CN113051715A - 一种智慧化工园区罐装物质爆炸影响分析方法 - Google Patents

一种智慧化工园区罐装物质爆炸影响分析方法 Download PDF

Info

Publication number
CN113051715A
CN113051715A CN202110234121.2A CN202110234121A CN113051715A CN 113051715 A CN113051715 A CN 113051715A CN 202110234121 A CN202110234121 A CN 202110234121A CN 113051715 A CN113051715 A CN 113051715A
Authority
CN
China
Prior art keywords
explosion
tnt
energy
chemical industry
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110234121.2A
Other languages
English (en)
Inventor
孙德亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Normal University
Original Assignee
Chongqing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Normal University filed Critical Chongqing Normal University
Priority to CN202110234121.2A priority Critical patent/CN113051715A/zh
Publication of CN113051715A publication Critical patent/CN113051715A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • G06Q50/265Personal security, identity or safety

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Development Economics (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Computer Security & Cryptography (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供一种智慧化工园区罐装物质爆炸影响分析方法,包括以下步骤:S1根据储罐内所装介质的属性及储罐容器参数计算储罐内所装介质的爆破能量Q;S2将爆破能量Q换算成TNT当量QTNT,QTNT为储罐内所装介质爆炸所放出的爆破能量;S3执行模拟实验,将Q0量的TNT炸药在安全空旷位置点燃引爆,记录目标距爆炸中心的距离R0及对应距离的冲击波超压P0;S4拟合冲击波超压P0关于距离R0的一元多次曲线方程;S5求出介质爆炸能量Q与模拟实验TNT炸药能量的模拟比α;S6遍历冲击波超压对人体或/和建筑物伤害等级的临界值,求出各伤害等级下对应的距离R。本发明建立智慧化工园区罐装物质爆炸影响分析方法,具有便于分析对化工园区提高安全意识的优点。

Description

一种智慧化工园区罐装物质爆炸影响分析方法
技术领域
本发明涉及智慧化工园区安监管理技术领域,具体涉及智慧化工园区罐装物质爆炸影响分析方法。
背景技术
智慧化工园区是基于云计算和大数据技术,通过园区物联网平台,实现对化工园区地理事物、园区入驻企业、工作人员轨迹、园区基础设施和服务实施进行全面、透彻、及时的感知;对化工园区用电设备、空气质量、危化品存放实行可视化智能管控;同环保产业、应急指挥产业上下游企业形成战略合作伙伴;实现智慧化工园区环境、社会和经济的全面、协调和可持续发展。
现有的化工园区易燃易爆物质大部分由罐装容器存储,其容器体积大,气液体泄露不易发现,主要基于人工管理。当罐装容器介质发生爆炸时,施工人员往往因为无法及时躲避而发生伤亡,进而造成严重的安全生产事故。因此,建立智慧化工园区罐装物质爆炸影响分析方法对于降低化工园区的人员伤亡风险有着重要的现实意义和工程意义。
发明内容
本发明的发明目的是提供一种智慧化工园区罐装物质爆炸影响分析方法,实现对化工园区全域安全等级划分。
本发明提供一种智慧化工园区罐装物质爆炸影响分析方法,包括以下步骤:
S1根据储罐内所装介质的属性及储罐容器参数计算储罐内所装介质的爆破能量Q;
S2将爆破能量Q换算成TNT当量QTNT,QTNT为储罐内所装介质爆炸所放出的爆破能量;
S3执行模拟实验,将Q0量的TNT炸药在安全空旷位置点燃引爆,记录目标距爆炸中心的距离R0及对应距离的冲击波超压P0
S4拟合冲击波超压P0关于距离R0的一元多次曲线方程;
S5求出介质爆炸能量Q与模拟实验TNT炸药能量的模拟比α;
S6遍历冲击波超压对人体或/和建筑物伤害等级的临界值,求出各伤害等级下对应的距离R。
进一步的,设1kgTNT爆炸所放出的平均爆破能量为4500kJ/kg,QTNT为当前量的TNT,其爆炸产生的能量与介质爆破能量Q相等。
进一步的,爆炸模拟比α为QTNT与Q0之比的三次方根。
进一步的,R为冲击波超压对人体或建筑物不同伤害等级下对应的距离爆炸点中心位置的长度。
与现有技术相比,本发明的有益效果是:
本发明提供的智慧化工园区罐装物质爆炸影响分析方法,解决了现有的化工园区全域内安全等级的划分标准问题,进而降低了危化品爆炸对化工园区造成的影响,对于降低化工园区的人员伤亡风险有着重要的现实意义和工程意义。
1.本发明通过罐装容器介质的物理状态及容器本身的体积等参数,计算出当前的爆破能量,为分析化工园区在该时刻的爆炸效果提供数据基础。
2.本发明通过模拟实验,并利用曲线拟合技术,得出冲击波超压与距离的曲线方程。
3.本发明可以将模型服务部署到化工园区物联网平台,实时动态可视化展示爆破能量对人体及建筑物的分级效果。
4.本发明应用智慧化工园区罐装物质爆炸影响分析方法技术,可给类似场景或智慧化工园区其它安监管理方面提供思路。
附图说明
图1为本发明的智慧化工园区罐装物质爆炸影响分析方法框架图。
图2曲线拟合图。
图3爆炸影响分析方法效果图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的智慧化工园区罐装物质爆炸影响分析模型的技术方案实施例一:
如图1所示,本发明提供智慧化工园区罐装物质爆炸影响分析模型,包括以下步骤,
S1、首先根据储罐内所装介质的属性及容器的体积等参数,根据算法及推导公式计算出其爆破能量Q;
S2、利用对等计算原则,将爆破能量Q换算成TNT当量QTNT爆炸所放出的爆破能量;
S3、进行模拟实验:将Q0量的TNT炸药在某安全空旷位置点燃引爆,利用一体化测试分析仪记录下目标距爆炸中心的距离R0及对应距离的冲击波超压P0
S4、运用曲线拟合方法,将上述数据拟合成冲击波超压P0关于距离R0的一元多次曲线方程;
S5、根据实验数据,求出介质爆炸能量Q与模拟实验TNT炸药能量的模拟比α;
S6、依次遍历冲击波超压对人体(建筑物)伤害等级的临界值,结合算法及数学公式,求出不同伤害等级下对应的距离R。
所述S1步骤具体包括:
读取传感器采集的罐装容器的体积、温度等参数,并根据罐装容器介质的物理状态而采用相应的数学公式,计算其介质爆破能量Q。
当压力容器内介质为压缩气体,即以气态形式存在而发生物理爆炸时,其释放的爆破能量Q计算公式为:
Figure BDA0002959982700000041
其中,p为容器内气体的绝对压力,V为储罐容器的容积,k为气体的绝热指数。
当压力容器内介质全部为液体时,其释放的爆破能量Q计算公式为:
Figure BDA0002959982700000042
其中,p为容器内液体的绝对压力,V为储罐容器的体积,βt为液体在压力p和温度t下的的压缩系数。
所述S2步骤具体包括:
根据1kgTNT爆炸所放出的平均爆破能量为4500kJ/kg的实际效果,利用能量对等原理,求出当前爆破能量Q所对应的TNT量,计算关系为:
Figure BDA0002959982700000051
所述S3步骤具体包括:
取Q0=1000kg进行模拟实验,利用一体化测试分析仪分层次记录下目标距爆炸中心的距离R0及对应距离的冲击波超压P0,本实施例部分数据如下表所示:
距离R<sub>0</sub>/m 10 20 30 40 50 60 70
超压P<sub>0</sub>/MPa 0.76 0.126 0.057 0.033 0.0235 0.018 0.0143
所述S4步骤具体包括:
运用曲线拟合算法,将实验数据拟合成冲击波超压P0关于距离R0变化的曲线图,如图2所示。曲线方程式为:
P0=A*R0**B
其中,A≈83.64,B≈-2.09。A和B为拟合参数。
所述S5步骤具体包括:
不同数量的同类炸药发生爆炸时,如果距离之比与爆破能量之比的三次方根相等,则所产生的冲击波超压相同。利用此方法可求出爆破模拟比。用公式表示如下:
Figure BDA0002959982700000052
则P1=P2
其中,R1、R2为目标距爆炸中心的距离,Q1、Q2为爆炸时产生冲击波所消耗的炸药量,P1、P2为目标处的超压,α为炸药爆炸试验的模拟比。
所述S6步骤具体包括:
根据冲击波超压对人体的伤害作用对照表,如下表所示;依次选取上表中冲击波超压对人体伤害等级的临界值,代入曲线方程式,再利用爆破模拟比α,求出不同伤害等级下对应的距离R,进而绘制出距离R与伤害等级的效果图,如图3所示。
冲击波超压P/MPa 伤害作用
0.02~0.03 轻微挫伤
0.03~0.05 中等损伤
0.05~0.10 严重损伤
>0.10 可能大部分死亡
本发明的有益效果是:
1.本发明通过罐装容器介质的物理状态及容器本身的体积等参数,计算出当前的爆破能量,为分析化工园区在该时刻的爆炸效果提供数据基础。
2.本发明通过模拟实验,并利用曲线拟合技术,得出冲击波超压与距离的曲线方程。
3.本发明可以将模型服务部署到化工园区物联网平台,实时动态可视化展示爆破能量对人体及建筑物的分级效果。
4.本发明应用智慧化工园区罐装物质爆炸影响分析模型技术,可给类似场景或智慧化工园区其它安监管理方面提供思路。
显然,本领域的技术人员应该明白,本发明不限于上述示范性实施例的细节,而且在从不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (4)

1.一种智慧化工园区罐装物质爆炸影响分析方法,其特征在于,包括以下步骤:
S1根据储罐内所装介质的属性及储罐容器参数计算储罐内所装介质的爆破能量Q;
S2将爆破能量Q换算成TNT当量QTNT,QTNT为储罐内所装介质爆炸所放出的爆破能量;
S3执行模拟实验,将Q0量的TNT炸药在安全空旷位置点燃引爆,记录目标距爆炸中心的距离R0及对应距离的冲击波超压P0
S4拟合冲击波超压P0关于距离R0的一元多次曲线方程;
S5求出介质爆炸能量Q与模拟实验TNT炸药能量的模拟比α;
S6遍历冲击波超压对人体或/和建筑物伤害等级的临界值,求出各伤害等级下对应的距离R。
2.如权利要求1所述的智慧化工园区罐装物质爆炸影响分析方法,其特征在于,设1kgTNT爆炸所放出的平均爆破能量为4500kJ/kg,QTNT为当前量的TNT,其爆炸产生的能量与介质爆破能量Q相等。
3.如权利要求1所述的智慧化工园区罐装物质爆炸影响分析方法,其特征在于:爆炸模拟比α为QTNT与Q0之比的三次方根。
4.如权利要求1所述的智慧化工园区罐装物质爆炸影响分析方法,其特征在于:R为冲击波超压对人体或建筑物不同伤害等级下对应的距离爆炸点中心位置的长度。
CN202110234121.2A 2021-03-03 2021-03-03 一种智慧化工园区罐装物质爆炸影响分析方法 Pending CN113051715A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110234121.2A CN113051715A (zh) 2021-03-03 2021-03-03 一种智慧化工园区罐装物质爆炸影响分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110234121.2A CN113051715A (zh) 2021-03-03 2021-03-03 一种智慧化工园区罐装物质爆炸影响分析方法

Publications (1)

Publication Number Publication Date
CN113051715A true CN113051715A (zh) 2021-06-29

Family

ID=76509595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110234121.2A Pending CN113051715A (zh) 2021-03-03 2021-03-03 一种智慧化工园区罐装物质爆炸影响分析方法

Country Status (1)

Country Link
CN (1) CN113051715A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107122574A (zh) * 2017-06-30 2017-09-01 中国石油天然气股份有限公司西部管道分公司 一种天然气管道物理爆炸对周边建筑物损坏范围的估算方法
CN107273696A (zh) * 2017-06-30 2017-10-20 中国石油天然气股份有限公司西部管道分公司 一种天然气管道物理爆炸对人体伤害范围的估算方法
CN109738148A (zh) * 2018-12-17 2019-05-10 中国人民解放军61489部队 一种地下工程防护门前爆炸门后冲击波超压的计算方法
CN110543735A (zh) * 2019-09-09 2019-12-06 西南石油大学 一种天然气站场分析小屋在线分析仪器安装间距设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107122574A (zh) * 2017-06-30 2017-09-01 中国石油天然气股份有限公司西部管道分公司 一种天然气管道物理爆炸对周边建筑物损坏范围的估算方法
CN107273696A (zh) * 2017-06-30 2017-10-20 中国石油天然气股份有限公司西部管道分公司 一种天然气管道物理爆炸对人体伤害范围的估算方法
CN109738148A (zh) * 2018-12-17 2019-05-10 中国人民解放军61489部队 一种地下工程防护门前爆炸门后冲击波超压的计算方法
CN110543735A (zh) * 2019-09-09 2019-12-06 西南石油大学 一种天然气站场分析小屋在线分析仪器安装间距设计方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
于畅等: "天然气储气罐破坏效应分析" *
于畅等: "天然气储气罐破坏效应分析", 《中国安全科学学报》 *
傅智敏等: "爆炸冲击波伤害破坏作用定量分析" *
傅智敏等: "爆炸冲击波伤害破坏作用定量分析", 《消防科学技术》 *

Similar Documents

Publication Publication Date Title
CN108932394B (zh) 有毒气体泄漏危害范围的确定方法
US5724255A (en) Portable emergency action system for chemical releases
Le et al. Safety investigation of hydrogen energy storage systems using quantitative risk assessment
Baraldi et al. Development of a model evaluation protocol for CFD analysis of hydrogen safety issues the SUSANA project
Cade et al. Analysis of permeability controls: a new approach
Khan et al. MAXCRED–a new software package for rapid risk assessment in chemical process industries
CN115018386B (zh) 爆炸环境下的储油罐安全评估方法及装置
CN110135638A (zh) 气体爆炸事故致死致伤和结构破坏不确定性风险计算方法
Prasad High-pressure release and dispersion of hydrogen in a partially enclosed compartment: Effect of natural and forced ventilation
CN110879919B (zh) 一种爆炸作用下毒物扩散的分段式模拟方法
CN110705842A (zh) 基于多源数据融合的化工园区危险态势感知方法及系统
Wang et al. Numerical investigation of leaking and dispersion of carbon dioxide indoor under ventilation condition
CN115496003A (zh) 一种加氢站泄漏爆炸事故超压伤害评估方法
CN113051715A (zh) 一种智慧化工园区罐装物质爆炸影响分析方法
CN111539126A (zh) 一种化工储罐蒸汽云爆炸事故模拟分析方法和系统
CN104655570A (zh) 多种条件下油气类混合气体无源激光探测实现的方法
Xin et al. Dynamic simulation and quantitative risk assessment of indoor heavy gas diffusion
Oyediran et al. Models for computing emission of carbon dioxide from liquid fuel in Nigeria
Ferradas et al. Characteristic overpressure–impulse–distance curves for vessel burst
Shi et al. Experimental and numerical research on the characteristics of heavy gas leakage and diffusion
CN115358169B (zh) 基于数值模拟的汽车储氢罐tprd泄放风险预警方法
Csaszar et al. CRITICAL POINTS OF PRESURIZED ENCLOSURE FOUND WITH CFD-AN EXAMPLE
Skob et al. Numerical Evaluation of Harmful Consequences after Accidental Explosion at a Hydrogen Filling Station
Chen et al. 3D Dynamic Visualization Simulation System of Pool Fire Triggered by Major Hazard Installation.
Skob et al. Mathematical Modelling of Gas Admixtures Release, Dispersion and Explosion in Open Atmosphere.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination