CN113052932A - 基于空间及时间信息的w型网络结构的dce-mri图像生成方法 - Google Patents
基于空间及时间信息的w型网络结构的dce-mri图像生成方法 Download PDFInfo
- Publication number
- CN113052932A CN113052932A CN202110274871.2A CN202110274871A CN113052932A CN 113052932 A CN113052932 A CN 113052932A CN 202110274871 A CN202110274871 A CN 202110274871A CN 113052932 A CN113052932 A CN 113052932A
- Authority
- CN
- China
- Prior art keywords
- mri
- network structure
- dimensional
- dce
- images
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013535 dynamic contrast enhanced MRI Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000012549 training Methods 0.000 claims abstract description 32
- 238000002595 magnetic resonance imaging Methods 0.000 claims abstract description 29
- 239000002872 contrast media Substances 0.000 claims abstract description 26
- 238000013528 artificial neural network Methods 0.000 claims abstract description 25
- 238000002347 injection Methods 0.000 claims abstract description 17
- 239000007924 injection Substances 0.000 claims abstract description 17
- 239000000284 extract Substances 0.000 claims abstract description 7
- 230000008602 contraction Effects 0.000 claims description 14
- 230000001174 ascending effect Effects 0.000 claims description 8
- 210000005075 mammary gland Anatomy 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 8
- 238000013527 convolutional neural network Methods 0.000 description 4
- 230000004066 metabolic change Effects 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229940039231 contrast media Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 238000013184 cardiac magnetic resonance imaging Methods 0.000 description 1
- 238000011976 chest X-ray Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- LGMLJQFQKXPRGA-VPVMAENOSA-K gadopentetate dimeglumine Chemical compound [Gd+3].CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O LGMLJQFQKXPRGA-VPVMAENOSA-K 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009325 pulmonary function Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/065—Analogue means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
- G06T2207/10096—Dynamic contrast-enhanced magnetic resonance imaging [DCE-MRI]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Neurology (AREA)
- Geometry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110274871.2A CN113052932A (zh) | 2021-03-15 | 2021-03-15 | 基于空间及时间信息的w型网络结构的dce-mri图像生成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110274871.2A CN113052932A (zh) | 2021-03-15 | 2021-03-15 | 基于空间及时间信息的w型网络结构的dce-mri图像生成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113052932A true CN113052932A (zh) | 2021-06-29 |
Family
ID=76512615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110274871.2A Pending CN113052932A (zh) | 2021-03-15 | 2021-03-15 | 基于空间及时间信息的w型网络结构的dce-mri图像生成方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113052932A (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104077791A (zh) * | 2014-05-22 | 2014-10-01 | 南京信息工程大学 | 一种多幅动态对比度增强核磁共振图像联合重建方法 |
CN111192245A (zh) * | 2019-12-26 | 2020-05-22 | 河南工业大学 | 一种基于U-Net网络的脑肿瘤分割网络及分割方法 |
CN111340816A (zh) * | 2020-03-23 | 2020-06-26 | 沈阳航空航天大学 | 一种基于双u型网络框架的图像分割方法 |
-
2021
- 2021-03-15 CN CN202110274871.2A patent/CN113052932A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104077791A (zh) * | 2014-05-22 | 2014-10-01 | 南京信息工程大学 | 一种多幅动态对比度增强核磁共振图像联合重建方法 |
CN111192245A (zh) * | 2019-12-26 | 2020-05-22 | 河南工业大学 | 一种基于U-Net网络的脑肿瘤分割网络及分割方法 |
CN111340816A (zh) * | 2020-03-23 | 2020-06-26 | 沈阳航空航天大学 | 一种基于双u型网络框架的图像分割方法 |
Non-Patent Citations (1)
Title |
---|
马明明 等: "U-Net深度学习模型对DCE-MRI上乳腺肿块自动分割和定位的准确性分析", 放射学实践, vol. 35, no. 8, 20 August 2020 (2020-08-20), pages 1030 - 1036 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11806189B2 (en) | Three-dimensional segmentation from two-dimensional intracardiac echocardiography imaging | |
Lyu et al. | Super-resolution MRI through deep learning | |
Banerjee et al. | A completely automated pipeline for 3D reconstruction of human heart from 2D cine magnetic resonance slices | |
Xia et al. | Super-resolution of cardiac MR cine imaging using conditional GANs and unsupervised transfer learning | |
Frakes et al. | Application of an adaptive control grid interpolation technique to morphological vascular reconstruction | |
Qiu et al. | Medical image super-resolution reconstruction algorithms based on deep learning: A survey | |
Al Khalil et al. | On the usability of synthetic data for improving the robustness of deep learning-based segmentation of cardiac magnetic resonance images | |
Singh et al. | Medical image generation using generative adversarial networks | |
Yan et al. | Cine MRI analysis by deep learning of optical flow: Adding the temporal dimension | |
Zhou et al. | 3D segmentation guided style-based generative adversarial networks for pet synthesis | |
WO2022163402A1 (ja) | 学習済みモデルの生成方法、機械学習システム、プログラムおよび医療画像処理装置 | |
CN114049334B (zh) | 一种以ct图像为输入的超分辨率mr成像方法 | |
Zhao et al. | Medical images super resolution reconstruction based on residual network | |
Sander et al. | Autoencoding low-resolution MRI for semantically smooth interpolation of anisotropic MRI | |
Wang et al. | Brain MR image super-resolution using 3D feature attention network | |
Chatterjee et al. | Ddos-unet: Incorporating temporal information using dynamic dual-channel unet for enhancing super-resolution of dynamic mri | |
Poonkodi et al. | 3D-MedTranCSGAN: 3D medical image transformation using CSGAN | |
Xu et al. | Deep adaptive blending network for 3D magnetic resonance image denoising | |
Wang et al. | MSE-Fusion: Weakly supervised medical image fusion with modal synthesis and enhancement | |
GB2576945A (en) | Image processing methods | |
Yu et al. | Cardiac LGE MRI segmentation with cross-modality image augmentation and improved U-Net | |
Alogna et al. | Brain magnetic resonance imaging generation using generative adversarial networks | |
CN113052932A (zh) | 基于空间及时间信息的w型网络结构的dce-mri图像生成方法 | |
Nezhad et al. | Generalizable deep mri reconstruction with cross-site data synthesis | |
Qayyum et al. | Transforming Heart Chamber Imaging: Self-Supervised Learning for Whole Heart Reconstruction and Segmentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240613 Address after: Room 1702, Building 6, Dongfang Sunshine City, Huangmei Town, Huangmei County, Huanggang City, Hubei Province, 435500 (self declared) Applicant after: Hubei Zhihui Chuangxiang Technology Co.,Ltd. Country or region after: China Address before: 110136, Liaoning, Shenyang moral and Economic Development Zone, No. 37 South Avenue moral Applicant before: SHENYANG AEROSPACE University Country or region before: China |