CN113053349A - Active noise reduction system and method based on ant lion optimization algorithm - Google Patents

Active noise reduction system and method based on ant lion optimization algorithm Download PDF

Info

Publication number
CN113053349A
CN113053349A CN202110272161.6A CN202110272161A CN113053349A CN 113053349 A CN113053349 A CN 113053349A CN 202110272161 A CN202110272161 A CN 202110272161A CN 113053349 A CN113053349 A CN 113053349A
Authority
CN
China
Prior art keywords
ant
lion
active noise
ant lion
ants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110272161.6A
Other languages
Chinese (zh)
Other versions
CN113053349B (en
Inventor
李敏阳
伊海珂
古强
柳飏
黎晶
梁启斌
余旷达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Wuqi Microelectronics Co Ltd
Original Assignee
Shanghai Wuqi Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Wuqi Microelectronics Co Ltd filed Critical Shanghai Wuqi Microelectronics Co Ltd
Priority to CN202110272161.6A priority Critical patent/CN113053349B/en
Publication of CN113053349A publication Critical patent/CN113053349A/en
Application granted granted Critical
Publication of CN113053349B publication Critical patent/CN113053349B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17817Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the error signals, i.e. secondary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3012Algorithms
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3026Feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3027Feedforward
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3028Filtering, e.g. Kalman filters or special analogue or digital filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2203/00Details of circuits for transducers, loudspeakers or microphones covered by H04R3/00 but not provided for in any of its subgroups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Feedback Control In General (AREA)

Abstract

The invention relates to the technical field of active noise control, in particular to an active noise reduction system and method based on ant lion optimization algorithm, wherein the method comprises the following steps: s100: initializing the positions of ants and ant lions as filter coefficient vectors; s200: determining an expression of a fitness function according to an active noise control system; s300: calculating the fitness of all initialized ants and ant lions, and finding the ant lion with the best fitness as an initial elite ant lion; s400: carrying out random migration of ants; s500: calculating the fitness of all ants, and updating ant lion positions; s600: updating the position of the elite ant lion; s700: and judging whether the iterative convergence condition is met, and if the iterative convergence condition is met, taking the position of the elite ant lion as an optimal filter coefficient vector. The active noise reduction system and method based on the ant lion optimization algorithm have the advantages of global optimization, high convergence precision and good robustness, and can effectively improve the active noise reduction performance.

Description

Active noise reduction system and method based on ant lion optimization algorithm
Technical Field
The invention relates to the technical field of active noise control, in particular to an active noise reduction system and method based on an ant lion optimization algorithm.
Background
With the continuous development of industrialization, noise pollution gradually becomes an important problem affecting people's life, and aiming at noise problem treatment, the noise problem treatment can be mainly divided into two categories: active noise reduction and passive noise reduction. Passive noise reduction has a poor ability to handle low frequency noise, while active noise reduction can effectively suppress low frequency noise by means of destructive interference. With the increasing sophistication of theoretical and technical solutions to various problems, the trend in ANC is towards more extensive algorithms to suppress complex noise patterns, including solutions to three-dimensional spatial and time-varying signals, etc. Guicking (1988,1991) described a growing interest in it early on, and there have been many research efforts on ANC solutions in the market today.
The ant lion Algorithm (ALO) is a biomimetic optimization algorithm. The ALO algorithm simulates the hunting mechanism of ant lions in nature. The lion larvae dig a conical hole in the sand along a circular path and throw the sand with their large chin. After digging the trap, the larvae will hide at the conical bottom, waiting for the insects/ants to get trapped in the hole. Once a lion realizes that a prey is in a trap, it will attempt to catch the prey. However, insects are usually not immediately caught and will attempt to escape the trap. In this case, the lion will intelligently throw the sand towards the edge of the hole, allowing the prey to slide to the bottom of the hole. When the prey is caught by the lower jaw of the ant lion, it is pulled underground to eat. When the ant lion eats the prey, the left vegetables can be thrown out of the hole to prepare for the next hunting.
The optimization of the filter parameters of ANC is the key to realize better noise reduction performance, and the existing related technologies have the problems of poor precision and the like, so that a new noise reduction optimization algorithm is urgently needed to improve the active noise reduction performance.
Disclosure of Invention
The invention provides an active noise reduction system and method based on the ant lion optimization algorithm, which have the advantages of global optimization, less adjusting parameters, high convergence precision and good robustness and can effectively improve the active noise reduction performance.
In order to solve the technical problem, the present application provides the following technical solutions:
the active noise reduction method based on the ant lion optimization algorithm comprises the following steps:
s100: initializing the positions of ants and ant lions as filter coefficient vectors;
s200: determining an expression of a fitness function according to an active noise control system;
s300: calculating the fitness of all initialized ants and ant lions, and finding the ant lion with the best fitness as an initial elite ant lion;
s400: realizing the random walk of ants according to a roulette strategy, and updating the positions of the ants;
s500: calculating the fitness of all ants, and updating the positions of the ant lions into the positions of ants with better fitness;
s600: updating the position of the elite ant lion;
s700: and judging whether the iterative convergence condition is met, and if the iterative convergence condition is met, taking the position of the elite ant lion as an optimal filter coefficient vector.
Further, the S400 includes:
s400-1: selecting one ant lion for each ant through a roulette strategy;
s400-2: updating the minimum value of the ith dimension variable in the t iteration according to the position of the ant lion according to the following formula
Figure BDA0002974752010000021
And the maximum value of the ith variable at the t iteration
Figure BDA0002974752010000022
Figure BDA0002974752010000023
Figure BDA0002974752010000024
Wherein, ctIs the minimum value of all variables in the t iteration; dtThe maximum value of all variables in the t iteration;
Figure BDA0002974752010000025
the position of the jth ant lion in the t iteration; i is a ratio of
Figure BDA0002974752010000026
T is the maximum iteration number, and omega is a constant;
s400-3: position the ith ant in the t iteration
Figure BDA0002974752010000027
Random walks around the ant lion and elite ant lion according to the following formula:
Figure BDA0002974752010000028
wherein, aiIs the minimum value of the i-dimension variable random walk, biThe maximum value of the random walk of the ith dimension variable is obtained;
s400-4: and finally, averaging and updating the positions of the ants according to the following formula:
Figure BDA0002974752010000029
wherein the content of the first and second substances,
Figure BDA00029747520100000210
to randomly walk around a lion selected according to the roulette strategy in the t-th iteration,
Figure BDA00029747520100000211
is a random walk around the elite lion in the t-th iteration.
Further, the S500 includes:
s500-1: and judging the adaptability of the ants according to the mean square error value calculated by the ant position vector, wherein the smaller the mean square error value is, the higher the adaptability of the ants is, and when the adaptability of the ants is higher than that of the ant lion selected by the ant lion through the roulette strategy, replacing the ant lion position.
Further, the S700 further includes: when the loop does not meet the iteration requirement, a jump-out mechanism is applied to the ant lions near the elite ant lions, and S400, S500, and S600 are repeated.
Further, the jump-out mechanism is:
Figure BDA0002974752010000031
wherein the content of the first and second substances,
Figure BDA0002974752010000032
the value of the ith dimension component of the jth ant lion in the t iteration is rand which is a random number between 0 and 1, d is the distance from the elite ant lion to the jth ant lion, and d is0Is the trip threshold.
Further, the S600 includes:
s600-1, the fitness of all ant lions under the current iteration is compared, the ant lions with the highest fitness are compared with the elite ant lions, and if the fitness is higher than the elite ant lions, the positions of the elite ant lions are replaced.
Further, each ant in S400-3 needs to calculate two random walks for position update, one around elite lion and the other around lion selected according to roulette strategy.
Further, the application also discloses an active noise reduction system based on the ant lion optimization algorithm, and the active noise reduction method based on the ant lion optimization algorithm is used.
The technical scheme of the invention has the beneficial effects that:
in the technical scheme of the invention, the ant lion optimization algorithm and the active noise reduction algorithm are combined, the leap-out mechanism of the algorithm is improved innovatively, meanwhile, the roulette strategy and the elite strategy in the algorithm ensure the diversity of the population and the optimization performance of the algorithm, and the algorithm has the advantages of global optimization, less adjusting parameters, high convergence precision and good robustness, and can effectively improve the active noise reduction performance.
Drawings
FIG. 1 is a flowchart of an algorithm in an embodiment of the ant-lion optimization algorithm-based active noise reduction system and method of the present invention;
FIG. 2 is a diagram of a feedforward active noise control system in an embodiment of the ant-lion optimization algorithm-based active noise reduction system and method of the present invention;
fig. 3 is a diagram of a feedback active noise control system in an embodiment of the ant-lion optimization algorithm-based active noise reduction system and method of the present invention.
Detailed Description
The following is further detailed by way of specific embodiments:
the active noise reduction system based on the ant lion optimization algorithm of the embodiment uses an active noise reduction method based on the ant lion optimization algorithm. The system comprises a feedforward noise reduction part and a feedback noise reduction part, as shown in fig. 2, a noise signal generated by a noise source is x (n), one path passes through a primary path P (z), the other path passes through a secondary path G (z) and a feedforward filter W (z). The value of W (z) is controlled by ant lion optimization algorithm (ALO algorithm) to make the output error signal e (n) as close to 0 as possible, namely two signals are superposed to generate destructive interference, thereby realizing the feedforward noise reduction.
As shown in fig. 3, the noise signal x (n) generated by the noise source passes through the primary channel p (z) and is superimposed with the other signal to obtain the error signal e (n). Meanwhile, the error signal is superposed with the noise signal after passing through the primary channel P (z) through feedback and passing through the secondary channel G (z) and the feedforward filter W (z), and the value of W (z) is controlled through the ant lion optimization algorithm (ALO algorithm), so that the output error signal e (n) is close to 0 as much as possible, namely two signals are superposed to generate destructive interference, and thus, feedback noise reduction is realized.
As shown in fig. 1, the active noise reduction system and method based on the ant lion optimization algorithm of the embodiment includes the following steps:
s80: establishing an active noise control system based on an active noise reduction principle; the method specifically comprises the following steps:
s80-1: establishing a feedforward active noise control system, wherein the feedforward active noise control system comprises a primary channel response P (z), a secondary channel response G (z) and a filter response W (z), and a noise signal x (n) is synthesized into an error signal e (n) after passing through the primary channel and the secondary channel added with a filter respectively and is used as a fitness function of the lion optimization algorithm ALO. The primary channel response p (z) represents the acoustic transfer equation from the noise source to the human ear (when the headset is worn), and the secondary channel response g (z) refers to the acoustic transfer equation from the headset speaker to the human ear.
S80-2: establishing a feedback active noise control system which comprises a primary channel response P (z), a secondary channel response G (z) and a filter response W (z), wherein a synthesized error signal e (n) is used as a fitness function of the ant lion optimization algorithm ALO and is also used as a feedback signal, and the feedback signal is synthesized with a noise signal passing through a primary channel after passing through a secondary channel added with a filter.
S90: determining a fitness function expression of the ant lion optimization algorithm according to a transfer function of the active noise control system and an error signal mean square value; in this embodiment, the mean square value of the error signal is:
Figure BDA0002974752010000041
where N represents the number of sampling points, 200 in this embodiment, ek(n) represents the mean square error value of the k-th sample point.
S100: the positions of n ants and m ant lions are initialized as filter coefficient vectors, where n and m are 300 and 100, respectively, in this embodiment.
S200: determining an expression of a fitness function according to the active noise control system, wherein the representation of the error signal in the frequency domain is:
E(z)=X(z)P(z)-G(z)W(z),FF
Figure BDA0002974752010000051
where x (z) is a representation of the noise signal in the frequency domain.
S300: calculating the fitness of all initialized ants and ant lions, and finding the ant lion with the best fitness as the initial elite ant lion Antlionelite
S400: and realizing the random walk of ants according to the roulette strategy, and updating the positions of the ants.
In this embodiment, S400 specifically includes:
s400-1: one ant lion is selected for each ant through a roulette strategy.
S400-2: updating the minimum value of the ith dimension variable in the t iteration according to the position of the ant lion according to the following formula
Figure BDA0002974752010000052
And the maximum value of the ith variable at the t iteration
Figure BDA0002974752010000053
Figure BDA0002974752010000054
Figure BDA0002974752010000055
Wherein, ctIs the minimum value of all variables in the t iteration; dtThe maximum value of all variables in the t iteration;
Figure BDA0002974752010000056
the position of the jth ant lion in the t iteration; i is a ratio of
Figure BDA0002974752010000057
(T is the maximum number of iterations, 500 in this example; ω is a constant defined by the current iteration, T in this example>ω is 2, T at 0.1T>ω is 3 at 0.5T, T>ω is 4, T at 0.75T>ω is 5 at 0.9T, T>ω 6 at 0.95T).
S400-3: position the ith ant in the t iteration
Figure BDA0002974752010000058
The random walk around the ant lion and elite ant lion was as follows.
Figure BDA0002974752010000059
Wherein, aiIs the minimum value of the i-dimension variable random walk, biIs the maximum value of the random walk of the ith dimension variable. In S400-3, each ant needs to compute two random walks to update the location, one around elite lion and the other around lion selected according to roulette strategy.
S400-4: and finally, averaging according to the following formula to update the positions of the ants.
Figure BDA0002974752010000061
Wherein the content of the first and second substances,
Figure BDA0002974752010000062
to randomly walk around a lion selected according to the roulette strategy in the t-th iteration,
Figure BDA0002974752010000063
is a random walk around the elite lion in the t-th iteration.
S500: and calculating the fitness of all ants, and updating the positions of the ant lions into the positions of the ants with better fitness. And judging the adaptability of the ants according to the mean square error value calculated by the ant position vector, wherein the smaller the mean square error value is, the higher the adaptability of the ants is, and when the adaptability of the ants is higher than that of the ant lion selected by the ant lion through the roulette strategy, replacing the ant lion position.
S600: the location of the elite lion is updated. Specifically, the fitness of all the ant lions under the current iteration is compared, the ant lions with the highest fitness are compared with the elite ant lions, and if the fitness is higher than the elite ant lions, the positions of the elite ant lions are replaced.
S700: when the iterative convergence condition is met, taking the position of the elite ant lion as an optimal filter coefficient vector; when the loop does not satisfy the iterative convergence condition, a jump-out mechanism is applied to the ant lions near the elite ant lions, and S400, S500, and S600 are repeated. Specifically, in this embodiment, the exit mechanism is:
Figure BDA0002974752010000064
wherein the content of the first and second substances,
Figure BDA0002974752010000065
the value of the ith dimension component for the jth ant lion at the tth iteration; rand is a random number between 0 and 1, and d is the distance from the Elite lion to the jth lion; d0To jump out of the threshold, it is 1.50 in this embodiment. In the ant lion algorithm, the positions of ants are updated according to the positions of ant lions, and the positions of ant lions are changed along with the more optimization of the positions of the ants, so that the global search capability is insufficient, ANC (anchor control) may cause the noise reduction effect to be unsatisfactory, a jump-out mechanism is added to the deficiency, the diversity of populations and the optimization performance of the algorithm are ensured by combining a roulette strategy and an elite strategy in the algorithm, and the ant lion algorithm has the advantages of global optimization, few adjusting parameters, high convergence precision and good robustness, and can be used for solving the problems of poor overall search performance, poor global search performance and the likeThe active noise reduction performance can be effectively improved.
The above are merely examples of the present invention, and the present invention is not limited to the field related to this embodiment, and the common general knowledge of the known specific structures and characteristics in the schemes is not described herein too much, and those skilled in the art can know all the common technical knowledge in the technical field before the application date or the priority date, can know all the prior art in this field, and have the ability to apply the conventional experimental means before this date, and those skilled in the art can combine their own ability to perfect and implement the scheme, and some typical known structures or known methods should not become barriers to the implementation of the present invention by those skilled in the art in light of the teaching provided in the present application. It should be noted that, for those skilled in the art, without departing from the structure of the present invention, several changes and modifications can be made, which should also be regarded as the protection scope of the present invention, and these will not affect the effect of the implementation of the present invention and the practicability of the patent. The scope of the claims of the present application shall be determined by the contents of the claims, and the description of the embodiments and the like in the specification shall be used to explain the contents of the claims.

Claims (8)

1. The active noise reduction method based on the ant lion optimization algorithm is characterized by comprising the following steps: the method comprises the following steps:
s100: initializing the positions of ants and ant lions as filter coefficient vectors;
s200: determining an expression of a fitness function according to an active noise control system;
s300: calculating the fitness of all initialized ants and ant lions, and finding the ant lion with the best fitness as an initial elite ant lion;
s400: realizing the random walk of ants according to a roulette strategy, and updating the positions of the ants;
s500: calculating the fitness of all ants, and updating the positions of the ant lions into the positions of ants with better fitness;
s600: updating the position of the elite ant lion;
s700: and judging whether the iterative convergence condition is met, and if the iterative convergence condition is met, taking the position of the elite ant lion as an optimal filter coefficient vector.
2. The ant lion optimization algorithm-based active noise reduction system and method according to claim 1, wherein: the S400 includes:
s400-1: selecting one ant lion for each ant through a roulette strategy;
s400-2: updating the minimum value of the ith dimension variable in the t iteration according to the position of the ant lion according to the following formula
Figure FDA0002974752000000011
And the maximum value of the ith variable at the t iteration
Figure FDA0002974752000000012
Figure FDA0002974752000000013
Figure FDA0002974752000000014
Wherein, ctIs the minimum value of all variables in the t iteration; dtThe maximum value of all variables in the t iteration;
Figure FDA0002974752000000015
the position of the jth ant lion in the t iteration; i is a ratio of
Figure FDA0002974752000000016
T is the maximum iteration number, and omega is a constant;
s400-3: position the ith ant in the t iteration
Figure FDA0002974752000000017
Random walks around the ant lion and elite ant lion according to the following formula:
Figure FDA0002974752000000018
wherein, aiIs the minimum value of the i-dimension variable random walk, biThe maximum value of the random walk of the ith dimension variable is obtained;
s400-4: and finally, averaging and updating the positions of the ants according to the following formula:
Figure FDA0002974752000000021
wherein the content of the first and second substances,
Figure FDA0002974752000000022
to randomly walk around a lion selected according to the roulette strategy in the t-th iteration,
Figure FDA0002974752000000023
is a random walk around the elite lion in the t-th iteration.
3. The ant lion optimization algorithm-based active noise reduction system and method according to claim 2, wherein: the S500 includes:
s500-1: and judging the adaptability of the ants according to the mean square error value calculated by the ant position vector, wherein the smaller the mean square error value is, the higher the adaptability of the ants is, and when the adaptability of the ants is higher than that of the ant lion selected by the ant lion through the roulette strategy, replacing the ant lion position.
4. The ant lion optimization algorithm-based active noise reduction system and method according to claim 3, wherein: the S700 further includes: when the loop does not meet the iteration requirement, a jump-out mechanism is applied to the ant lions near the elite ant lions, and S400, S500, and S600 are repeated.
5. The ant lion optimization algorithm-based active noise reduction system and method according to claim 4, wherein: the jump-out mechanism is as follows:
Figure FDA0002974752000000024
wherein the content of the first and second substances,
Figure FDA0002974752000000025
the value of the ith dimension component of the jth ant lion in the t iteration is rand which is a random number between 0 and 1, d is the distance from the elite ant lion to the jth ant lion, and d is0Is the trip threshold.
6. The ant lion optimization algorithm-based active noise reduction system and method according to claim 5, wherein: the S600 includes:
s600-1, the fitness of all ant lions under the current iteration is compared, the ant lions with the highest fitness are compared with the elite ant lions, and if the fitness is higher than the elite ant lions, the positions of the elite ant lions are replaced.
7. The ant lion optimization algorithm-based active noise reduction system and method according to claim 6, wherein: in the step S400-3, each ant needs to calculate two random walks to update the position, one is a random walk around elite lion, and the other is a random walk around lion selected according to the roulette strategy.
8. An active noise reduction system based on ant lion optimization algorithm is characterized in that: an active noise reduction method based on the ant lion optimization algorithm according to any one of claims 1-7 is used.
CN202110272161.6A 2021-03-12 2021-03-12 Active noise reduction method based on ant lion optimization algorithm Active CN113053349B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110272161.6A CN113053349B (en) 2021-03-12 2021-03-12 Active noise reduction method based on ant lion optimization algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110272161.6A CN113053349B (en) 2021-03-12 2021-03-12 Active noise reduction method based on ant lion optimization algorithm

Publications (2)

Publication Number Publication Date
CN113053349A true CN113053349A (en) 2021-06-29
CN113053349B CN113053349B (en) 2022-01-04

Family

ID=76512426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110272161.6A Active CN113053349B (en) 2021-03-12 2021-03-12 Active noise reduction method based on ant lion optimization algorithm

Country Status (1)

Country Link
CN (1) CN113053349B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026438A1 (en) * 2001-06-22 2003-02-06 Trustees Of Dartmouth College Method for tuning an adaptive leaky LMS filter
CN103327082A (en) * 2013-06-07 2013-09-25 同济大学 Multiple ant colony evacuation optimizing exchanging method
CN109145464A (en) * 2018-08-28 2019-01-04 暨南大学 Merge the Structural Damage Identification of multiple target ant lion optimization and the sparse regularization of mark
CN110487519A (en) * 2019-06-28 2019-11-22 暨南大学 Structural Damage Identification based on ALO-INM and weighting trace norm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030026438A1 (en) * 2001-06-22 2003-02-06 Trustees Of Dartmouth College Method for tuning an adaptive leaky LMS filter
CN103327082A (en) * 2013-06-07 2013-09-25 同济大学 Multiple ant colony evacuation optimizing exchanging method
CN109145464A (en) * 2018-08-28 2019-01-04 暨南大学 Merge the Structural Damage Identification of multiple target ant lion optimization and the sparse regularization of mark
CN110487519A (en) * 2019-06-28 2019-11-22 暨南大学 Structural Damage Identification based on ALO-INM and weighting trace norm

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SHI, LJ (SHI, LUOJIE); WEN, J (WEN, JUAN); 等: "Dynamic Characteristics of a Gear System with Double-Teeth Spalling Fault and Its Fault Feature Analysis", 《APPLIED SCIENCES-BASEL》 *
于建芳等: "基于柯西变异的蚁狮优化算法", 《微电子学与计算机》 *
张振兴等: "自适应Tent混沌搜索的蚁狮优化算法", 《哈尔滨工业大学学报》 *
赵小国,刘丁,景坤雷: "融合改进蚁狮算法和T-S模糊模型的噪声非线性系统辨识", 《控制与决策》 *
陈承滨;余岭;潘楚东;陈泽鹏: "基于蚁狮优化算法与迹稀疏正则化的结构损伤识别", 《振动与冲击》 *

Also Published As

Publication number Publication date
CN113053349B (en) 2022-01-04

Similar Documents

Publication Publication Date Title
Saxena et al. Ant lion optimization algorithm to control side lobe level and null depths in linear antenna arrays
Saxena et al. Optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm
CN109302262A (en) A kind of communication anti-interference method determining Gradient Reinforcement Learning based on depth
Yang A new metaheuristic bat-inspired algorithm
CN110232212B (en) Antenna design optimization method and system based on bat algorithm
JP2008204437A5 (en)
Hahn et al. Emergent escape-based flocking behavior using multi-agent reinforcement learning
JP2008204437A (en) Neural network controller with fixed long-term and adaptive short-term memory
CN113053349B (en) Active noise reduction method based on ant lion optimization algorithm
CN107016436A (en) A kind of mixing whale algorithm of bionical policy optimization
Ghalia Particle swarm optimization with an improved exploration-exploitation balance
CN113053348B (en) Active noise control method and system based on wolf algorithm
Alabajee et al. Parameter tuning of software effort estimation models using antlion optimization
Mishra et al. Improved environmental adaption method for solving optimization problems
CN116338599A (en) Interference pattern and working parameter combined optimization method for multifunctional radar
Datta et al. A comparative study of optimization techniques in adaptive antenna array processing: The bacteria-foraging algorithm and particle-swarm optimization
Guaman et al. Metaheuristic optimization algorithms of swarm intelligence in patch antenna design
KR101773481B1 (en) Phased array antenna system
Banik et al. Secure route planning using dynamic games with stopping states
Deghbouch et al. Dynamic deployment of wireless sensor networks using hybrid ant lion optimizer and Tabu search
Rajagopalan et al. Factors that affect the evolution of complex cooperative behavior
Das et al. An approach to optimize FIR filter coefficients using GA, PSO and BAT algorithm and their comparative analysis
Lee et al. A novel evolutionary learning technique for multi-objective array antenna optimization
Tripathi et al. Optimization of lms algorithm for adaptive filtering using global optimization techniques
CN112989700A (en) Active noise reduction optimization method and system based on artificial immune algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant