选列表中的合并候选的数量小于最大数量,但是可不将包括在运动信息表中的运动信息候选添加到合并候选列表。
在另一示例中,可配置关于合并处理区域或编码树单元的运动信息表。这个运动信息表起到临时存储合并处理区域中包括的块的运动信息的作用。为了将一般运动信息表与针对合并处理区域或编码树单元的运动信息表区分开,针对合并处理区域或编码树单元的运动信息表被称为临时运动信息表。而且,存储在临时运动信息表中的运动信息候选被称为临时运动信息候选。
图20是示出临时运动信息表的示图。
可配置针对编码树单元或合并处理区域的临时运动信息表。当对包括在编码树单元或合并处理区域中的当前块执行运动补偿预测时,可不将该块的运动信息添加到运动信息表HmvpCandList。作为替代,可将从该块推导出的临时运动信息候选添加到临时运动信息表HmvpMERCandList。换句话说,添加到临时运动信息表的临时运动信息候选可不被添加到运动信息表。因此,运动信息表可不包括基于包括当前块的编码树单元或合并处理区中所包括的块的运动信息推导出的运动信息候选。
可选地,可仅将合并处理区域中包括的块中的一些块的运动信息添加到临时运动信息表。作为示例,仅合并处理区域内的预定义位置处的块可被用于更新运动信息表。所述预定义位置可包括位于合并处理区域的左上方的块、位于合并处理区域的右上方的块、位于合并处理区域的左下方的块、位于合并处理区域的右下方的块、位于合并处理区域的中心的块、与合并处理区域的右边界相邻的块和与合并处理区域的下边界相邻的块中的至少一个。作为示例,可仅将与合并处理区域的右下角相邻的块的运动信息添加到临时运动信息表,并且可不将其它块的运动信息添加到临时运动信息表。
临时运动信息表能够包括的临时运动信息候选的最大数量可被设置为等于运动信息表能够包括的运动信息候选的最大数量。可选地,可根据编码树单元或合并处理区域的尺寸确定临时运动信息表能够包括的临时运动信息候选的最大数量。可选地,临时运动信息表能够包括的临时运动信息候选的最大数量可被设置为小于运动信息表能够包括的运动信息候选的最大数量。
包括在编码树单元或合并处理区域中的当前块可被设置为不使用关于对应的编码树单元或合并处理区域的临时运动信息表。换句话说,当包括在当前块的合并候选列表中的合并候选的数量小于阈值时,可将包括在运动信息表中的运动信息候选添加到合并候选列表,并且可不将包括在临时运动信息表中的临时运动信息候选添加到合并候选列表。因此,包括在与当前块相同的编码树单元或相同的合并处理区域中的其他块的运动信息可不被用于当前块的运动补偿预测。
如果完成了对编码树单元或合并处理区域中包括的所有块的编码/解码,则可使运动信息表和临时运动信息表一致。
图21是示出使运动信息表和临时运动信息表一致的示例的示图。
如果完成了对包括在编码树单元或合并处理区域中的所有块的编码/解码,则如在图21中所示的示例中,可在运动信息表中更新包括在临时运动信息表中的临时运动信息候选。
就此而言,包括在临时运动信息表中的临时运动信息候选可按照插入在临时运动信息表中的顺序(换句话说,按照索引值的升序或降序)被添加到运动信息表。
在另一示例中,包括在临时运动信息表中的临时运动信息候选可按照预定义顺序被添加到运动信息表。就此而言,可按照合并处理区域或编码树单元中的编码块的扫描顺序来确定所述预定义顺序。扫描顺序可以是光栅扫描、水平扫描、垂直扫描或Z字形扫描中的至少一个。可选地,可基于每个块的运动信息或具有相同运动信息的块的数量来确定所述预定义顺序。
可选地,包括单向运动信息的临时运动信息候选可在包括双向运动信息的临时运动信息候选之前被添加到运动信息表。相反,包括双向运动信息的临时运动信息候选可在包括单向运动信息的临时运动信息候选之前被添加到运动信息表。
可选地,可按照在合并处理区域或编码树单元中高使用频率或低使用频率的顺序将临时运动信息候选添加到运动信息表。
在包括在临时运动信息表中的临时运动信息候选被添加到运动信息表的情况下,可执行针对临时运动信息候选的冗余校验。在示例中,当与包括在临时运动信息表中的临时运动信息候选相同的运动信息候选被预存储在运动信息表中时,可不将该临时运动信息候选添加到运动信息表。就此而言,可针对包括在运动信息表中的运动信息候选中的一部分运动信息候选执行冗余校验。在示例中,可针对索引超过或低于阈值的运动信息候选执行冗余校验。在示例中,当临时运动信息候选等于索引高于预定义值的运动信息候选时,可不将该临时运动信息候选添加到运动信息表。
这可限制将从与当前块相同的编码树单元或相同的合并处理区域中包括的块推导出的运动信息候选用作当前块的合并候选。为此,可针对运动信息候选另外存储块的地址信息。块的地址信息可包括块的位置、块的地址、块的索引、包括块的合并处理区域的位置、包括块的合并处理区域的地址、包括块的合并处理区域的索引、包括块的编码树区域的位置、包括块的编码树区域的地址或包括块的编码树区域的索引中的至少一个。
帧内预测通过使用已经被编码/解码且在当前块周围的重建样点来对当前块进行预测。就此而言,在应用环内滤波器之前的重建样点可被用于当前块的帧内预测。
帧内预测方法包括基于矩阵的帧内预测以及利用邻近重建样点的根据方向的帧内预测。可以以比特流用信号发送指示当前块的帧内预测方法的信息。所述信息可以是1比特标志。可选地,可基于当前块的位置、当前块的尺寸、当前块的形状或邻近块的帧内预测方法中的至少一个来确定当前块的帧内预测。在示例中,当当前块跨越画面边界时,可设置为使得基于矩阵的帧内预测方法不被应用于当前块。
基于矩阵的帧内预测方法是一种基于存储在编码器和解码器中的矩阵与当前块周围的重建样点的矩阵乘积来获得当前块的预测块的方法。可以以比特流用信号发送用于指定多个预存储的矩阵中的任意一个矩阵的信息。解码器可基于上述信息和当前块的尺寸来确定用于对当前块执行帧内预测的矩阵。
一般帧内预测是一种基于非方向帧内预测模式或方向帧内预测模式获得当前块的预测块的方法。在下文中,将参照附图详细描述基于一般帧内预测的帧内预测的处理。
图22是根据本公开的实施例的帧内预测方法的流程图。
可确定当前块的参考样点线S2201。参考样点线表示与当前块的上方和/或左侧间隔的第k条线中包括的一组参考样点。可从当前块周围的被编码/解码的重建样点推导参考样点。
可以以比特流用信号发送标识多条参考样点线中的针对当前块的参考样点线的索引信息。在示例中,可以以比特流用信号发送用于指定当前块的参考样点线的索引信息intra_luma_ref_idx。所述索引信息可按编码块被用信号发送。
多条参考样点线可包括当前块的上方和/或左侧处的第一条线、第二条线或第三条线中的至少一个。多条参考样点线中的包括与当前块的上方相邻的行和与当前块的左侧相邻的列的参考样点线可被称为相邻参考样点线,并且其它参考样点线可被称为非相邻参考样点线。
表1示出分配给每条候选参考样点线的索引。
【表1】
索引(intra_luma_ref_idx) | 参考样点线 |
0 | 相邻参考样点线 |
1 | 第一非相邻参考样点线 |
2 | 第二非相邻参考样点线 |
基于当前块的位置、尺寸、形状或邻近块的预测编码模式中的至少一个,可确定当前块的参考样点线。在一个示例中,当当前块与画面、并行块、条带或编码树单元的边界邻接时,相邻参考样点线可被确定为当前块的参考样点线。
参考样点线可包括位于当前块的上方的上参考样点和位于当前块的左侧的左参考样点。可从当前块周围的重建样点推导上参考样点和左参考样点。重建样点可处于应用环内滤波器之前的状态。
接下来,可确定当前块的帧内预测模式S2202。对于当前块的帧内预测模式,可将非方向帧内预测模式或方向帧内预测模式中的至少一个确定为当前块的帧内预测模式。非方向帧内预测模式包括平面和DC,并且方向帧内预测模式包括从左下对角线方向到右上对角线方向的33或65个模式。
图23是示出帧内预测模式的示图。
图23的(a)示出35个帧内预测模式。图23的(b)示出67个帧内预测模式。
可定义比图23中所示的帧内预测模式的数量更多或更少数量的帧内预测模式。
基于与当前块相邻的邻近块的帧内预测模式,可设置MPM(最可能模式)。就此而言,邻近块可包括与当前块的左侧相邻的左侧邻近块和与当前块的上方相邻的上方邻近块。
可在编码器和解码器中预先设置包括在MPM列表中的MPM的数量。在示例中,MPM的数量可以是3、4、5或6。可选地,可以以比特流用信号发送表示MPM的数量的信息。可选地,基于邻近块的预测编码模式、当前块的尺寸、形状或参考样点线索引中的至少一个,可确定MPM的数量。在示例中,当相邻参考样点线被确定为当前块的参考样点线时N个MPM可被使用,而当非相邻参考样点线被确定为当前块的参考样点线时M个MPM可被使用。在M是小于N的自然数时,在示例中,N可以是6并且M可以是5、4或3。因此,当当前块的参考样点线的索引为0且MPM标志为真时,当前块的帧内预测模式可被确定为6个候选帧内预测模式中的任意一个,而当当前块的参考样点线的索引大于0且MPM标志为真时,当前块的帧内预测模式可被确定为5个候选帧内预测模式中的任意一个。
可选地,可使用固定数量(例如,6或5)个MPM候选,而不管当前块的参考样点线的索引如何。
可生成包括多个MPM的MPM列表,并且可以以比特流用信号发送指示与当前块的帧内预测模式相同的MPM是否被包括在MPM列表中的信息。在所述信息是1比特标志时,它可被称为MPM标志。当MPM标志表示与当前块相同的MPM被包括在MPM列表中时,可以以比特流用信号发送标识MPM中的一个MPM的索引信息。在示例中,可以以比特流用信号发送指定多个MPM中的任意一个MPM的索引信息mpm_idx。由索引信息指定的MPM可被设置为当前块的帧内预测模式。当MPM标志表示与当前块相同的MPM未被包括在MPM列表中时,可以以比特流用信号发送指示除MPM以外的其余帧内预测模式中的任意一个帧内预测模式的其余模式信息。其余模式信息表示当向除MPM以外的其余帧内预测模式重新分配索引时与当前块的帧内预测模式对应的索引值。解码器可通过按照升序排列MPM并且将其余模式信息与MPM进行比较来确定当前块的帧内预测模式。在示例中,当其余模式信息等于或小于MPM时,可通过将1与其余模式信息相加来推导当前块的帧内预测模式。
在推导当前块的帧内预测模式时,可省略将一部分MPM与其余模式信息进行比较的操作。在示例中,可从比较目标排除MPM中的非方向帧内预测模式中的MPM。当非方向帧内预测模式被设置为MPM时,其余模式信息显然指示方向帧内预测模式,所以可通过将除了非方向帧内预测模式以外的其余MPM与其余模式信息进行比较来推导当前块的帧内预测模式。作为从比较目标排除非方向帧内预测模式的替代,在将非方向帧内预测模式的数量与其余模式信息相加之后,可将结果值与其余MPM进行比较。
作为将默认模式设置为MPM的替代,可以以比特流用信号发送指示当前块的帧内预测模式是否是默认模式的信息。所述信息是1比特标志,并且所述标志可被称为默认模式标志。仅当MPM标志表示与当前块相同的MPM被包括在MPM列表中时,可用信号发送默认模式标志。如上所述,默认模式可包括平面、DC、垂直方向模式或水平方向模式中的至少一个。在示例中,当平面被设置为默认模式时,默认模式标志可指示当前块的帧内预测模式是否为平面。当默认模式标志指示当前块的帧内预测模式不是默认模式时,MPM中的由索引信息指示的一个MPM可被设置为当前块的帧内预测模式。
当使用默认模式标志时,可将与默认模式相同的帧内预测模式设置为不被设置为MPM。在示例中,当默认模式标志指示当前块的帧内预测模式是否是平面时,可通过使用排除与平面对应的MPM以外的5个MPM来推导当前块的帧内预测模式。
当多个帧内预测模式被设置为默认模式时,还可用信号发送指示默认模式中的任意一个默认模式的索引信息。当前块的帧内预测模式可被设置为由索引信息指示的默认模式。
当当前块的参考样点线的索引不为0时,可设置为不使用默认模式。在示例中,当非相邻参考样点线被确定为当前块的参考样点线时,可设置为不使用诸如DC模式或平面模式的非方向帧内预测模式。因此,当参考样点线的索引不为0时,可不用信号发送默认模式标志,并且可将默认模式标志的值推断为预定义值(即,假)。
当当前块的帧内预测模式被确定时,可基于所确定的帧内预测模式来获得针对当前块的预测样点S2203。
当DC模式被选择时,可基于参考样点的平均值来生成针对当前块的预测样点。详细地,可基于参考样点的平均值来生成预测块内的所有样点的值。可使用与当前块的上方相邻的上参考样点和与当前块的左侧相邻的左参考样点中的至少一个来推导平均值。
在推导平均值时使用的参考样点的数量或范围可基于当前块的形状而变化。在示例中,当当前块是宽度大于高度的非正方形块时,可通过使用上参考样点来计算平均值。反之,当当前块是宽度小于高度的非正方形块时,可通过使用左参考样点来计算平均值。换句话说,当当前块的宽度和高度不同时,可使用与更大长度相邻的参考样点来计算平均值。可选地,可基于当前块的宽高比来确定是通过使用上参考样点还是通过使用左参考样点来计算平均值。
当平面模式被选择时,可通过使用水平方向预测样点和垂直方向预测样点来获得预测样点。就此而言,可基于与预测样点位于同一水平线的左参考样点和右参考样点来获得水平方向预测样点,并且可基于与预测样点位于同一垂直线的上参考样点和下参考样点来获得垂直方向预测样点。就此而言,可通过复制与当前块的右上角相邻的参考样点来生成右参考样点,并且可通过复制与当前块的左下角相邻的参考样点来生成下参考样点。可基于左参考样点和右参考样点的加权和来获得水平方向预测样点,并且可基于上参考样点和下参考样点的加权和来获得垂直方向预测样点。就此而言,可根据预测样点的位置来确定分配给每个参考样点的加权因子。可基于水平方向预测样点和垂直方向预测样点的平均值或加权和来获得预测样点。当使用加权和时,可基于预测样点的位置来确定分配给水平方向预测样点和垂直方向预测样点的加权因子。
当方向预测模式被选择时,可确定表示所选的方向预测模式的预测方向(或预测角度)的参数。下面的表2表示针对每个帧内预测模式的帧内方向参数intraPredAng。
【表2】
表2表示每个帧内预测模式的帧内方向参数,其中,当35个帧内预测模式被定义时,每个帧内预测模式的索引是2至34中的一个。当方向帧内预测模式被定义为多于33时,可通过对表2进行细分来设置每个帧内预测模式的帧内方向参数。
针对当前块的上参考样点和左参考样点被排列为一条线,然后可基于帧内方向参数的值获得预测样点。就此而言,当帧内方向参数的值为负值时,左参考样点和上参考样点可被排列为一条线。
图24和图25是分别示出参考样点被排列为一条线的一维排列的示例的示图。
图24是示出参考样点在垂直方向上被排列的垂直方向一维排列的示图,并且图25是示出参考样点在水平方向上被排列的水平方向一维排列的示图。将在定义了35个帧内预测模式的假设下描述图24和图25的示例。
当帧内预测模式索引是11至18中的任意一个时,可应用水平方向一维排列,其中,上参考样点被逆时针旋转,并且当帧内预测模式索引是19至25中的任意一个时,可应用垂直方向一维排列,其中,左参考样点被顺时针旋转。当将参考样点排列为一条线时,可考虑帧内预测模式角度。
可基于帧内方向参数确定参考样点确定参数。参考样点确定参数可包括用于指定样点的参考样点索引以及用于确定应用于参考样点的加权因子的加权因子参数。
可通过下面的等式4和等式5分别获得参考样点索引iIdx和加权因子参数ifact。
【等式4】
iIdx=(y+1)*Pang/32
【等式5】
ifact=[(y+1)*Pang]&31在等式4和等式5中,Pang表示帧内方向参数。由参考样点索引iIdx指定的参考样点对应于整数像素。
为了推导预测样点,可指定至少一个参考样点。详细地,根据预测模式的斜率,可指定用于推导预测样点的参考样点的位置。在示例中,可通过使用参考样点索引iIdx来指定用于推导预测样点的参考样点。
就此而言,当帧内预测模式的斜率不由一个参考样点表示时,可通过对多个参考样点执行插值来生成预测样点。在示例中,当帧内预测模式的斜率是预测样点与第一参考样点之间的斜率和预测样点与第二参考样点之间的斜率之间的值时,可通过对第一参考样点和第二参考样点执行插值来获得预测样点。换句话说,当根据帧内预测角度的角度线不穿过位于整数像素的参考样点时,可通过对位置与角度线穿过的位置的左侧和右侧或者上方和下方相邻的参考样点执行插值来获得预测样点。
下面的等式6表示基于参考样点获得预测样点的示例。
【等式6】
P(x,y)=((32-ifact)/32)*Ref_1D(x+iIdx+1)+(ifact/32)*Ref_1D(x+iIdx+2)
在等式6中,P表示预测样点,并且Ref_1D表示被排列为一条线的参考样点中的任意一个参考样点。就此而言,可通过预测样点的位置(x,y)和参考样点索引iIdx来确定参考样点的位置。
当帧内预测模式的斜率可能由一个参考样点来表示时,加权因子参数ifact被设置为0。因此,等式6可被简化为下面的等式7。
【等式7】
P(x,y)=Ref_1D(x+iIdx+1)
可基于多个帧内预测模式执行针对当前块的帧内预测。在示例中,可针对每个预测样点推导帧内预测模式,并且可基于分配给每个预测样点的帧内预测模式推导预测样点。
可选地,可针对每个区域推导帧内预测模式,可基于分配给每个区域的帧内预测模式执行针对每个区域的帧内预测。就此而言,所述区域可包括至少一个样点。可基于当前块的尺寸、当前块的形状和当前块的帧内预测模式中的至少一个自适应地确定所述区域的尺寸和形状中的至少一个。可选地,可在编码器和解码器中独立于当前块的尺寸或形状预先定义所述区域的尺寸和形状中的至少一个。
图26是示出在方向帧内预测模式与平行于x轴的直线之间形成的度数的示图。
作为图26中所示的示例,方向预测模式可存在于左下对角线方向与右上对角线方向之间。在描述在x轴与方向预测模式之间形成的度数时,方向预测模式可存在于从45度(左下对角线方向)到-135度(右上对角线方向)。
当当前块是非正方形时,可能存在如下情况:通过使用位于根据帧内预测角度的角度线处的参考样点中的位置比与根据针对当前块的帧内预测模式的预测样点接近的参考样点更远的参考样点来推导预测样点。
图27是示出当当前块是非正方形时获得预测样点的方面的示图。
在示例中,作为图27的(a)中所示的示例,假设当前块是宽度大于高度的非正方形,并且针对当前块的帧内预测模式是具有从0度至45度的角度的方向帧内预测模式。在上述情况下,当在以根据上述度数的角度模式定位的参考样点中推导当前块的右侧列周围的预测样点A时,可能存在远离该预测样点的左参考样点L被使用的情况,而非使用与该预测样点接近的上参考样点T。
在另一示例中,作为图27的(b)中所示的示例,假设当前块是高度大于宽度的非正方形,并且针对当前块的帧内预测模式是从-90度到-135度的方向帧内预测模式。在上述情况下,当在以根据上述度数的角度模式定位的参考样点中推导当前块的下方行周围的预测样点A时,可能存在远离该预测样点的上参考样点T被使用的情况,而非使用与该预测样点接近的左参考样点L。
为了解决上述问题,当当前块是非正方形时,可利用相反方向的帧内预测模式替换针对当前块的帧内预测模式。因此,对于非正方形块,可使用角度大于或小于图23中所示的方向预测模式的角度的方向预测模式。上述方向帧内预测模式可被定义为广角帧内预测模式。广角帧内预测模式表示不属于45度到-135度的范围的方向帧内预测模式。
图28是示出广角帧内预测模式的示图。
在图28中所示的示例中,索引从-1到-14的帧内预测模式以及索引从67到80的帧内预测模式表示广角帧内预测模式。
在图28中,示出了角度大于45度的14个广角帧内预测模式(从-1到-14)以及角度小于-135度的14个广角帧内预测模式(从67到80)。然而,可定义更多或更少数量的广角帧内预测模式。
当使用广角帧内预测模式时,上参考样点的长度可被设置为2W+1,并且左参考样点的长度可被设置为2H+1。
通过使用广角帧内预测模式,可通过使用参考样点T来预测图28的(a)中所示的样点A,并且可通过使用参考样点L来预测图28的(b)中所示的样点A。
除了传统帧内预测模式和N个广角帧内预测模式之外,可使用总共67+N个帧内预测模式。在示例中,表3表示当定义了20个广角帧内预测模式时针对帧内预测模式的帧内方向参数。
【表3】
当当前块是非正方形并且在S2502获得的针对当前块的帧内预测模式属于变换范围时,可将针对当前块的帧内预测模式变换为广角帧内预测模式。可基于当前块的尺寸、形状或比率中的至少一个来确定变换范围。就此而言,所述比率可表示当前块的宽高比。
当当前块是宽度大于高度的非正方形时,可将变换范围设置为从右上对角线方向的帧内预测模式索引(例如,66)到(右上对角线方向的帧内预测模式索引-N)。就此而言,可基于当前块的比率来确定N。当针对当前块的帧内预测模式属于变换范围时,该帧内预测模式可被变换为广角帧内预测模式。变换可以是从帧内预测模式减去预定义值,并且所述预定义值可以是排除广角帧内预测模式的帧内预测模式的总数(例如,67)。
在以上示例中,从编号66到编号53的帧内预测模式可分别被变换为从编号-1到编号-14的广角帧内预测模式。
当当前块是高度大于宽度的非正方形时,可将变换范围设置为从左下对角线方向的帧内预测模式索引(例如,2)到(左下对角线方向的帧内预测模式索引+M)。就此而言,可基于当前块的比率确定M。当针对当前块的帧内预测模式属于变换范围时,该帧内预测模式可被变换为广角帧内预测模式。变换可以是将预定义值与帧内预测模式相加,并且所述预定义值可以是排除广角帧内预测模式的方向帧内预测模式的总数(例如,65)。
在以上示例中,从编号2到编号15的帧内预测模式可分别被变换为从编号67到编号80的广角帧内预测模式。
在下文中,属于变换范围的帧内预测模式被称为广角帧内预测替换模式。
可基于当前块的比率确定变换范围。在示例中,表4和表5分别示出定义了除了广角帧内预测模式之外的35个帧内预测模式的情况以及定义了除了广角帧内预测模式之外的67个帧内预测模式的情况的变换范围。
【表4】
【表5】
如表4和表5中所示的示例,包括在变换范围中的广角帧内预测替换模式的数量可根据当前块的比率而变化。
可进一步对当前块的比率进行细分以设置如下表6中所示的变换范围。
【表6】
条件 | 替换帧内预测模式 |
W/H=16 | 模式12,13,14,15 |
W/H=8 | 模式12,13 |
W/H=4 | 模式2,3,4,5,6,7,8,9,10,11 |
H/W=2 | 模式2,3,4,5,6,7 |
H/W=1 | 无 |
W/H=1/2 | 模式61,62,63,64,65,66 |
W/H=1/4 | 模式57,58,59,60,61,62,63,64,65,66 |
W/H=1/8 | 模式55,56 |
H/W=1/16 | 模式53,54,55,56 |
当非相邻参考样点线被确定为针对当前块的参考样点线时,或者当用于选择多条参考样点线中的一条参考样点线的多线帧内预测编码方法被使用时,预测方法可被配置为不使用广角帧内预测模式。也就是说,虽然当前块具有非正方形形状并且针对当前块的帧内预测模式属于变换范围,但是针对当前块的帧内预测模式可不被变换为广角帧内预测模式。
可选地,当针对当前块的帧内预测模式被确定为广角帧内预测模式时,预测方法可被配置为使得非相邻参考样点线不可用作针对当前块的参考样点线,或者可被配置为不使用用于选择多条参考样点线中的一条参考样点线的多线帧内预测编码方法。当不使用多线帧内预测编码方法时,可将相邻参考样点线确定为当前块的参考样点线。
当不使用广角帧内预测模式时,可将refW和refH中的每一个设置为nTbW和nTbH的总和。因此,与当前块相距i条线的非相邻参考样点线可包括除了左上参考样点之外的(nTbW+nTbH+offsetX[i])个上参考样点和(nTbW+nTbH+offsetY[i])个左参考样点。也就是说,与当前块相距i条线的非相邻参考样点线可包括(2nTbW+2nTbH+offsetX[i]+offsetY[i]+1)个参考样点。例如,当whRatio的值大于1时,offsetX的值可被设置为大于offsetY的值。在一个示例中,当offsetX的值可被设置为1时,offsetY的值可被设置为0。反之,当whRatio的值小于1时,offsetY的值可被设置为大于offsetX的值。在一个示例中,offsetX的值可被设置为0,并且offsetY的值可被设置为1。
由于除了传统帧内预测模式之外还使用广角帧内预测模式,因此可能增加用于对广角帧内预测模式进行编码的资源,并且因此编码效率可能降低。因此,不是按原样对广角帧内预测模式进行编码,而是对针对广角帧内预测模式的替换帧内预测模式进行编码,以便提高编码效率。
在示例中,当通过使用编号67的广角帧内预测模式对当前块进行编码时,可将编号2(编号67的广角替换帧内预测模式)编码为针对当前块的帧内预测模式。此外,当通过使用编号-1的广角帧内预测模式对当前块进行编码时,可将编号66(编号-1的广角替换帧内预测模式)编码为针对当前块的帧内预测模式。
解码器可对针对当前块的帧内预测模式进行解码,并确定经过解码的帧内预测模式是否属于变换范围。当经过解码的帧内预测模式是广角替换帧内预测模式时,该帧内预测模式可被变换为广角帧内预测模式。
可选地,当通过广角帧内预测模式对当前块进行编码时,该广角帧内预测模式可按原样被编码。
可基于上述MPM列表执行帧内预测模式的编码。具体地,当在广角帧内预测模式下对邻近块进行编码时,可基于与该广角帧内预测模式对应的广角替换帧内预测模式来设置MPM。
可通过从原始图像减去预测图像来推导残差图像。就此而言,当将残差图像转换到频域时,即使从频率分量去除了高频分量,图像的主观图像质量也不会显著下降。因此,当高频分量的值被变换为小值时,或者当高频分量的值被设置为0时,可在不导致大的视觉失真的情况下提高压缩效率。反映上述特征,可对当前块执行变换,以便将残差图像分解为二维频率分量。可通过使用诸如DCT(离散余弦变换)、DST(离散正弦变换)等的变换方法来执行变换。
DCT用于通过使用余弦变换将残差图像分解(或变换)为二维频率分量,并且DST用于通过使用正弦变换将残差图像合成(或变换)为二维频率分量。作为对残差图像进行变换的结果,频率分量可被表示为基本图像。在示例中,当针对N×N尺寸的块执行DCT变换时,可获得N2个基本模式分量。可通过变换获得N×N尺寸的块中包括的基本模式分量中的每个基本模式分量的尺寸。根据所使用的变换方法,基本模式分量的尺寸可被称为DCT系数或DST系数。
变换方法DCT主要被用于对分布有许多非零低频分量的图像进行变换。变换方法DST主要被用于分布有许多高频分量的图像。
还可通过使用除了DCT或DST之外的变换方法来对残差图像进行变换。
在下文中,将残差图像变换为二维频率分量的操作被称为二维图像变换。此外,通过变换获得的基本模式分量的尺寸被称为变换系数。在示例中,变换系数可表示DCT系数或DST系数。当之后描述的第一变换和第二变换两者被应用时,变换系数可表示通过第二变换的结果生成的基本模式分量。此外,应用变换跳过的残差样点也被称为变换系数。
可以以块为单位确定变换方法。可基于当前块的预测编码模式、当前块的尺寸或当前块的形状中的至少一个来确定变换方法。在示例中,当通过帧内预测模式对当前块进行编码并且当前块的尺寸小于N×N时,可通过使用DST变换方法来执行变换。另一方面,当不满足所述条件时,可通过使用DCT变换方法来执行变换。
对于残差图像的一些块,可不执行二维图像变换。不执行二维图像变换可被称为变换跳过。变换跳过表示第一变换和第二变换不被应用于当前块。当变换跳过被应用时,可将量化应用于未执行变换的残差值。
可基于当前块的尺寸或形状中的至少一个来确定针对当前块是否允许变换跳过。在示例中,仅当当前块的尺寸小于阈值时,可应用变换跳过。所述阈值与当前块的宽度、高度或样点的数量中的至少一个相关,并且可被定义为32×32等。可选地,可仅针对正方形块允许变换跳过。在示例中,针对32×32、16×16、8×8或4×4尺寸的正方形块,可允许变换跳过。可选地,仅当子分区帧内编码方法不被使用时,可允许变换跳过。
可选地,当子分区帧内编码方法被应用于当前块时,可针对每个子块确定是否应用变换跳过。
图29是示出按子块确定是否执行变换跳过的示例的示图。
变换跳过可仅被应用于多个子块中的一部分子块。在示例中,如在图29中所示的示例中,可设置为将变换跳过应用于当前块的上方位置处的子块并且不将变换跳过应用于下方位置处的子块。
可基于以比特流用信号发送的信息来确定不允许变换跳过的子块的变换类型。在示例中,可基于稍后将描述的tu_mts_idx来确定变换类型。
可选地,可基于子块的尺寸来确定子块的变换类型。在示例中,可基于子块的宽度是否等于或大于以及/或者等于或小于阈值来确定水平方向变换类型,并且可基于子块的高度是否等于或大于以及/或者等于或小于阈值来确定垂直方向变换类型。
在通过使用DCT或DST对当前块执行变换之后,可再次对经过变换的当前块执行变换。就此而言,基于DCT或DST的变换可被定义为第一变换,并且再次对应用了第一变换的块执行变换可被定义为第二变换。
可通过使用多个变换核候选中的任意一个来执行第一变换。在示例中,可通过使用DCT2、DCT8或DST7中的任意一个来执行第一变换。
不同变换核可被用于水平方向和垂直方向。可以以比特流用信号发送表示水平方向的变换核和垂直方向的变换核的组合的信息。
第一变换的处理单元可不同于第二变换。在示例中,可对8×8的块执行第一变换,并且可对经过变换的8×8的块内的4×4尺寸的子块执行第二变换。可选地,可针对属于3个4×4尺寸的子块的变换系数执行第二变换。所述3个子块可包括位于当前块的左上方的子块、与该子块的右侧邻近的子块和与该子块的下方邻近的子块。可选地,可针对8×8尺寸的块执行第二变换。
还可将不执行第二变换的其余区域中的变换系数设置为0。
可选地,可对4×4的块执行第一变换,并且可对包括经过变换的4×4的块的尺寸为8×8的区域执行第二变换。
可以以比特流用信号发送表示是否执行第二变换的信息。在示例中,可用信号发送表示是否执行第二变换的标志或者指定是否执行第二变换的索引信息以及用于第二变换的变换核。在示例中,当索引信息为0时,这表示针对当前块不执行第二变换。另一方面,当索引信息大于0时,可通过索引信息确定用于第二变换的变换核。
可选地,可基于水平方向变换核和垂直方向变换核是否彼此相同来确定是否执行第二变换。在一个示例中,可仅在水平方向变换核和垂直方向变换核彼此相同时执行第二变换。可选地,可仅在水平方向变换核和垂直方向变换核彼此不同时执行第二变换。
可选地,可仅在预定义变换核被用于水平方向变换和垂直方向变换时允许第二变换。在一个示例中,当DCT2变换核被用于水平方向上的变换和垂直方向上的变换时,可允许第二变换。可选地,当子分区帧内编码方法被应用于当前块时,仅当DCT2变换核被用于水平方向上的变换和垂直方向上的变换时,可允许第二变换。
可选地,可基于当前块的非零变换系数的数量来确定是否执行第二变换。在一个示例中,当当前块的非零变换系数的数量小于或等于阈值时,预测方法可被配置为不使用第二变换。当当前块的非零变换系数的数量大于阈值时,预测方法可被配置为使用第二变换。只要使用帧内预测对当前块进行编码,预测方法就可被配置为使用第二变换。
可选地,可基于当前块的最后非零变换系数的位置来确定是否执行第二变换。在示例中,当当前块的最后非零变换系数的x轴坐标或y轴坐标中的至少一个大于阈值时,或者当当前块的最后非零变换系数所属的子块的x轴坐标或y轴坐标中的至少一个大于阈值时,可不执行第二变换。在这种情况下,可在编码装置和解码装置中预定义阈值。可选地,可基于当前块的尺寸或形状来确定阈值。
可选地,当在当前块中仅存在DC分量的变换系数时,可设置为不执行第二变换。在这种情况下,DC分量表示当前块中的左上方位置处的变换系数。
可选地,当基于矩阵的帧内预测被应用于当前块时,可设置为不执行第二变换。
可以以比特流用信号发送表示当前块的变换类型的信息。所述信息可以是表示针对水平方向的变换类型和针对垂直方向的变换类型的组合中的一个组合的索引信息tu_mts_idx。
基于由索引信息tu_mts_idx指定的变换类型候选,可确定针对垂直方向的变换核和针对水平方向的变换核。表7表示根据tu_mts_idx的变换类型组合。
【表7】
变换类型可被确定为DCT2、DST7或DCT8中的一个。可选地,变换跳过可被插入在变换类型候选中。
当使用表7时,当tu_mts_idx为0时可在水平方向上和在垂直方向上应用DCT2。当tu_mts_idx为2时,可在水平方向上应用DCT8,并且可在垂直方向上应用DCT7。
当子分区帧内编码方法被应用时,可独立地确定子块的变换核。在示例中,用于指定变换类型组合候选的信息可按子块被编码并被用信号发送。因此,子块之间的变换核可不同。
可选地,子块可使用相同的变换类型。在这种情况下,可仅针对第一子块用信号发送指定变换类型组合候选的tu_mts_idx。可选地,可在编码块级用信号发送tu_mts_idx,并且可通过参考在编码块级被用信号发送的tu_mts_idx来确定子块的变换类型。可选地,可基于子块中的一个子块的尺寸、形状或帧内预测模式中的至少一个来确定变换类型,并且可将所确定的变换类型设置为用于所有子块。
图30是示出子块使用相同的变换类型的示例的示图。
当编码块在水平方向上被分区时,可将编码块的上方位置处的子块(Sub-CU0)的变换类型设置为与下方位置处的子块(Sub-CU1)的变换类型相同。在示例中,如在图30的(a)中所示的示例中,当基于针对上方子块而被用信号发送的tu_mts_idx确定了水平变换类型和垂直变换类型时,所确定的变换类型也可被应用于下方子块。
当编码块在垂直方向上被分区时,可将编码块的左侧位置处的子块(Sub-CU0)的变换类型设置为与右侧位置处的子块(Sub-CU1)的变换类型相同。在示例中,如在图30的(b)中所示的示例中,当基于针对左侧子块而被用信号发送的tu_mts_idx确定了水平变换类型和垂直变换类型时,所确定的变换类型也可被应用于右侧子块。
可基于当前块的尺寸或形状、非零系数的数量、第二变换是否被执行、或者子分区帧内编码方法是否被应用中的至少一个来确定索引信息是否被编码。在示例中,当子分区帧内编码方法被应用于当前块时,或者当非零系数的数量等于或小于阈值时,可省略用信号发送索引信息的操作。当省略用信号发送索引信息的操作时,可将默认变换类型应用于当前块。
默认变换类型可包括DCT2或DST7中的至少一个。当存在多个默认变换类型时,可通过考虑当前块的尺寸、形状或帧内预测模式、第二变换是否被执行或者子分区帧内编码方法是否被应用中的至少一个来选择多个默认变换类型中的一个默认变换类型。在示例中,可基于当前块的宽度是否在预设范围中来将多个变换类型中的一个变换类型确定为水平方向变换类型,并且可基于当前块的高度是否在预设范围中来将多个变换类型中的一个变换类型确定为垂直方向变换类型。可选地,可根据当前块的尺寸、形状或帧内预测模式或者第二变换是否被执行来不同地确定默认模式。
可选地,当在当前块中仅存在DC分量的变换系数时,水平方向变换类型和垂直方向变换类型可被设置为默认变换类型。在示例中,当在当前块中仅存在DC分量的变换系数时,水平方向变换类型和垂直方向变换类型可被设置为DCT2。
可基于当前块的尺寸或形状确定阈值。在示例中,当当前块的尺寸等于或小于32×32时,可将阈值设置为2,并且当当前块大于32×32时(例如,当当前块为32×64或64×32尺寸的编码块时),可将阈值设置为4。
多个查找表可被预先存储在编码装置/解码装置中。分配给变换类型组合候选的索引值、变换类型组合候选的类型或变换类型组合候选的数量中的至少一个对于多个查找表中的每个查找表可以是不同的。
可基于以下项中的至少一项来选择针对当前块的查找表:当前块的尺寸、形状或帧内预测模式、第二变换是否被应用、或者变换跳过是否被应用于邻近块。
在示例中,当当前块的尺寸等于或小于4×4时,或者当当前块通过帧间预测被编码时,可使用第一查找表,并且当当前块的尺寸大于4×4时,或者当当前块通过帧内预测被编码时,可使用第二查找表。
可选地,可以以比特流用信号发送指示多个查找表中的一个查找表的信息。解码装置可基于所述信息选择针对当前块的查找表。
在另一示例中,可基于以下项中的至少一项来自适应地确定分配给变换类型组合候选的索引:当前块的尺寸、形状、预测编码模式或帧内预测模式、第二变换是否被应用、或者变换跳过是否被应用于邻近块。在示例中,在当前块的尺寸为4×4时分配给变换跳过的索引可小于在当前块的尺寸大于4×4时分配给变换跳过的索引。具体地,当当前块的尺寸为4×4时,可将索引0分配给变换跳过,并且当当前块大于4×4且等于或小于16×16时,可将大于0的索引(例如,索引1)分配给变换跳过。当当前块大于16×16时,可将最大值(例如,5)分配给变换跳过的索引。
可选地,当当前块通过帧间预测被编码时,可将索引0分配给变换跳过。当当前块通过帧内预测被编码时,可将大于0的索引(例如,索引1)分配给变换跳过。
可选地,当当前块是通过帧间预测被编码的4×4尺寸的块时,可将索引0分配给变换跳过。另一方面,当当前块不是通过帧间预测被编码时,或者当当前块大于4×4时,可将大于0的索引(例如,索引1)分配给变换跳过。
还可使用与表7中列出的变换类型组合候选不同的变换类型组合候选。在示例中,可使用由应用于水平方向变换或垂直方向变换中的一个的变换跳过以及应用于水平方向变换或垂直方向变换中的另一个的变换核(诸如DCT2、DCT8或DST7等)组成的变换类型组合候选。在这种情况下,可基于当前块的尺寸(例如,宽度和/或高度)、形状、预测编码模式或帧内预测模式中的至少一个来确定变换跳过是否将被用作针对水平方向或垂直方向的变换类型候选。
可以以比特流用信号发送表示用于确定当前块的变换类型的索引信息是否被显式地用信号发送的信息。在示例中,可在序列级用信号发送表示针对通过帧内预测被编码的块是否允许显式变换类型确定的信息sps_explicit_intra_mts_flag以及/或者表示针对通过帧间预测被编码的块是否允许显式变换类型确定的信息sps_explicit_inter_mts_flag。
当允许显式变换类型确定时,可基于以比特流被用信号发送的索引信息tu_mts_idx来确定当前块的变换类型。另一方面,当不允许显式变换类型确定时,可基于当前块的尺寸或形状、是否允许以子块为单位执行变换、包括非零变换系数的子块的位置、第二变换是否被执行、或者子分区帧内编码方法是否被应用中的至少一个来确定变换类型。在示例中,可基于当前块的宽度确定当前块的水平方向变换类型,并且可基于当前块的高度确定当前块的垂直方向变换类型。例如,当当前块的宽度小于4或大于16时,可将水平方向变换类型确定为DCT2。否则,可将水平方向变换类型确定为DST7。当当前块的高度小于4或大于16时,可将垂直方向变换类型确定为DCT2。否则,可将垂直方向变换类型确定为DST7。在这种情况下,可基于当前块的尺寸、形状或帧内预测模式中的至少一个来确定将与宽度和高度进行比较的阈值,以确定水平方向变换类型和垂直方向变换类型。
可选地,当当前块具有高度和宽度相同的正方形形状时,可将水平方向变换类型和垂直方向变换类型设置为相同,但是当当前块具有高度和宽度彼此不同的非正方形形状时,可不同地设置水平方向变换类型和垂直方向变换类型。在示例中,当当前块的宽度大于高度时,可将水平方向变换类型确定为DST7,并且可将垂直方向变换类型确定为DCT2。当当前块的高度大于宽度时,可将垂直方向变换类型确定为DST7,并且可将水平方向变换类型确定为DCT2。
变换类型候选的数量和/或类型或者变换类型组合候选的数量和/或类型可根据显式变换类型确定是否被允许而不同。在示例中,当显式变换类型确定被允许时,DCT2、DST7和DCT8可被用作变换类型候选。因此,水平方向变换类型和垂直方向变换类型中的每一个可被设置为DCT2、DST8或DCT8。当显式变换类型确定不被允许时,仅DCT2和DST7可被用作变换类型候选。因此,可将水平方向变换类型和垂直方向变换类型中的每一个确定为DCT2或DST7。
解码器可执行相对于第二变换的逆变换(第二逆变换),并且可执行相对于从第二逆变换发生的第一变换的逆变换(第一逆变换)。作为执行第二逆变换和第一逆变换的结果,可获得针对当前块的残差信号。
当由编码器执行变换和量化时,解码器可经由反量化和逆变换获得残差块。解码器可将预测块和残差块彼此相加,以获得针对当前块的重建块。
当获得了当前块的重建块时,可经由环内滤波来减少在量化和编码处理中产生的信息损失。环内滤波器可包括去块滤波器、样点自适应偏移滤波器(SAO)或自适应环路滤波器(ALF)中的至少一个。在下文中,应用环内滤波器之前的重建块被称为第一重建块,并且应用环内滤波器之后的重建块被称为第二重建块。
可通过将去块滤波器、SAO或ALF中的至少一个应用于第一重建块来获得第二重建块。就此而言,可在应用去块滤波器之后应用SAO或ALF。
去块滤波器用于减轻块的边界上的在按块执行量化时发生的质量劣化(例如,块效应)。为应用去块滤波器,可确定第一重建块与邻近重建块之间的块强度(BS)。
图31是示出确定块强度的处理的流程图。
在图31中所示的示例中,P表示第一重建块,并且Q表示邻近重建块。就此而言,邻近重建块可邻近于当前块的左侧或上方。
图31中所示的示例示出了考虑P和Q的预测编码模式、是否包括非0变换系数、是否是通过使用相同的参考画面来执行帧间预测、或者运动矢量的差值是否等于或大于阈值来确定块强度。
基于块强度,可确定是否应用去块滤波器。在示例中,当块强度为0时,可不执行滤波。
SAO是为了减轻在频率区域中执行量化时发生的振铃效应。可通过加上或减去通过考虑第一重建图像的样式而确定的偏移来执行SAO。偏移的确定方法包括边缘偏移(EO)或带偏移(BO)。EO表示根据邻近像素的样式确定当前样点的偏移的方法。BO表示将共同的偏移应用于区域中的具有相似亮度值的一组像素的方法。具体地,像素亮度可被分区为32个均匀部分,并且具有相似亮度值的像素可被设置为一个组。在示例中,可将32个带中的4个相邻带设置为一个组,并且可将相同的偏移值应用于属于4个带的样点。
ALF是一种通过将具有预定义尺寸/形状的滤波器应用于第一重建图像或应用了去块滤波器的重建图像来生成第二重建图像的方法。下面的等式8表示应用ALF的示例。
【等式8】
可基于画面、编码树单元、编码块、预测块或变换块来选择预定义滤波器候选中的任意一个。每个滤波器候选的尺寸或形状中的至少一个可以是不同的。
图32表示预定义滤波器候选。
如在图32中所示的示例中,可选择5×5、7×7或9×9尺寸的菱形形状中的至少任意一个。
仅5×5尺寸的菱形形状可被用于色度分量。
对于诸如全景视频、360度视频或4K/8K UHD(超高清)的高分辨率图像的实时或低延迟编码,可考虑将画面分区为多个区域并且并行地对所述多个区域进行编码/解码的方法。具体地,根据处理的目的,可将画面分区为并行块或条带(或并行块组)。
并行块表示用于并行编码/解码的基本单元。可并行地对每个并行块进行处理。并行块可具有矩形形状。可选地,可允许非矩形并行块。
可以以比特流用信号发送表示是否允许非矩形并行块或者是否存在非矩形并行块的信息。
在对并行块进行编码/解码时,可设置为不使用其他并行块的数据。可通过去除并行块之间的编码/解码依赖性来支持并行块的并行处理。具体地,可按并行块对CABAC(上下文自适应二进制算术编码)上下文的概率表进行初始化,并且可将环内滤波器设置为不被应用于并行块的边界。此外,其它并行块中的数据可不被用作用于推导运动矢量的候选。例如,可将其它并行块中的数据设置为不被用作合并候选、运动矢量预测候选(AMVP候选)或运动信息候选。此外,另一并行块中的数据可被设置为不被用于符号的上下文计算。
关于视频编码/解码的信息可通过条带头被用信号发送。通过条带头被用信号发送的信息可共同被应用于包括在条带中的编码树单元或并行块。条带也可被称为并行块组。
图33是示出根据本公开的实施例的画面分区方法的示图。
首先,可确定当前画面是否被分区为多个处理单元S3310。就此而言,处理单元可包括并行块或条带中的至少一个。在示例中,可以以比特流用信号发送指示当前画面是否被分区为多个并行块或条带的语法no_pic_partition_flag。如果语法no_pic_partition_flag的值为0,则表示当前画面被分区为至少一个并行块或至少一个条带。另一方面,如果语法no_pic_partition_flag的值为1,则表示当前画面不被分区为多个并行块或多个条带。
当确定当前画面将不被分区为多个处理单元时,可结束当前画面的分区处理。就此而言,可理解的是,当前画面由单个并行块和单个条带(或单个并行块组)组成。
可选地,可以以比特流用信号发送表示画面中是否存在多个并行块的信息。所述信息可包括表示画面中是否存在多个并行块的1比特标志或者指定画面中的并行块的数量的信息中的至少一个。
当确定当前画面将被分区为多个处理单元时,可以以比特流用信号发送并行块分区信息。可基于用信号发送的并行块分区信息将画面分区为至少一个并行块S3320。
当当前画面被分区为多个并行块时,可通过对多个并行块进行组合或对并行块进行分区来确定条带S3330。
在下文中,根据本公开,将详细描述并行块分区方法和条带确定方法。
图34表示画面被分区为多个并行块的示例。
并行块可包括至少一个编码树单元。可将并行块的边界设置为与编码树单元的边界匹配。换句话说,可不允许一个编码树单元被分区为多个的分区类型。
当画面被分区为多个并行块时,相邻并行块的高度或相邻并行块的宽度可被设置为具有相同的值。
在示例中,如在图34中所示的示例中,属于同一并行块行的并行块的高度以及/或者属于同一并行块列的并行块的宽度可被设置为相同。属于同一并行块行的并行块可被称为水平方向并行块集,并且属于同一并行块列的并行块可被称为垂直方向并行块集。
可选地,可用信号发送表示将被编码/解码的并行块的宽度和/或高度是否被设置为与前一并行块的宽度和/或高度相同的信息。
可以以比特流用信号发送表示画面的分区形状的信息。所述信息可通过画面参数集、序列参数集或条带头被编码并被用信号发送。
用于确定并行块尺寸的信息可被编码并被用信号发送。在示例中,可将表示第i并行块列的宽度的语法元素tile_width_minus1[i]以及表示第i并行块行的高度的语法元素tile_height_minus1[i]编码到比特流中。
当连续的并行块列的尺寸相同时,可仅针对连续的并行块列中的一个并行块列用信号发送宽度信息,并且可针对其余并行块列省略对宽度信息的编码/解码。
在示例中,当画面中的从第i并行块列至最后并行块列的宽度中的每个宽度相同时,可仅针对第i并行块列用信号发送语法tile_cols_width_minus1[i],并且可将其余并行块列的宽度设置为与第i并行块列的宽度相同。
表示多个连续的并行块列的宽度是否相同的信息可被编码并被用信号发送。在示例中,语法rem_tile_col_equal_flag[i]表示从索引为i的并行块列至索引为(N-1)的并行块列的宽度是否彼此相同。在这种情况下,N可表示并行块列的数量。换句话说,索引为(N-1)的并行块列可表示画面中的最后并行块列。
当语法rem_tile_col_equal_flag[i]为1时,可针对索引为i的并行块列用信号发送表示宽度的语法tile_cols_width_minus1[i],而针对索引大于i的并行块列,可省略对表示并行块列的宽度的语法的编码/解码。
当省略对表示并行块列的宽度的语法的编码/解码时,可将第i并行块列的宽度和余下区域的宽度中的最小值设置为后续并行块列的宽度。在示例中,当第i并行块列的宽度被设置为变量PrevTileColWidth并且画面中的余下区域的宽度被设置为变量RemainingColWidth时,索引大于i的并行块列的尺寸可被设置为以下项中的较小值:变量PrevTileColWidth和变量RemainingColWidth。
在另一示例中,语法rem_tile_col_equal_flag[i]可被设置为表示从索引为0的并行块列至索引为i的并行块列的宽度是否彼此相同。
当连续的并行块行的尺寸相同时,可仅针对连续的并行块行中的一个并行块行用信号发送高度信息,并且可针对其余并行块行省略对高度信息的编码/解码。
在示例中,当画面中的从第i并行块行至最后并行块行的高度相同时,可仅针对第i并行块行用信号发送语法tile_rows_height_minus1[i],并且可将其余并行块行的高度设置为与第i并行块行的高度相同。
表示多个连续的并行块行的高度是否相同的信息可被编码并被用信号发送。在示例中,语法rem_tile_row_equal_flag[i]表示从索引为i的并行块行至索引为(N-1)的并行块行的高度是否彼此相同。在这种情况下,N可表示并行块行的数量。换句话说,索引为(N-1)的并行块行可表示画面中的最后并行块行。
当语法rem_tile_row_equal_flag[i]为1时,可针对索引为i的并行块行用信号发送表示高度的语法tile_rows_height_minus1[i],而针对索引大于i的并行块行,可省略对表示并行块行的高度的语法的编码/解码。
当省略对表示并行块行的高度的语法的编码/解码时,可将第i并行块行的高度和余下区域的高度中的最小值设置为后续并行块行的高度。在示例中,当第i并行块行的高度被设置为变量PrevTileRowHeight并且画面中的余下区域的高度被设置为变量RemainingRowHeight时,索引大于i的并行块行的尺寸可被设置为以下项中的较小值:变量PrevTileRowHeight和变量RemainingRowHeight。
在另一示例中,语法rem_tile_row_equal_flag[i]可被设置为表示从索引为0的并行块行至索引为i的并行块行的高度是否彼此相同。
表8示出包括语法rem_tile_col_equal_flag[i]和语法rem_tile_row_equal_flag[i]的语法结构。
【表8】
可以以比特流用信号发送用于指定当前画面中的宽度被显式地用信号发送的并行块列的数量的信息。在示例中,可以以比特流用信号发送用于确定宽度被用信号发送的并行块列的数量的语法num_exp_tile_columns_minus1。语法num_exp_tile_columns_minus1可以是从宽度被发信号发送的并行块列的数量减去1得到的值。
与基于语法num_exp_tile_columns_minus1确定的数量一样多的用于指定并行块列的宽度的语法可被编码并被用信号发送。在示例中,可以以比特流用信号发送表示第i并行块列的宽度的语法tile_width_minus1[i]。语法tile_width_minus1[i]可表示从包括在并行块行中的编码树单元列的数量减去1得到的值。
当并行块列的索引i小于宽度被显式地用信号发送的并行块列的数量时,可基于以比特流被用信号发送的语法tile_width_minus1[i]来确定对应并行块列的宽度。
另一方面,当并行块列的索引j等于或大于宽度被显式地用信号发送的并行块列的数量时,可基于最后被用信号发送的语法tile_width_minus1[l]来确定对应并行块列的宽度。在这种情况下,l可表示宽度最后被用信号发送的并行块列的索引,并且可以是小于j的整数。在示例中,当从当前画面的宽度减去先前并行块列的宽度得到的值等于或大于将1与语法tile_width_minus1[i]相加得到的值时,并行块列j的宽度可被设置为将1与语法tile_width_minus1[i]相加得到的值。另一方面,当从当前画面的宽度减去先前并行块列的宽度得到的值小于将1与语法tile_width_minus1[i]相加得到的值时,从当前画面的宽度减去先前并行块列的宽度得到的差值可被设置为并行块列j的宽度。
表9示出确定并行块列的宽度的处理。
【表9】
在表9中,变量PicWidthInCtbsY表示当前画面所包括的编码树单元列的数量。在示例中,可如在下面的等式9中推导变量PicWidthInCtbsY。
【等式9】
PicWidthInCtbsY=Ceil(pic_width_in_luma_samples/CtbSizeY)
变量reminingWidthInCtbsY表示从变量PicWidthInCtbsY减去并行块列的累积宽度得到的值。在示例中,对于索引为i的并行块列,可通过从PicWidthInCtbsY减去作为从第0并行块列至第(i-1)并行块列的宽度之和的值来推导reminingWidthInCtbsY。
如在表9中所示的示例中,可通过将1与最后被显式地用信号发送的并行块列的宽度tile_column_width_minus1[num_exp_tile_columns_minus1]相加来推导变量uniformTileColWidth。在这种情况下,当表示当前画面中的其余编码树单元列的数量的变量remainingWidthInCtbY等于或大于变量uniformTileColWidth时,可以以变量uniformTileColWidth的尺寸对余下区域进行分区。
另一方面,当表示当前画面中的其余编码树单元列的数量的变量remainingWidthInCtbY小于变量uniformTileColWidth时,可将余下区域按原样设置为最后并行块列。
另一方面,当并行块列的索引j等于或大于宽度被显式地用信号发送的并行块列的数量时,对应并行块列的宽度可被设置为以下项中的较小值:变量uniformTileColWidth和remainingWidthInCtbY。
换句话说,不包括宽度被显式地用信号发送的并行块列的其余并行块列的宽度可具有小于或等于宽度被显式地用信号发送的并行块列中的最后并行块列的宽度的值。
可选地,可以以比特流用信号发送用于指定当前画面中的高度被用信号发送的并行块行的数量的信息。在示例中,可以以比特流用信号发送用于确定高度被用信号发送的并行块行的数量的语法num_exp_tile_rows_minus1。语法num_exp_tile_rows_minus1可以是从高度被用信号发送的并行块行的数量减去1得到的值。
与基于语法num_exp_tile_rows_minus1确定的数量一样多的用于指定并行块行的高度的语法可被编码并被用信号发送。在示例中,可以以比特流用信号发送表示第i并行块行的高度的语法tile_height_minus1[i]。语法tile_height_minus1[i]可表示从并行块行中包括的编码树单元行的数量减去1得到的值。
当并行块行的索引i小于高度被显式地用信号发送的并行块行的数量时,可基于以比特流被用信号发送的语法tile_height_minus1[i]来确定对应并行块行的高度。
另一方面,当并行块行的索引j等于或大于高度被显式地用信号发送的并行块行的数量时,可基于最后被用信号发送的语法tile_height_minus1[1]确定对应并行块行的高度。在这种情况下,l可表示高度最后被用信号发送的并行块行的索引,并且可以是小于j的整数。
在示例中,当从当前画面的高度减去先前并行块行的高度得到的值等于或大于将1与语法tile_height_minus1[1]相加得到的值时,并行块行j的高度可被设置为将1与语法tile_height_minus1[1]相加得到的值。另一方面,当从当前画面的高度减去先前并行块行的高度得到的值小于将1与语法tile_height_minus1[1]相加得到的值时,从当前画面的高度减去先前并行块行的高度得到的差值可被设置为并行块行j的高度。
表10示出确定并行块行的高度的处理。
【表10】
在表10中,变量PicHeightInCtbsY表示当前画面所包括的编码树单元行的数量。在示例中,可如在下面的等式10中推导变量PicWidthInCtbsY。
【等式10】
PicHeightInCtbsY=Ceil(pic_height_in_luma_samples/CtbSizeY)
变量reminingHeightInCtbsY表示从变量PicHeightInCtbsY减去并行块行的累积高度得到的值。在示例中,对于索引为i的并行块行,可通过从PicHeightInCtbsY减去作为从第0并行块行至第(i-1)并行块行的高度之和的值来推导remainingHeightInCtbsY。
如在表10中所示的示例中,可通过将1与最后被显式地用信号发送的并行块行的高度tile_row_height_minus1[num_exp_tile_rows_minus1]相加来推导变量uniformTileRowHeight。在这种情况下,当表示当前画面中的其余编码树单元行的数量的变量remainingHeightInCtbY等于或大于变量uniformTileRowHeight时,可以以变量uniformTileRowHeight的尺寸对余下区域进行分区。
另一方面,当表示当前画面中的其余编码树单元行的数量的变量remainingHeightInCtbY小于变量uniformTileRowHeight时,可将余下区域按原样设置为最后并行块行。
另一方面,当并行块行的索引j等于或大于高度被显式地用信号发送的并行块行的数量时,对应并行块行的高度可被设置为以下项中的较小值:变量uniformTileRowHeight和remainingHeightInCtbY。
换句话说,不包括高度被显式地用信号发送的并行块行的其余并行块行的高度可具有小于或等于高度被显式地用信号发送的并行块行中的最后并行块行的宽度的值。
表11示出语法表,其中,所述语法表包括表示宽度被显式地用信号发送的并行块列的数量的语法以及表示高度被显式地用信号发送的并行块行的数量的语法。
【表11】
pic_parameter_set_rbsp(){ | 描述符 |
... | |
single_tile_in_pic_flag | u(1) |
if(!single_tile_in_pic_flag){ | |
log2_pps_ctu_size_minus5 | u(2) |
num_exp_tile_columns_minus1 | ue(v) |
num_exp_tile_rows_minus1 | ue(v) |
for(i=0;i<=num_exp_tile_columns_minus1;i++) | |
tile_column_width_minus1[i] | ue(v) |
for(i=0;i<=num_exp_tile_rows_minus1;i++) | |
tile_row_height_minus1[i] | ue(v) |
loop_filter_across_tiles_enabled_flag | u(1) |
loop_filter_across_slices_enabled_flag | u(1) |
另外,语法loop_filter_across_tiles_enabled_flag表示是否允许对参考画面参数集的画面中的并行块的边界应用环内滤波器。在这种情况下,环内滤波器可包括去块滤波器、ALF或SAO中的至少一个。当标志loop_filter_across_tiles_enabled_flag的值为1时,这表示跨越参考画面参数集的画面中的并行块的边界的环内滤波器可被应用。另一方面,当标志loop_filter_across_tiles_enabled_flag的值为0时,这表示不允许对参考画面参数集的画面中的并行块的边界应用环内滤波器。
语法loop_filter_across_slices_enabled_flag表示是否允许对参考画面参数集的画面中的条带的边界应用环内滤波器。在这种情况下,环内滤波器可包括去块滤波器、ALF或SAO中的至少一个。当标志loop_filter_across_slices_enabled_flag的值为1时,这表示跨越参考画面参数集的画面中的条带的边界的环内滤波器可被应用。另一方面,当标志loop_filter_across_slices_enabled_flag的值为0时,这表示不允许对参考画面参数集的画面中的条带的边界应用环内滤波器。
可递归地对并行块进行分区。在示例中,可将一个并行块分区为多个并行块。
通过对并行块进行分区而生成的多个并行块中的每个并行块可被称为子并行块或分块。分块可以是并行处理的单元。在示例中,分块可彼此独立地被编码/解码。在对分块中包括的块进行编码/解码时,可设置为不使用另一块的数据。在示例中,包括在另一分块中的样点可被设置为不可用作用于帧内预测的参考样点。可选地,另一分块中的数据可被设置为不被用作合并候选、运动矢量预测候选(AMVP候选)或运动信息候选。可选地,其他分块中的数据可不被用于符号的上下文计算。
图35是用于解释分块的生成方面的示图。
可通过在水平方向上对并行块进行分区来生成分块。在示例中,图35中所示的示例示出了属于当前画面中的最后并行块列的并行块被分区为2个分块。
当假设光栅扫描被应用于并行块时,可在分块之间应用光栅扫描。在示例中,在对特定并行块中包括的所有分块进行扫描之后,可对后续并行块进行扫描。换句话说,分块可与并行块具有相同的状态。
分块的边界可与编码树单元的边界匹配。换句话说,并行块中的至少一个编码树单元行可被定义为分块。
可由并行块索引来标识并行块和分块。可按光栅扫描顺序将并行块索引分配给每个并行块和每个分块。当一个并行块被分区为多个分块时,可将并行块索引分配给多个分块中的每个分块。
在后面提到的实施例中,术语“并行块”可包括并行块以及通过对并行块进行分区而生成的并行块(即,子并行块或分块)。
至少一个或更多个并行块可被定义为一个处理单元。在示例中,多个并行块可被定义为一个条带。条带可被称为并行块组。
可选地,一个并行块可被分区为多个处理单元。在示例中,并行块可被分区为多个条带。就此而言,一个条带可包括至少一个编码树单元列。当并行块被分区为多个条带时,可以以比特流用信号发送表示每个条带的高度的信息。
图像编码/解码信息可通过条带头被用信号发送。通过条带头被用信号发送的信息可被共同应用于属于条带的并行块和/或块。
表示条带类型的信息可经由比特流被用信号发送。所述信息表示当前画面中的条带的定义方法。在示例中,可以以比特流用信号发送表示条带类型的语法rect_slice_flag。
语法rect_slice_flag表示条带是否基于并行块的光栅扫描顺序而被定义或者条带是否被定义为矩形形状。在示例中,当rect_slice_flag为0时,这表示条带基于并行块的光栅扫描顺序而被定义。另一方面,当rect_slice_flag为1时,这表示条带被定义为矩形形状。
在下文中,将详细描述用于确定条带的两种方法。
基于光栅扫描的定义方法是根据光栅扫描顺序指定至少一个或更多个并行块,并将至少一个或更多个指定的并行块定义为条带。当遵循基于光栅扫描的定义方法时,可将一个或更多个连续的并行块定义为条带。在这种情况下,可根据光栅扫描顺序确定连续的并行块。当光栅扫描条带被应用时,可生成非矩形条带。
图36和图37是示出基于光栅顺序定义条带的示例的示图。
在示例中,在图36中所示的示例中,当假设第一条带(条带0)包括3个并行块时,可根据光栅扫描顺序将第一条带(条带0)定义为包括并行块0至并行块2。当假设第二条带(条带1)包括6个并行块时,可根据光栅扫描顺序将第二条带(条带1)定义为包括并行块3至并行块8。根据光栅扫描顺序,最后条带(条带2)可包括剩余并行块(并行块9至并行块11)。
当基于光栅扫描顺序定义条带时,可用信号发送表示每个条带所包括的并行块的数量的信息。对于最后条带,可省略用信号发送表示条带所包括的并行块的数量的信息的操作。
当条带包括多个并行块时,条带中包括的并行块的宽度或高度可不同。在示例中,示出了第二条带(条带1)所包括的并行块中的并行块3的高度与其他并行块不同。
矩形形状的条带的定义方法是仅允许矩形形状的条带的分区方法。当矩形形状的条带的定义方法被应用时,位于条带的四个角处的并行块属于同一行或同一列。
图38是示出仅矩形形状的条带被允许的示例的示图。
如在图38中所示的示例中,第四条带(条带3)包括并行块5、并行块6、并行块9和并行块10。如在所示示例中,当条带包括多个并行块时,具有左上方并行块和右下方并行块作为其两个顶点的矩形可被定义为一个条带。
条带的边界可与画面的边界和/或并行块的边界匹配。在示例中,条带的左边界或上边界可被设置为画面的边界,或者条带的左边界或上边界可被设置为并行块的边界。
可选地,当定义矩形条带的方法被应用时,可将一个并行块分区为多个矩形条带。
当定义矩形条带的方法被应用时(例如,当rect_slice_flag为1时),可用信号发送表示画面是否利用单个条带来配置的信息。在示例中,可以以比特流用信号发送表示画面中的条带的数量是否为1的语法one_slice_in_pic_flag。当标志one_slice_in_pic_flag为1时,这表示画面利用单个条带来配置。另一方面,当标志one_slice_in_pic_flag为0时,这表示画面利用至少2个或更多个条带来配置。当标志one_slice_in_pic_flag的值为0时,可另外用信号发送条带的配置信息。在示例中,表12示出包括语法one_slice_in_pic_flag的语法表。
【表12】
pic_parameter_set_rbsp(){ | 描述符 |
pps_pic_parameter_set_id | ue(v) |
pps_seq_parameter_set_id | ue(v) |
single_tile_in_pic_flag | u(1) |
… | |
single_brick_per_slice_flag | u(1) |
if(!single_brick_per_slice_flag) | |
rect_slice_flag | u(1) |
if(rect_slice_flag&&!single_brick_per_slice_flag){ | |
one_slice_in_pic_flag | u(1) |
if(!one_slice_in_pic_flag){ | |
num_slices_in_pic_minus2 | ue(v) |
for(i=0;i<=num_slices_in_pic_minus2+1;i++){ | |
if(i>0) | |
top_left_brick_idx[i] | u(v) |
bottom_right_brick_idx_delta[i] | u(v) |
} | |
} | |
} | |
loop_filter_across_bricks_enabled_flag | u(1) |
if(loop_filter_across_bricks_enabled_flag) | |
loop_filter_across_slices_enabled_flag | u(1) |
} |
如表所示,当one_slice_in_pic_flag为1时,可省略对与之后将描述的条带的配置相关的信息(例如,表示条带所包括的并行块的索引的语法top_left_brick_idx[i]以及/或者表示第一条带所包括的并行块与第二条带所包括的并行块之间的索引差的语法bottom_right_bric_idx_delta[i]等)的编码。换句话说,one_slice_in_pic_flag可被用于确定与条带的配置相关的信息是否被编码。
画面可表示子画面。画面可被分区为至少一个子画面。与子画面分区相关的信息可在序列级被用信号发送。在示例中,通过序列参数集被用信号发送的与子画面分区相关的信息可被共同应用于参考序列参数集的所有画面。
与子画面分区相关的信息可包括表示画面是否被分区为多个子画面的信息、表示子画面的数量的信息、表示子画面的尺寸的信息或者表示子画面是否被视为独立画面的信息。
可按子画面用信号发送表示子画面是否利用单个条带来配置的语法one_slice_in_pic_flag。
可选地,可在序列级或画面级用信号发送表示每个子画面是否利用单个条带来配置的语法one_slice_in_pic_flag。在示例中,当标志one_slice_in_pic_flag为1时,这表示当前画面中的所有子画面都利用单个条带来配置。在这种情况下,可省略对条带配置信息的编码,并且可基于子画面的分区信息来定义条带。
另一方面,当标志one_slice_in_pic_flag为0时,这表示当前画面中的至少一个子画面利用多个条带来配置。在这种情况下,可将条带配置信息与子画面分区信息分开编码。
当确定画面利用多个条带来配置时,表示画面中的条带的数量的语法可被编码并被用信号发送。在示例中,可以以比特流用信号发送表示画面中的条带的数量的语法num_slices_in_pic_minus2。语法num_slices_in_pic_minus2可表示从画面中的条带的数量减去2得到的值。因此,解码器可通过将2与由语法num_slices_in_pic_minus2指示的值相加来确定条带的总数。
作为语法num_slices_in_pic_minus2的替代,可对表示从画面中的条带的数量减去1得到的值的语法num_slices_in_pic_minus1进行编码。
当矩形形状的条带的定义方法被应用时,可用信号发送用于标识每个条带所包括的并行块的信息,以确定每个条带所包括的并行块。所述信息可被用于指定条带的第一并行块或最后并行块中的至少一个。可根据预定扫描顺序确定并行块之间的顺序。在示例中,当光栅扫描顺序被应用时,第一并行块指示条带的左上方位置处的并行块,并且最后并行块指示条带的右下方位置处的并行块。
可以以比特流用信号发送用于标识条带的左上方位置处的并行块的索引或条带的右下方位置处的并行块的索引中的至少一个索引的信息。在示例中,可以以比特流用信号发送用于标识条带的左上方位置处的并行块的索引的语法top_left_tile_idx或者用于标识条带的右下方位置处的并行块的索引的语法bottom_right_tile_idx中的至少一个。对于最后条带,可省略对用于标识条带的左上方位置处的并行块的索引的语法或用于标识条带的右下方位置处的并行块的索引的语法中的至少一个语法的编码。除了被当前画面中的先前条带占据的区域之外的余下区域可被设置为最后条带。
在示例中,在图38中所示的示例中,可针对条带0、条带1和条带2中的每个条带用信号发送表示条带的左上方位置处的并行块的索引的top_left_tile_idx和表示条带的右下方位置处的并行块的索引的bottom_right_tile_idx。另一方面,针对画面中的最后条带(条带3),可省略对top_left_tile_idx和bottom_right_tile_idx的编码。画面中的最后条带(条带3)的左上方并行块的索引可被设置为画面中的除了条带0、条带1和条带2之外的余下区域中的左上方位置处的并行块的索引,并且条带3的右下方并行块的索引可被设置为所述余下区域中的右下方位置处的并行块(或画面的右下方位置处的并行块)的索引。
可选地,用于指定包括在条带中的并行块的索引的差信息可被编码并被用信号发送。在示例中,可以以比特流用信号发送表示条带的左上方位置处的并行块的索引与条带的右下方位置处的并行块的索引的差值的信息。在示例中,可针对第i条带用信号发送用于标识条带的左上方位置处的并行块的索引的语法top_left_tile_idx[i]以及表示条带的左上方位置处的并行块的索引与条带的右下方位置处的并行块的索引之间的差的语法bottom_right_tile_idx_delta[i]。可通过对top_left_tile_idx[i]和bottom_right_tile_idx_delta[i]求和来推导第i条带的右下方并行块的索引。针对最后条带可省略对表示条带的左上方位置处的并行块的索引的语法或者表示条带的左上方位置处的并行块的索引与条带的右下方位置处的并行块的索引的差的语法中的至少一个语法的编码。除了被当前画面中的先前条带占据的区域之外的余下区域可被设置为最后条带。
可选地,水平方向并行块索引差信息或垂直方向并行块索引差信息中的至少一个可被编码并被用信号发送。水平方向并行块索引差信息可表示第一并行块的索引与包括在与第一并行块相同的并行块行中的最右侧并行块的索引之间的差。垂直方向并行块索引差信息可表示第一并行块的索引与包括在与第一并行块相同的并行块列中的最下方并行块的索引之间的差。
根据条带的位置,可确定将被编码的差信息类型。在示例中,对于与画面的右边界或下边界相邻的条带,水平方向并行块索引差信息或垂直方向并行块索引差信息可被编码并被用信号发送。可通过对水平方向并行块索引差信息或垂直方向并行块索引差信息而不是对表示左上方并行块与右上方并行块之间的索引差的信息进行编码来减少比特量。
可选地,当画面被分区为至少一个或更多个条带行时,可针对与画面的左边界相邻的条带对表示左上方并行块与右下方并行块之间的索引差的信息进行编码。属于同一行的条带可被设置为具有相同的高度。
包括在第一条带中的并行块的索引与包括在第二条带中的并行块的索引之间的差信息可被编码并被用信号发送。在这种情况下,可基于扫描顺序确定第一条带和第二条带,并且每个条带可被不同的并行块占据。
在示例中,当构成第一条带的并行块和构成第二条带的并行块不同时,可通过将1与第一条带的索引i相加来获得第二条带的索引。
可选地,当第一并行块被分区为包括多个条带时,可对包括在第一并行块中的第一条带与包括在按扫描顺序作为第一并行块的下一并行块的第二并行块中的第二条带之间的差信息或者包括在第一并行块中的第一条带与包括在第二并行块中的第二条带之间的差信息进行编码。在这种情况下,可仅针对包括在第一并行块中的多个条带中的第一条带或最后条带对差信息进行编码。
用于推导第一条带与第二条带之间的差信息的并行块可位于条带的左上方、右上方、右下方、左下方或中心。
表13示出包括差信息的语法表。
【表13】
在示例中,可以以比特流用信号发送表示第i条带的左上方并行块与先前条带(即,第(i-1)条带)的左上方并行块之间的索引差的语法top_left_brick_idx_delta[i]。
基于差信息,可确定第i条带中的左上方并行块的位置。具体地,可通过将第(i-1)条带的左上方并行块的索引与语法top_left_brick_idx_delta[i]相加来推导第i条带的左上方并行块的索引。等式11表示推导第i条带的左上方并行块的索引的示例。
【等式11】
TopLeftBrickIdx[i]=TopLeftBrickIdx[i-1]+top_left_brick_idx_delta[i]
在等式11中,TopLeftBrickIdx[i-1]表示第(i-1)条带的左上方并行块的索引。
针对第一条带(即,索引i为0的条带),可省略对表示与先前条带的差信息的语法top_left_brick_idx_delta[i]的编码。针对第一条带,可编码并用信号发送表示条带的左上方并行块与右上方并行块之间的索引差的语法bottom_right_brick_idx_delta[i]。
表14是示出通过使用差信息来指定每个并行块所属的条带的处理的示例。
【表14】
NumBricksInSlice[i]表示条带i所包括的并行块的数量。TopLeftBrickIdx[i]表示条带i的左上方并行块的索引。botRightBkIdx表示右上方并行块的索引。BrickColBd[j]表示并行块j所属的并行块列的索引。BrickRowBd[j]表示并行块j所属的并行块行的索引。BricksToSliceMap[j]=i表示将并行块j添加到条带i。
作为语法top_left_brick_idx_delta[i]的替代,表示第i条带的右下方并行块与先前条带(即,第(i-1)条带)的右下方并行块之间的索引差的语法bottom_right_brick_idx_delta[i]可以以比特流被用信号发送。在这种情况下,可通过将语法bottom_right_brick_idx_delta[i]与先前条带的右下方并行块的索引相加来推导第i条带的右下方并行块的索引。
针对第一条带,可将bottom_right_brick_idx_delta[0]的值设置为与第一条带的右下方并行块的索引相同。换句话说,可将第一条带的右下方并行块的索引设置为与语法bottom_right_brick_idx_delta[0]相同。
表示画面中的第i条带中包括的并行块的索引是否具有大于第(i-1)条带中包括的并行块的索引的值的信息可被编码并以比特流被用信号发送。在示例中,可以以比特流用信号发送语法bottom_right_increasing_order_flag。当标志bottom_right_increasing_order_flag为1时,这表示画面中的第i条带中包括的并行块的索引总是具有大于第i-1条带中包括的并行块的索引的值。另一方面,当bottom_right_increasing_order_flag为0时,这表示画面中的至少一个条带中包括的并行块的索引可具有小于先前条带中包括的并行块的索引的值。
可通过使用条带中的左上方并行块的索引以及指定条带的宽度或高度中的至少一个的信息来定义条带。在示例中,可以以比特流用信号发送表示第i条带的宽度的语法slice_width_in_tiles_minus1[i]或者表示第i条带的高度的语法slice_height_in_tiles_minus1[i]中的至少一个。
语法slice_width_in_tiles_minus1[i]表示从第i条带中包括的并行块列的数量减去1得到的值。语法slice_height_in_tiles_minus1[i]表示从第i条带中包括的并行块行的数量减去1得到的值。
可利用与基于语法slice_width_in_tiles_minus1[i]确定的数量一样多的并行块列以及与基于语法slice_height_in_tiles_minus1[i]确定的数量一样多的并行块行来构成第i条带。在这种情况下,第i并行块列的左上方并行块可具有基于top_left_brick_idx_delta[i]确定的索引值。
可选地,可仅针对与画面的左边界相邻的条带用信号发送表示条带的高度的语法slice_height_in_tiles_minus1[i],并且可针对其他条带省略对语法slice_height_in_tiles_minus1[i]的编码。可将对语法slice_height_in_tiles_minus1[i]的编码被省略的条带的高度设置为与同一行中包括的条带中的与当前画面的左边界邻接的条带的高度相同。
第一条带的左上方并行块的索引TopLeftBrickIdx[0]可被设置为0。因此,针对第二条带(即,索引i为1的条带),语法top_left_brick_idx_delta[i]基本上具有与左上方并行块的索引相同的值。因此,可针对第二条带用信号发送语法top_left_brick_idx[i],而非语法top_left_brick_idx_delta[i]。在这种情况下,top_left_brick_idx[i]表示第i条带的左上方并行块的索引。
在另一示例中,语法top_left_brick_idx_delta[i]可被设置为第i条带的第一并行块与第(i+1)条带的第一并行块之间的差。换句话说,可通过将第i条带的左上方并行块的索引与针对第i条带被用信号发送的语法top_left_brick_idx_delta[i]相加来推导第(i+1)条带的左上方并行块的索引。当语法top_left_brick_idx_delta[i]表示第i条带与第(i+1)条带之间的差信息时,可针对最后条带省略对语法top_left_brick_idx_delta[i]的编码。
可通过使用如下表15中的语法表来确定条带。
【表15】
当表示条带类型的标志rect_slice_flag被编码并且标志rect_slice_flag的值为1时,可对表示画面中的条带的数量的语法num_slices_in_pic_minus1进行编码。
当确定画面包括多个条带时,可对表示每个条带的宽度的语法slice_width_in_tiles_minus1[i]以及表示每个条带的高度的语法slice_height_in_tiles_minus1[i]进行编码并用信号发送。
此外,可用信号发送表示包括在第i条带中的并行块的索引与包括在第(i+1)条带中的并行块的索引之间的差的语法tile_idx_delta[i]。针对最后并行块,可省略对语法tile_idx_delta[i]的编码。
可对通过从两个条带之间的并行块索引差减去偏移而推导出的语法进行编码。偏移可以是诸如1或2的自然数。在示例中,可以以比特流用信号发送语法tile_idx_delta_minus1[i]。可通过将1与语法tile_idx_delta_minus1[i]相加来推导包括在第i条带中的并行块的索引与包括在第(i+1)条带中的并行块的索引之间的差。
当当前画面包括多个条带时,可对并行块索引的差信息进行编码/解码。换句话说,当当前画面利用单个条带来配置时,可省略用信号发送表示并行块索引的差的语法tile_idx_delta[i]的操作。例如,当表示当前画面是否利用单个条带来配置的标志one_slice_in_pic_flag为1时,可省略用信号发送语法tile_idx_delta[i]的操作。
可选地,编码器可确定是否对表示并行块索引的差的语法tile_idx_delta[i]进行编码,并且可根据该确定对表示是否对语法tile_idx_delta[i]进行编码的标志tile_idx_delta_present_flag进行编码。当标志tile_idx_delta_present_flag的值为0时,这表示不对语法tile_idx_delta[i]进行编码/解码。当标志tile_idx_delta_present_flag的值为1时,可针对至少一个条带对语法tile_idx_delta[i]进行编码/解码。
一个并行块可被分区为多个条带。在示例中,可通过在水平方向上对并行块进行分区来生成多个条带。
当确定条带不包括多个并行块时,可确定并行块是否将被分区为多个条带。在示例中,当语法slice_width_in_tiles_minus1[i]和语法slice_height_in_tiles_minus1[i]两者都为0时,这表示条带仅由单个并行块构成,或者并行块被分区为多个条带。
当语法slice_width_in_tiles_minus1[i]和语法slice_height_in_tiles_minus1[i]两者都为0时,可用信号发送表示并行块是否被分区为多个条带的信息。
在示例中,可用信号发送表示并行块所包括的条带的数量的语法num_slices_in_tile_minus1[i]。语法num_slices_in_tile_minus1[i]表示从第i并行块所包括的条带的数量减去1得到的值。
当包括第i条带的并行块利用多个条带来配置时,可对表示并行块中的每个条带的高度的语法进行编码。在示例中,可用信号发送表示包括第i条带的并行块中的第j条带(即,第(i+j)条带)的高度的语法slice_height_in_ctu_minus1[i][j]。语法slice_height_in_ctu_minus1[i][j]可表示包括第i条带的并行块中的第j条带所包括的编码树单元行的数量。表16示出包括表示条带的高度的语法slice_height_in_ctu_minus1[i][j]的语法结构。
【表16】
在这种情况下,基于并行块的高度,可确定表示并行块中的条带的数量的语法是否被编码/解码。在示例中,当包括第i条带的并行块利用单个编码树单元行来配置时,可省略对表示并行块中的条带的数量的语法num_slices_in_tile_minus1的编码/解码。当省略了对语法num_slices_in_tile_minus1的编码/解码时,其值可被推断为0。换句话说,第i条带和包括第i条带的并行块可被设置为具有相同的尺寸和形状。在表16中,变量TileIdx[i]指示包括第i条带的并行块的索引,并且变量NumTileColumn表示并行块列的数量。TileIdx[i]/NumTileColumn返回包括包含第i条带的并行块的行。变量RowHeight[TileIdx[i]/NumTileColumn]表示包括第i条带的并行块行或并行块的高度。
在这种情况下,由于属于同一并行块行的并行块具有相同的高度,因此可理解的是,表示并行块中的条带的数量的语法是否被编码/解码是基于并行块行的高度而被确定的。
基于并行块或并行块行的高度,可确定表示条带的高度的语法是否被编码/解码。在示例中,当包括第i条带的并行块利用单个编码树单元行来配置时,或者当包括第i条带的并行块利用两个编码树单元行来配置时,可省略对表示条带的高度的语法slice_height_in_ctu_minus1[i][j]的编码/解码。可根据并行块中的条带的数量自适应地推断语法slice_height_in_ctu_minus1[i][j]的值。在示例中,当并行块中的条带的数量是1时,条带的高度可被设置为与并行块的高度相同。可选地,当并行块中的条带的数量为2并且并行块的高度为2时,每个条带的高度可被设置为1。在表16中,变量TileIdx[i]指示包括第i条带的并行块的索引,并且变量NumTileColumn表示并行块列的数量。TileIdx[i]/NumTileColumn返回包括包含第i条带的并行块的行。变量RowHeight[TileIdx[i]/NumTileColumn]表示包括第i条带的并行块的高度。
作为表示上述条带的数量的语法num_slices_in_tile_minus1的替代,表示代表应被显式地用信号发送的条带高度的数量的信息的语法num_exp_slices_in_tile[i]可被编码。语法num_exp_slices_in_tile[i]可具有与并行块所包括的条带的数量相同或小于并行块所包括的条带的数量的值。
当语法num_exp_slices_in_tile[i]为0时,这表示并行块不被分区为多个条带。当语法num_exp_slices_in_tile[i]大于0时,这表示并行块可被分区为多个条带。
与由语法num_exp_slices_in_tile[i]指示的值一样多的表示条带的高度的信息可被用信号发送。在示例中,当语法num_exp_slices_in_tile[i]大于1时,可用信号发送表示并行块中的第j条带的高度的语法exp_slice_height_in_ctu_minus1[j]。
如在上述实施例中,可基于并行块或并行块行的高度来确定是否对数量信息exp_slice_height_in_ctu_minus1[j]进行编码。在示例中,当包括第i条带的并行块利用单个编码树单元行来配置时,可省略对语法exp_slice_height_in_ctu_minus1[j]的编码/解码。当省略了对语法exp_slice_height_in_ctu_minus1[j]的编码/解码时,其值可被推断为0。
当条带的索引j小于高度被显式地用信号发送的条带的数量时,可基于以比特流被用信号发送的语法exp_slice_height_in_ctu_minus1[j]来确定条带j的宽度。另一方面,当条带的索引k等于或大于高度被显式地用信号发送的条带的数量时,可基于最后被用信号发送的语法exp_slice_height_in_ctu_minus1[1]确定条带k的高度。在这种情况下,l可表示高度最后被用信号发送的条带的索引,并且可以是小于k的整数。
在示例中,当从并行块的高度减去先前条带的高度得到的值等于或大于将1与语法exp_slice_height_in_ctu_minus1[1]相加得到的值时,条带k的高度可被设置为将1与语法exp_slice_height_in_ctu_minus1[1]相加得到的值。另一方面,当从并行块的高度减去先前条带的高度得到的值小于将1与语法exp_slice_height_in_ctu_minus1[1]相加得到的值时,从并行块的高度减去先前条带的高度得到的差值可被设置为条带k的高度。
换句话说,不包括高度被显式地用信号发送的条带的其余条带的高度可具有小于或等于高度被显式地用信号发送的条带中的最后条带的高度的值。
在上述示例中,示出了仅当定义矩形条带的方法被应用时,确定表示画面是否利用单个条带来配置的语法one_slice_in_pic_flag是否被编码。与示例相反,可根据标志one_slice_in_pic_flag的值确定语法rect_slice_flag是否被编码。在示例中,当one_slice_in_pic_flag的值为1时,可省略对rect_slice_flag的编码。
当当前画面中的并行块列的数量为1时,可省略对语法slice_width_in_tiles_minus1的编码。此外,当当前画面中的并行块行的数量为1时,可省略对语法slice_height_in_tiles_minus1的编码。
可选地,可省略对表示条带的宽度的信息或者表示条带的高度的信息中的至少一个的编码。
在示例中,可省略对表示条带的宽度的语法slice_width_in_tiles_minus1的编码,并且与相邻条带中的预定位置处的并行块的距离可被设置为条带的宽度。具体地,可通过语法top_left_brick_idx_delta[i]指定与第i条带的右侧相邻的第(i+1)条带的左上方并行块。可通过第i条带中的左上方并行块的x坐标(例如,左上样点的x坐标)与第(i+1)条带中的左上方并行块的x坐标(例如,左上样点的x坐标)之间的差来推导第i条带的宽度。
可选地,可省略对表示条带的高度的语法slice_height_in_tiles_minus1的编码,并且与相邻条带中的预定位置处的并行块的距离可被设置为条带的宽度。具体地,可通过语法top_left_brick_idx_delta[j-1]指定位于第i条带的下方的第j条带的左上方并行块。可通过第i条带中的左上方并行块的y坐标(例如,左上样点的y坐标)与第j条带中的左上方并行块的y坐标(例如,左上样点的y坐标)之间的差来推导第i条带的高度。
可选地,在将条带定义为矩形形状时,可以以比特流用信号发送表示差值信息是否被使用的信息。在示例中,可以以比特流用信号发送表示差值信息是否被使用的tile_idx_delta_present_flag。当语法tile_idx_delta_present_flag的值为1时,这表示代表并行块索引的差值的语法被编码并被用信号发送。在示例中,当语法tile_idx_delta_present_flag的值为1时,可通过语法slice_width_in_tiles_minus1[i]和表示条带的尺寸的语法slice_height_in_tiles_minus1[i]以及用于确定条带中的左上方并行块的位置或右上方并行块的位置的差值信息(例如,top_left_brick_idx_delta[i-1]或bottom_right_brick_idx_delta[i])来定义第i条带。
当语法tile_idx_delta_present_flag的值为0时,可通过语法slice_width_in_tiles_minus1[i]和表示条带的尺寸的语法slice_height_in_tiles_minus1[i]来定义第i条带。当语法tile_idx_delta_prsent_flag的值为0时,与当前画面的左边界邻接的条带的右侧位置处的(多个)条带可具有相同的高度。因此,可仅针对与当前画面的左边界邻接的条带用信号发送表示条带的高度的信息,并且可针对与当前画面的左边界不邻接的条带省略用信号发送表示条带的高度的信息的操作。
当包括在当前画面中的条带的数量等于或大于阈值时,可对表示代表并行块索引的差的信息是否被编码的语法tile_idx_delta_present_flag进行编码/解码。在这种情况下,阈值可被设置为诸如0、1或2等的整数。在示例中,仅当当前画面中包括的条带的数量等于或大于1或2时,可对语法tile_idx_delta_present_flag进行编码/解码。当当前画面中包括的条带的数量小于阈值时,可省略对tile_idx_delta_present_flag的编码/解码,并且其值可被推断为0。可基于编码树单元的索引而不是并行块的索引来定义条带。
在上述示例中,假设通过根据光栅扫描顺序给出并行块的顺序来定义条带。
当并行块利用多个条带来配置时,可仅针对第一条带用信号发送表示条带的尺寸的信息和/或并行块索引差信息。在这种情况下,表示条带的尺寸的信息可包括表示条带的宽度的语法slice_width_in_tiles_minus1[i]以及表示条带的高度的语法slice_height_in_tiles_minus1[i]中的至少一个。
表17表示其示例。
【表17】
表示条带是否是并行块中的第一条带的变量isFirstSliceInTile[i]可被设置。当变量isFirstSliceInTile[i]的值为1时,这表示条带是并行块中的第一条带。另一方面,当变量isFirstSliceInTile[i]的值为0时,这表示条带不是并行块中的第一条带。
变量isFirstSliceInTile[i]可被初始化为1。因此,当第i条带利用至少一个或更多个并行块而不是并行块的一部分来配置时,针对第i并行块的变量isFirstSliceInTile[i]的值可被设置为1。
当变量isFirstSliceInTile[i]的值为1时,表示条带的尺寸的语法slice_width_in_tiles_minus1[i]和语法slice_height_in_tiles_minus1[i]可被编码/解码。
在这种情况下,当语法slice_width_in_tiles_minus1[i]和语法slice_height_in_tiles_minus1[i]两者都为0时,可用信号发送表示并行块中的条带的数量的数量信息。当多个条带被包括在并行块中时,针对多个条带中的至少一个条带的高度信息可被编码/解码。在这种情况下,在对第二条带的高度信息进行解码之后,变量isFirstTileInTile[i++]的值可被变换为0。
因此,从第二条带起,可省略对表示条带的宽度的语法slice_width_in_tiles_minus1[i]和表示条带的高度的语法slice_height_in_tiles_minus1[i]的编码。
可仅针对第一并行块对表示并行块索引差的语法tile_idx_delta[i]进行编码/解码。在示例中,可针对当语法slice_width_in_tiles_minus1[i]不为0时的情况、当语法slice_height_in_tiles_minus1[i]不为0时的情况或者当变量isFirstSliceInTile[i]为1时的情况中的至少一个情况用信号发送语法tile_idx_delta[i]。
当一个并行块被分区为多个条带时(即,当语法slice_width_in_tiles_minus1[i]和语法slice_height_in_tiles_minus1[i]两者都为0时),仅针对第一条带,变量isFirstSliceInTile的值为1,并且从第二条带起,变量isFirstSliceInTile的值为0。因此,可仅针对第一条带对语法tile_idx_delta[i]进行编码。当画面中的最后并行块利用多个条带来配置时,可不用信号发送tile_idx_delta[i]。
将如关于解码处理或编码处理所描述的实施例分别应用于编码处理或解码处理的操作可被包括在本公开的范围中。在本公开的范围内,操作按照预定顺序发生的实施例可被修改为操作按照与所述预定顺序不同的顺序发生的实施例。
虽然基于一系列操作或流程图描述了上述实施例,但是所述实施例不将方法的操作的时间序列顺序限制于此。在另一示例中,操作可根据需要同时执行或按照与其不同的顺序来执行。此外,在上述实施例中,构成框图的组件中的每个组件(例如,单元、模块等)可以以硬件装置或软件的形式来实现。多个组件可被彼此组合为可使用单个硬件装置或软件来实现的单个组件。可使用可经由各种计算机组件执行的程序指令来实现上述实施例。指令可被记录在计算机可读存储介质中。计算机可读存储介质可在其中单独地或彼此组合地包括程序指令、数据文件、数据结构等。计算机可读存储介质的示例包括磁介质(诸如硬盘、软盘和磁带)、光学存储介质(诸如CD-ROM、DVD)和磁光介质(诸如软光盘)以及被专门配置为在其中存储并执行程序指令的硬件装置(诸如ROM、RAM、闪存等)。硬件装置可被配置为如一个或更多个软件模块进行操作以执行根据本公开的处理,反之亦可。
【工业实用性】
本公开可被应用于对视频进行编码/解码的电子装置。
Claims (12)
1.一种对视频进行解码的方法,所述方法包括:
将当前画面分区为多个并行块;
对表示条带类型的分区信息进行解码,其中,所述分区信息表示矩形条带是否被应用;并且
当所述分区信息表示矩形条带被应用时,对条带的第一宽度信息和第一高度信息进行解码,
其中,当所述第一宽度信息指示一个并行块列并且所述第一高度信息指示一个并行块行时,基于包括该条带的并行块的高度确定是否对数量信息进行解析。
2.如权利要求1所述的方法,其中,当所述并行块利用一个编码树单元行来配置时,省略对所述数量信息的解析。
3.如权利要求2所述的方法,其中,当所述并行块利用多个编码树单元行来配置时,对所述数量信息进行解析,并且所述数量信息表示高度信息应被显式地用信号发送的条带的数量。
4.如权利要求3所述的方法,其中,针对所述并行块中包括的至少一个条带中的索引小于由所述数量信息指示的数量的第一条带,第二高度信息被解析。
5.如权利要求4所述的方法,其中,针对索引等于或大于由所述数量信息指示的数量的第二条带,第二高度信息不被解析。
6.如权利要求5所述的方法,其中,第二条带的高度被设置为以下项中的较小值:第二高度信息最后被解析的第三条带的高度或所述并行块中的剩余高度。
7.一种对视频进行编码的方法,所述方法包括:
将当前画面分区为多个并行块;
确定矩形条带是否被应用;并且
当矩形条带被应用时,对条带的第一宽度信息和第一高度信息进行编码,
其中,当所述第一宽度信息指示一个并行块列并且所述第一高度信息指示一个并行块行时,基于包括该条带的并行块的高度确定是否对数量信息进行编码。
8.如权利要求7所述的方法,其中,当所述并行块利用一个编码树单元行来配置时,省略对所述数量信息的编码。
9.如权利要求8所述的方法,其中,当所述并行块利用多个编码树单元行来配置时,对所述数量信息进行编码,并且所述数量信息表示高度信息应被显式地用信号发送的条带的数量。
10.如权利要求9所述的方法,其中,针对所述并行块中包括的至少一个条带中的索引小于由所述数量信息指示的数量的第一条带,第二高度信息被编码。
11.如权利要求10所述的方法,其中,针对索引等于或大于由所述数量信息指示的数量的第二条带,第二高度信息不被编码。
12.如权利要求11所述的方法,其中,第二条带的高度具有以下项中的较小值:第二高度信息最后被编码的第三条带的高度或所述并行块中的剩余高度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310127338.2A CN116112684A (zh) | 2019-10-09 | 2020-10-08 | 用于对图像信号进行编码/解码的方法及其装置 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20190124956 | 2019-10-09 | ||
KR10-2019-0124956 | 2019-10-09 | ||
KR20190125745 | 2019-10-11 | ||
KR10-2019-0125745 | 2019-10-11 | ||
PCT/KR2020/013796 WO2021071313A1 (ko) | 2019-10-09 | 2020-10-08 | 영상 신호 부호화/복호화 방법 및 이를 위한 장치 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310127338.2A Division CN116112684A (zh) | 2019-10-09 | 2020-10-08 | 用于对图像信号进行编码/解码的方法及其装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113056912A true CN113056912A (zh) | 2021-06-29 |
CN113056912B CN113056912B (zh) | 2023-03-24 |
Family
ID=75438000
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080005994.XA Active CN113056912B (zh) | 2019-10-09 | 2020-10-08 | 用于对图像信号进行编码/解码的方法及其装置 |
CN202310127338.2A Pending CN116112684A (zh) | 2019-10-09 | 2020-10-08 | 用于对图像信号进行编码/解码的方法及其装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310127338.2A Pending CN116112684A (zh) | 2019-10-09 | 2020-10-08 | 用于对图像信号进行编码/解码的方法及其装置 |
Country Status (7)
Country | Link |
---|---|
US (3) | US11431974B2 (zh) |
EP (2) | EP4044593A4 (zh) |
JP (2) | JP7418560B2 (zh) |
KR (1) | KR20210042257A (zh) |
CN (2) | CN113056912B (zh) |
WO (1) | WO2021071313A1 (zh) |
ZA (1) | ZA202110173B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8867854B2 (en) * | 2008-10-01 | 2014-10-21 | Electronics And Telecommunications Research Institute | Image encoder and decoder using undirectional prediction |
US11431974B2 (en) | 2019-10-09 | 2022-08-30 | Apple Inc. | Method for encoding/decoding image signal, and device for same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015058718A1 (en) * | 2013-10-25 | 2015-04-30 | Mediatek Inc. | Method and apparatus for controlling transmission of compressed picture according to transmission synchronization events |
WO2017043949A1 (ko) * | 2015-09-11 | 2017-03-16 | 주식회사 케이티 | 비디오 신호 처리 방법 및 장치 |
US20170150150A1 (en) * | 2015-11-19 | 2017-05-25 | Qualcomm Incorporated | System and methods for reducing slice boundary visual artifacts in display stream compression (dsc) |
US20170201753A1 (en) * | 2016-01-11 | 2017-07-13 | Qualcomm Incorporated | System and methods for calculating distortion in display stream compression (dsc) |
WO2017171438A1 (ko) * | 2016-03-30 | 2017-10-05 | 한국전자통신연구원 | 픽쳐 분할 정보를 사용하는 비디오의 부호화 및 복호화를 위한 방법 및 장치 |
CN109076216A (zh) * | 2016-03-30 | 2018-12-21 | 韩国电子通信研究院 | 使用画面划分信息对视频进行编码和解码的方法和设备 |
CN109952762A (zh) * | 2016-10-28 | 2019-06-28 | 韩国电子通信研究院 | 视频编码/解码方法和设备以及存储比特流的记录介质 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9800870B2 (en) * | 2011-09-16 | 2017-10-24 | Qualcomm Incorporated | Line buffer reduction for short distance intra-prediction |
EP3903277A4 (en) | 2018-12-28 | 2022-02-23 | Huawei Technologies Co., Ltd. | TILE GROUPS FOR SOFT TILE IN VIDEO CODING |
CN113940075A (zh) | 2019-06-03 | 2022-01-14 | 诺基亚技术有限公司 | 用于视频编码和解码的装置、方法和计算机程序 |
MX2021014418A (es) | 2019-06-03 | 2022-01-24 | Nokia Technologies Oy | Un aparato, un metodo y un programa informatico para codificacion y decodificacion de video. |
US11425376B2 (en) * | 2019-08-23 | 2022-08-23 | Apple Inc. | Image signal encoding/decoding method and apparatus therefor |
US11431974B2 (en) | 2019-10-09 | 2022-08-30 | Apple Inc. | Method for encoding/decoding image signal, and device for same |
-
2020
- 2020-10-08 US US17/282,757 patent/US11431974B2/en active Active
- 2020-10-08 EP EP20874149.6A patent/EP4044593A4/en active Pending
- 2020-10-08 KR KR1020200130455A patent/KR20210042257A/ko unknown
- 2020-10-08 WO PCT/KR2020/013796 patent/WO2021071313A1/ko unknown
- 2020-10-08 CN CN202080005994.XA patent/CN113056912B/zh active Active
- 2020-10-08 JP JP2022520686A patent/JP7418560B2/ja active Active
- 2020-10-08 EP EP24157908.5A patent/EP4346215A3/en active Pending
- 2020-10-08 CN CN202310127338.2A patent/CN116112684A/zh active Pending
-
2021
- 2021-12-08 ZA ZA2021/10173A patent/ZA202110173B/en unknown
-
2022
- 2022-08-23 US US17/894,120 patent/US12028522B2/en active Active
-
2023
- 2023-11-01 US US18/500,049 patent/US20240171739A1/en active Pending
-
2024
- 2024-01-09 JP JP2024001458A patent/JP2024045193A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015058718A1 (en) * | 2013-10-25 | 2015-04-30 | Mediatek Inc. | Method and apparatus for controlling transmission of compressed picture according to transmission synchronization events |
WO2017043949A1 (ko) * | 2015-09-11 | 2017-03-16 | 주식회사 케이티 | 비디오 신호 처리 방법 및 장치 |
US20170150150A1 (en) * | 2015-11-19 | 2017-05-25 | Qualcomm Incorporated | System and methods for reducing slice boundary visual artifacts in display stream compression (dsc) |
US20170201753A1 (en) * | 2016-01-11 | 2017-07-13 | Qualcomm Incorporated | System and methods for calculating distortion in display stream compression (dsc) |
WO2017171438A1 (ko) * | 2016-03-30 | 2017-10-05 | 한국전자통신연구원 | 픽쳐 분할 정보를 사용하는 비디오의 부호화 및 복호화를 위한 방법 및 장치 |
CN109076216A (zh) * | 2016-03-30 | 2018-12-21 | 韩国电子通信研究院 | 使用画面划分信息对视频进行编码和解码的方法和设备 |
CN109952762A (zh) * | 2016-10-28 | 2019-06-28 | 韩国电子通信研究院 | 视频编码/解码方法和设备以及存储比特流的记录介质 |
Also Published As
Publication number | Publication date |
---|---|
ZA202110173B (en) | 2022-07-27 |
US20230091844A1 (en) | 2023-03-23 |
EP4044593A1 (en) | 2022-08-17 |
CN113056912B (zh) | 2023-03-24 |
US20210400268A1 (en) | 2021-12-23 |
US11431974B2 (en) | 2022-08-30 |
EP4346215A2 (en) | 2024-04-03 |
US12028522B2 (en) | 2024-07-02 |
KR20210042257A (ko) | 2021-04-19 |
CN116112684A (zh) | 2023-05-12 |
EP4044593A4 (en) | 2023-07-19 |
EP4346215A3 (en) | 2024-04-24 |
JP7418560B2 (ja) | 2024-01-19 |
JP2022552653A (ja) | 2022-12-19 |
US20240171739A1 (en) | 2024-05-23 |
WO2021071313A1 (ko) | 2021-04-15 |
JP2024045193A (ja) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3989550A1 (en) | Method for encoding/decoding image signal and apparatus therefor | |
CN113039799B (zh) | 图像信号编码/解码方法及其设备 | |
CN112514380A (zh) | 用于对视频信号进行编码/解码的方法及其设备 | |
US11463695B2 (en) | Method for encoding/decoding image signal, and device for same | |
CN113170130A (zh) | 图像信号编码/解码方法及其装置 | |
CN113711596A (zh) | 图像信号编码/解码方法及其装置 | |
US11812018B2 (en) | Image signal encoding/decoding method and device therefor | |
US20240171739A1 (en) | Method for encoding/decoding image signal, and device for same | |
CN112470479A (zh) | 图像信号编码/解码方法及其装置 | |
EP4080883A1 (en) | Image signal encoding/decoding method and device therefor | |
CN113170164A (zh) | 用于对图像信号进行编码/解码的方法及其装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40057597 Country of ref document: HK |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220413 Address after: California, USA Applicant after: APPLE Inc. Address before: Gyeonggi Do city of South Korea Applicant before: Xris Co.,Ltd. |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |