CN113052255B - 一种电抗器智能检测和定位的方法 - Google Patents

一种电抗器智能检测和定位的方法 Download PDF

Info

Publication number
CN113052255B
CN113052255B CN202110369844.3A CN202110369844A CN113052255B CN 113052255 B CN113052255 B CN 113052255B CN 202110369844 A CN202110369844 A CN 202110369844A CN 113052255 B CN113052255 B CN 113052255B
Authority
CN
China
Prior art keywords
reactor
model
data
training
convolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110369844.3A
Other languages
English (en)
Other versions
CN113052255A (zh
Inventor
梁川
高俊丽
朱怡良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Tianbo Yunke Optoelectronics Co ltd
Original Assignee
Zhejiang Tianbo Yunke Optoelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Tianbo Yunke Optoelectronics Co ltd filed Critical Zhejiang Tianbo Yunke Optoelectronics Co ltd
Priority to CN202110369844.3A priority Critical patent/CN113052255B/zh
Publication of CN113052255A publication Critical patent/CN113052255A/zh
Application granted granted Critical
Publication of CN113052255B publication Critical patent/CN113052255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明公开了一种电抗器智能检测和定位的方法,包括下列步骤:S1电抗器共分成四个类别;S2针对以上四种电抗器类别,每个类别筛选2,500条数据进行标注,生成4*2,500条数据,作为数据集;S3搭建基于Faster RCNN的电抗器目标检测网络模型,采用Tensorflow框架来训练深度学习模型,选择MobilenetV1作为的主干特征提取网络;S4预先训练的MobilenetV1模型在数据集上进行了500次迭代,采用Early stopping技术防止模型过拟合;S5在网络训练之前,输入网络的温度数据进行标准化处理;S6最后得到电抗器设备的目标检测模型。本发明对于3,000条测试数据,相同实验环境和网络结构,对电抗器单个类别(未进行4分类)的检测结果:MAP=82%,平均IOU=64.2%,而对电抗器进行4分类后的检测结果:MAP=98%,平均IOU=82.3%,提高了电抗器检测的准确率。

Description

一种电抗器智能检测和定位的方法
技术领域
本发明涉及电力行业技术领域,具体为一种电抗器智能检测和定位的方法。
背景技术
目前电力设备检测的方法,主要是以红外图像为研究基础,研究电力设备异常发热的问题。由于红外图片包含多种伪彩色,拍摄环境复杂导致的被拍摄设备干扰严重、训练数据类型少等问题,目前现有的方法存在检测准确率低、模型泛化能力较差等缺陷。
电抗器的精准定位与油枕的异常检测、结构划分有着紧密的联系,因此急需研究一种电抗器智能检测和定位的方法来解决上述存在的问题。
发明内容
本发明的目的在于提供一种电抗器智能检测和定位的方法,以解决上述背景技术中提出的目前现有的方法存在检测准确率低、模型泛化能力较差等缺陷的问题。
为实现上述目的,本发明提供如下技术方案:一种电抗器智能检测和定位的方法,包括下列步骤:S1电抗器共分成四个类别,将电抗器分为两大类:单个电抗器和电抗器组,然后将单个电抗器大类根据形状,即圆柱形、方形、电抗器上方是否带盖,分为三个类别;S2针对以上四种电抗器类别,每个类别筛选2,500条数据进行标注,生成4*2,500条数据,作为数据集;S3搭建基于Faster RCNN的电抗器目标检测网络模型,采用Tensorflow框架来训练的深度学习模型,选择MobilenetV1作为的主干特征提取网络,并在ImageNet上进行了预训练;S4预先训练的MobilenetV1模型在数据集上进行了500次迭代,Batch size大小取16,学习率设置为1e-3,采用Early stopping技术防止模型过拟合;S5在网络训练之前,输入网络的温度数据进行标准化处理;S6最后得到电抗器设备的目标检测模型。
优选的,其中所述Tensorflow框架中Tensor代表传递的数据为张量,Flow代表使用计算图进行运算,数据流图用结点和边组成的有向图来描述数学运算。
优选的,所述结点用来表示施加的数学操作,但也可以表示数据输入的起点和输出的终点,或者是读取/写入持久变量的终点,边表示结点之间的输入/输出关系。
优选的,所述MobilenetV1模型是一种基于深度可分离卷积的模型,深度可分离卷积是一种将标准卷积分解成深度卷积以及一个1x1的卷积即逐点卷积,对于Mobilenet而言,深度卷积针对每个单个输入通道应用单个滤波器进行滤波,然后逐点卷积应用1x1的卷积操作来结合所有深度卷积得到的输出。
优选的,所述标准卷积一步即对所有的输入进行结合得到新的一系列输出,深度可分离卷积将其分成了两步,针对每个单独层进行滤波然后下一步即结合。
优选的,所述Early stopping技术中主要步骤是将原始的训练数据集划分成训练集和验证集,只在训练集上进行训练,并每个一个周期计算模型在验证集上的误差,当模型在验证集上的误差比上一次训练结果差的时候停止训练,使用上一次迭代结果中的参数作为模型的最终参数。
与现有技术相比,本发明的有益效果是:
通过将电抗器共分成四个类别,针对以上四种电抗器类别,每个类别筛选2,500条数据进行标注,生成4*2,500条数据,作为数据集,搭建基于Faster RCNN的电抗器目标检测网络模型,采用Tensorflow框架来训练的深度学习模型,选择MobilenetV1作为的主干特征提取网络,并在ImageNet上进行了预训练,预先训练的MobilenetV1模型在数据集上进行了500次迭代,Batch size大小取16,学习率设置为1e-3,采用Early stopping技术防止模型过拟合,在网络训练之前,输入网络的温度数据进行标准化处理,最后得到电抗器设备的目标检测模型,提高了电抗器检测的准确率。
附图说明
图1为本发明的步骤流程框图;
图2为本发明的搭建电抗器目标检测网络的整体流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
请参阅图1-2,本发明提供的一种实施例:一种电抗器智能检测和定位的方法,包括下列步骤:S1电抗器共分成四个类别,将电抗器分为两大类:单个电抗器和电抗器组,然后将单个电抗器大类根据形状,即圆柱形、方形、电抗器上方是否带盖,分为三个类别;S2针对以上四种电抗器类别,每个类别筛选2,500条数据进行标注,生成4*2,500条数据,作为数据集;S3搭建基于Faster RCNN的电抗器目标检测网络模型,采用Tensorflow框架来训练的深度学习模型,选择MobilenetV1作为的主干特征提取网络,并在ImageNet上进行了预训练;S4预先训练的MobilenetV1模型在数据集上进行了500次迭代,Batch size大小取16,学习率设置为1e-3,采用Early stopping技术防止模型过拟合;S5在网络训练之前,输入网络的温度数据进行标准化处理;S6最后得到电抗器设备的目标检测模型。
进一步,其中Tensorflow框架中Tensor代表传递的数据为张量,Flow代表使用计算图进行运算,数据流图用结点和边组成的有向图来描述数学运算。
进一步,结点用来表示施加的数学操作,但也可以表示数据输入的起点和输出的终点,或者是读取/写入持久变量的终点,边表示结点之间的输入/输出关系。
进一步,MobilenetV1模型是一种基于深度可分离卷积的模型,深度可分离卷积是一种将标准卷积分解成深度卷积以及一个1x1的卷积即逐点卷积,对于Mobilenet而言,深度卷积针对每个单个输入通道应用单个滤波器进行滤波,然后逐点卷积应用1x1的卷积操作来结合所有深度卷积得到的输出。
进一步,标准卷积一步即对所有的输入进行结合得到新的一系列输出,深度可分离卷积将其分成了两步,针对每个单独层进行滤波然后下一步即结合。
进一步,Early stopping技术中主要步骤是将原始的训练数据集划分成训练集和验证集,只在训练集上进行训练,并每个一个周期计算模型在验证集上的误差,当模型在验证集上的误差比上一次训练结果差的时候停止训练,使用上一次迭代结果中的参数作为模型的最终参数。
工作原理:使用时,将电抗器分为两大类:单个电抗器和电抗器组,然后将单个电抗器大类根据形状,即圆柱形、方形、电抗器上方是否带盖,分为三个类别,针对以上四种电抗器类别,每个类别筛选2,500条数据进行标注,生成4*2,500条数据,作为数据集,搭建基于Faster RCNN的电抗器目标检测网络模型,采用Tensorflow框架来训练的深度学习模型,Tensorflow框架中Tensor代表传递的数据为张量,Flow代表使用计算图进行运算,数据流图用结点和边组成的有向图来描述数学运算,选择MobilenetV1作为的主干特征提取网络,MobilenetV1模型是一种基于深度可分离卷积的模型,深度可分离卷积是一种将标准卷积分解成深度卷积以及一个1x1的卷积即逐点卷积,对于Mobilenet而言,深度卷积针对每个单个输入通道应用单个滤波器进行滤波,然后逐点卷积应用1x1的卷积操作来结合所有深度卷积得到的输出,并在ImageNet上进行了预训练,预先训练的MobilenetV1模型在数据集上进行了500次迭代,Batch size大小取16,学习率设置为1e-3,采用Early stopping技术防止模型过拟合,Early stopping技术中主要步骤是将原始的训练数据集划分成训练集和验证集,只在训练集上进行训练,并每个一个周期计算模型在验证集上的误差,当模型在验证集上的误差比上一次训练结果差的时候停止训练,使用上一次迭代结果中的参数作为模型的最终参数,在网络训练之前,输入网络的温度数据进行标准化处理,最后得到电抗器设备的目标检测模型,提高了电抗器检测的准确率。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (6)

1.一种电抗器智能检测和定位的方法,其特征在于,包括下列步骤:
S1电抗器共分成四个类别,将电抗器分为两大类:单个电抗器和电抗器组,然后将单个电抗器大类根据形状,即圆柱形、方形、电抗器上方是否带盖,分为三个类别;
S2针对以上四种电抗器类别,每个类别筛选2,500条数据进行标注,生成4*2,500条数据,作为数据集;
S3搭建基于Faster RCNN的电抗器目标检测网络模型,采用Tensorflow框架来训练的深度学习模型,选择MobilenetV1作为的主干特征提取网络,并在ImageNet上进行了预训练;
S4预先训练的MobilenetV1模型在数据集上进行了500次迭代,Batch size大小取16,学习率设置为1e-3,采用Early stopping技术防止模型过拟合;
S5在网络训练之前,输入网络的温度数据进行标准化处理;
S6最后得到电抗器设备的目标检测模型。
2.根据权利要求1所述的一种电抗器智能检测和定位的方法,其特征在于:其中所述Tensorflow框架中Tensor代表传递的数据为张量,Flow代表使用计算图进行运算,数据流图用结点和边组成的有向图来描述数学运算。
3.根据权利要求2所述的一种电抗器智能检测和定位的方法,其特征在于:所述结点用来表示施加的数学操作,但也可以表示数据输入的起点和输出的终点,或者是读取/写入持久变量的终点,边表示结点之间的输入/输出关系。
4.根据权利要求1所述的一种电抗器智能检测和定位的方法,其特征在于:所述MobilenetV1模型是一种基于深度可分离卷积的模型,深度可分离卷积是一种将标准卷积分解成深度卷积以及一个1x1的卷积即逐点卷积,对于Mobilenet而言,深度卷积针对每个单个输入通道应用单个滤波器进行滤波,然后逐点卷积应用1x1的卷积操作来结合所有深度卷积得到的输出。
5.根据权利要求4所述的一种电抗器智能检测和定位的方法,其特征在于:所述标准卷积一步即对所有的输入进行结合得到新的一系列输出,深度可分离卷积将其分成了两步,针对每个单独层进行滤波然后下一步即结合。
6.根据权利要求1所述的一种电抗器智能检测和定位的方法,其特征在于:所述Earlystopping技术中主要步骤是将原始的训练数据集划分成训练集和验证集,只在训练集上进行训练,并每个一个周期计算模型在验证集上的误差,当模型在验证集上的误差比上一次训练结果差的时候停止训练,使用上一次迭代结果中的参数作为模型的最终参数。
CN202110369844.3A 2021-04-07 2021-04-07 一种电抗器智能检测和定位的方法 Active CN113052255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110369844.3A CN113052255B (zh) 2021-04-07 2021-04-07 一种电抗器智能检测和定位的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110369844.3A CN113052255B (zh) 2021-04-07 2021-04-07 一种电抗器智能检测和定位的方法

Publications (2)

Publication Number Publication Date
CN113052255A CN113052255A (zh) 2021-06-29
CN113052255B true CN113052255B (zh) 2022-04-22

Family

ID=76517744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110369844.3A Active CN113052255B (zh) 2021-04-07 2021-04-07 一种电抗器智能检测和定位的方法

Country Status (1)

Country Link
CN (1) CN113052255B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113343392A (zh) * 2021-07-06 2021-09-03 浙江天铂云科光电股份有限公司 一种油枕智能检测和定位的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11389131B2 (en) * 2018-06-27 2022-07-19 Denti.Ai Technology Inc. Systems and methods for processing of dental images
CN109271946B (zh) * 2018-09-28 2021-07-06 清华大学深圳研究生院 一种在手机端实现感兴趣物体实时检测的方法
CN109359207B (zh) * 2018-12-24 2021-01-22 焦点科技股份有限公司 一种易于快速迭代更新的Logo检测方法
CN110222579B (zh) * 2019-05-09 2022-12-16 华南理工大学 一种结合运动规律和目标检测的视频对象计数方法
EP3751480A1 (en) * 2019-06-11 2020-12-16 Tata Consultancy Services Limited System and method for detecting on-street parking violations
CN112285648B (zh) * 2020-10-13 2022-11-01 西北工业大学 一种基于声源定位的增强现实系统与方法
CN112307987B (zh) * 2020-11-03 2021-06-29 泰山学院 基于深度混合路由网络识别通信信号的方法
CN112446388A (zh) * 2020-12-05 2021-03-05 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种基于轻量化二阶段检测模型的多类别蔬菜幼苗识别方法及系统

Also Published As

Publication number Publication date
CN113052255A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
CN104850836B (zh) 基于深度卷积神经网络的害虫图像自动识别方法
CN109033513B (zh) 电力变压器故障诊断方法与电力变压器故障诊断装置
CN112149962B (zh) 一种施工事故致因行为的风险定量评估方法及系统
CN113591215B (zh) 基于不确定性的异常卫星组件布局检测方法
CN111832228B (zh) 基于cnn-lstm的振动传递系统
CN112215525B (zh) 一种湖库水质反演及可视化评价方法
CN111753986A (zh) 面向深度学习模型的动态测试方法及其装置
CN111401358B (zh) 一种基于神经网络的仪表表盘校正方法
CN111444865B (zh) 一种基于逐步求精的多尺度目标检测方法
CN110334478A (zh) 机器设备异常检测模型构建方法、检测方法及模型
CN116086790B (zh) 氢燃料电池高压阀的性能检测方法及其系统
JP2019179319A (ja) 予測モデル作成装置、予測モデル作成方法および予測モデル作成プログラム
CN113052255B (zh) 一种电抗器智能检测和定位的方法
Shi et al. DANTD: A deep abnormal network traffic detection model for security of industrial internet of things using high-order features
CN112735541A (zh) 一种基于简单循环单元神经网络的污水处理水质预测方法
CN114295967A (zh) 一种基于迁移神经网络的模拟电路故障诊断方法
CN116821697B (zh) 一种基于小样本学习的机械设备故障诊断方法
CN111104976B (zh) 一种基于时间序列图像的蓝藻覆盖率计算方法
CN117422695A (zh) 一种基于CR-Deeplab的异常检测方法
CN116310850A (zh) 基于改进型RetinaNet的遥感图像目标检测方法
CN116935128A (zh) 一种基于可学习提示的零样本异常图像检测方法
CN114676887A (zh) 一种基于图卷积stg-lstm的河流水质预测方法
CN112861601A (zh) 生成对抗样本的方法及相关设备
Yu et al. Fault diagnosis of wearable temperature sensors based on multi-scale feature extraction
CN112085756B (zh) 一种基于残差网络的道路图像多尺度边缘检测模型及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant