CN113043263B - Calibration workpiece of robot - Google Patents

Calibration workpiece of robot Download PDF

Info

Publication number
CN113043263B
CN113043263B CN201911363421.XA CN201911363421A CN113043263B CN 113043263 B CN113043263 B CN 113043263B CN 201911363421 A CN201911363421 A CN 201911363421A CN 113043263 B CN113043263 B CN 113043263B
Authority
CN
China
Prior art keywords
calibration
robot
sensor
distance
calibration plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911363421.XA
Other languages
Chinese (zh)
Other versions
CN113043263A (en
Inventor
王宏玉
袁博
张锋
刘伟
王洪阳
周思尧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Siasun Robot and Automation Co Ltd
Original Assignee
Shenyang Siasun Robot and Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Siasun Robot and Automation Co Ltd filed Critical Shenyang Siasun Robot and Automation Co Ltd
Priority to CN201911363421.XA priority Critical patent/CN113043263B/en
Publication of CN113043263A publication Critical patent/CN113043263A/en
Application granted granted Critical
Publication of CN113043263B publication Critical patent/CN113043263B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0095Means or methods for testing manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)

Abstract

The application relates to the technical field of robots, and provides a calibration workpiece of a robot, which comprises a calibration plate and a detection part, wherein the calibration plate is arranged on a base of the robot; the detection component comprises a sensor clamp fixed at the tail end of the robot and a plurality of distance sensors arranged on the sensor clamp; and detecting the distance between the detection part and the calibration plate through the distance sensor so as to realize zero calibration of the robot. The calibration workpiece provided by the invention reduces the number of workpieces required by calibration, reduces the change of the robot body, reduces the calibration cost and improves the calibration efficiency.

Description

Calibration workpiece of robot
Technical Field
The application relates to the technical field of robots, in particular to a calibration workpiece of a robot.
Background
With the development of the robot industry, an integrated joint seven-axis robot different from a traditional six-axis robot appears, the seven-axis robot is also called a redundant robot, compared with the six-axis robot, an additional axis allows the robot to avoid certain specific targets, an end effector can conveniently reach a specific position, and the robot can be more flexibly adapted to certain special working environments. In the prior art, various zero point quick calibration methods for robots exist, but most of the quick calibration methods need to customize various workpieces, and particularly, the cost is high when the seven-axis robot is calibrated. The shaft pin calibration method needs to make more changes on the robot shell to influence the appearance and design of the robot.
Disclosure of Invention
In view of this, the embodiment of the present application provides a calibration workpiece of a robot, so as to solve the problem that in the prior art, the zero calibration workpiece of the robot is high in cost.
The embodiment of the application provides a calibration work piece of robot, the calibration work piece includes: a calibration plate and a detection member;
the calibration plate is arranged on a base of the robot;
the detection component comprises a sensor clamp fixed at the tail end of the robot and a plurality of distance sensors arranged on the sensor clamp;
and detecting the distance between the detection part and the calibration plate through the distance sensor so as to realize zero calibration of the robot.
Optionally, in another embodiment provided by the present application, a fixed mounting hole is provided on the distance sensor, and the distance sensor is fixed on the sensor clamp through a screw and the mounting hole.
Optionally, in another embodiment provided in the present application, the distance sensor is fixed on the sensor clamp by a jackscrew clamping manner.
Optionally, in another embodiment provided by the present application, the calibration workpiece further includes a zero calibration plate for performing zero calibration on the distance sensor.
Optionally, in another embodiment provided by the present application, the calibration plate determines the position of the calibration plate through an elongated positioning pin, and the elongated positioning pin and the calibration plate are fixed on the base of the robot through screws.
Optionally, in another embodiment provided by the present application, a positioning hole is disposed at the installation position of the calibration plate, and the calibration plate and the positioning hole are positioned by the elongated positioning pin.
Optionally, in another embodiment provided by the present application, six positioning holes for positioning the distance sensor are machined at the end of the calibration plate, and the six positioning holes are uniformly distributed on the same circumference.
Optionally, in another embodiment provided by the present application, the sensor fixture is in a shape of a disk, slots for fixing the distance sensors are provided at the periphery of the disk, the number of the slots is the same as that of the distance sensors, and the slots are uniformly distributed at the periphery of the disk.
Optionally, in another embodiment provided by the present application, a hole for emitting laser is formed at a position corresponding to the slot.
Optionally, in another embodiment provided by the present application, the zero calibration plate has a disc-shaped structure, a slot hole is formed in the disc, the position of the slot hole corresponds to the position of the slot for fixing the distance sensor, and the slot hole and the slot are the same in size.
The calibration workpiece of the robot comprises a calibration plate and a detection component, wherein the calibration plate is arranged on a base of the robot; the detection component comprises a sensor clamp fixed at the tail end of the robot and a plurality of distance sensors arranged on the sensor clamp; and detecting the distance between the detection part and the calibration plate through the distance sensor so as to realize zero calibration of the robot. The calibration workpiece provided by the invention reduces the number of workpieces required by calibration, reduces the change of the robot body, reduces the calibration cost and improves the calibration efficiency.
Drawings
In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings needed to be used in the embodiments or the prior art descriptions will be briefly described below, and it is obvious that the drawings in the following description are only some embodiments of the present invention, and it is obvious for those skilled in the art to obtain other drawings based on these drawings without inventive exercise.
Fig. 1 is a mounting diagram of a calibration workpiece of a robot provided by the present application;
fig. 2 is a structural diagram of a calibration plate in a calibration workpiece provided in an embodiment of the present application;
FIG. 3 is a schematic view illustrating an installation of a calibration plate in a calibration workpiece according to an embodiment of the present disclosure;
FIG. 4 is a block diagram of a sensor fixture provided in an embodiment of the present application;
FIG. 5 is an installation view of a sensor clip provided by an embodiment of the present application;
FIG. 6 is an assembly view of a sensor fixture provided by an embodiment of the present application;
FIG. 7 is a cross-sectional view of a sensor clip provided by an embodiment of the present application;
fig. 8 is a structural diagram of a zero calibration board provided in an embodiment of the present application.
Wherein, 1, calibrating a plate; 2. a detection section; 21. a sensor clamp; 22. a distance sensor; 23. a zero calibration plate; 210. a clamping block; 220. and (5) clamping the blocks.
Detailed Description
In the following description, for purposes of explanation and not limitation, specific details are set forth, such as particular system structures, techniques, etc. in order to provide a thorough understanding of the embodiments of the invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present invention with unnecessary detail.
In order to explain the technical means of the present invention, the following description will be given by way of specific examples.
As shown in fig. 1-8, the calibration workpiece provided by the present application comprises a calibration plate (1) and a detection component (2), wherein the calibration plate (1) is mounted on a base of the robot; the detection component (2) comprises a sensor clamp (21) fixed at the tail end of the robot and a plurality of distance sensors (22) installed on the sensor clamp (21); and detecting the distance between the detection part (2) and the calibration plate (1) through the distance sensor to realize zero calibration of the robot.
Specifically, the distance sensor (22) may be clamped and fixed on the sensor fixture (21) by a jackscrew, at this time, please refer to fig. 2-8, the calibration plate 1 is fixed on the robot base, wherein, when being installed, the specific position of the calibration plate 1 is determined by using a long strip-shaped positioning pin, and is fixed by a screw. Referring to fig. 4 and 5, the clamping blocks 210 and 220 are mounted on the distance sensor clamp 21, wherein the clamping blocks are fixed by screws, and a position for mounting the distance sensor 22 is reserved after the clamping block 220 is mounted. Referring to fig. 7, the zero calibration plate 23 and the distance sensor 22 are mounted on the distance sensor jig, and after the zero calibration plate 23 performs zero calibration of the distance sensor 22, the distance zero calibration plate 23 is removed. Referring to fig. 3, the inspection unit 2 is mounted on the end of the robot to be inspected.
When the robot is subjected to zero calibration, the robot is firstly moved to the vicinity of a specified pose, the robot is accurately adjusted to the specified pose through a distance sensor at the tail end, the robot is subjected to first calibration, and joint values of all joints (taking a seven-axis robot as an example) are recorded and are recorded as (a1, a2, a3, a4, a5, a6 and a 7). And then moving the robot to a symmetrical pose (if the robot has an error, the actual pose of the robot deviates from the theoretical pose at the moment), recording joint values at the moment as (b1, b2, b3, b4, b5, b6 and b7), adjusting the robot to the theoretical symmetrical pose through a distance sensor, and recording joint values at the moment as (c1, c2, c3, c4, c5, c6 and c 7). Finally, the obtained (b1, b2, b3, b4, b5, b6 and b7) and (c1, c2, c3, c4, c5, c6 and c7) are subjected to difference in a joint one-to-one correspondence mode, and the average value of absolute values of the obtained differences is used as an error to correct the robot so as to complete calibration.
The calibration workpiece of the robot comprises a calibration plate and a detection component, wherein the calibration plate is arranged on a base of the robot; the detection component comprises a sensor clamp fixed at the tail end of the robot and a plurality of distance sensors arranged on the sensor clamp; and detecting the distance between the detection part and the calibration plate through the distance sensor so as to realize zero calibration of the robot. The calibration workpiece provided by the invention reduces the number of workpieces required by calibration, reduces the change of the robot body, reduces the calibration cost and improves the calibration efficiency.
Those of ordinary skill in the art will appreciate that the modules, elements, and/or method steps of the various embodiments described in connection with the embodiments disclosed herein may be implemented as electronic hardware, or combinations of computer software and electronic hardware. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the implementation. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The above-mentioned embodiments are only used to illustrate the technical solution of the present invention, and not to limit the same; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; such modifications and substitutions do not depart from the spirit and scope of the embodiments of the present invention, and they should be construed as being included therein.

Claims (10)

1. Calibration artifact of a robot, characterized in that the calibration artifact comprises: a calibration plate (1) and a detection component (2);
the calibration plate (1) is arranged on a base of the robot;
the detection component (2) comprises a sensor clamp (21) fixed at the tail end of the robot and a plurality of distance sensors (22) installed on the sensor clamp (21);
detecting the distance between the detection part (2) and the calibration plate (1) through the distance sensor to realize zero calibration of the robot;
when the robot is subjected to zero calibration, the robot is moved to a position close to a specified position, the robot is accurately adjusted to the specified position through the distance sensor (22) at the tail end, the robot is calibrated for the first time, joint values of all joints are recorded as { a }, then the robot is moved to a symmetrical position, if the robot has an error, the actual position and the theoretical position of the robot are deviated, the joint values at the moment are recorded as { b }, the robot is adjusted to the theoretical symmetrical position through the distance sensor (22), the joint values at the moment are recorded as { c }, finally, the obtained { b } and { c } are differenced in a joint one-to-one correspondence mode, and the average value of absolute values of the obtained differences is used as the error to correct the robot, to complete the calibration.
2. Calibration artifact according to claim 1, characterized in that the distance sensor (22) is provided with mounting holes for fixing, and the distance sensor (22) is fixed on the sensor fixture (21) by screws and the mounting holes.
3. Calibration artifact according to claim 1, characterized in that the distance sensor (22) is fixed to the sensor clamp (21) by means of jackscrew clamping.
4. Calibration artifact according to claim 1, characterized in that it further comprises a zero calibration board (23) for zero calibration of the distance sensor.
5. Calibration work piece according to claim 1, characterized in that the calibration plate (1) is positioned by means of elongated positioning pins, which elongated positioning pins and the calibration plate (1) are fixed to the base of the robot by means of screws.
6. Calibration work piece according to claim 5, characterized in that the calibration plate (1) is provided with positioning holes at the mounting position, and the calibration plate and the positioning holes are positioned by the elongated positioning pins.
7. Calibration workpiece according to claim 5, characterised in that six positioning holes for positioning of distance sensors are machined in the end of the calibration plate (1), said six positioning holes being evenly distributed over the same circumference.
8. Calibration artifact according to claim 1, wherein the sensor holder (21) has a disc shape with slots at its periphery for holding the distance sensors (22), the number of slots being the same as the number of distance sensors (22), the slots being evenly distributed at the periphery of the disc.
9. The calibration workpiece according to claim 8, wherein a hole for laser emission is formed at a position corresponding to the slot.
10. Calibration artifact as claimed in claim 4, characterized in that said zero calibration plate (23) is of disc-shaped configuration, a slotted hole being provided in the disc, the position of said slotted hole corresponding to the position of said slot for fixing said distance sensor (22), said slotted hole and slot being of the same size.
CN201911363421.XA 2019-12-26 2019-12-26 Calibration workpiece of robot Active CN113043263B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911363421.XA CN113043263B (en) 2019-12-26 2019-12-26 Calibration workpiece of robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911363421.XA CN113043263B (en) 2019-12-26 2019-12-26 Calibration workpiece of robot

Publications (2)

Publication Number Publication Date
CN113043263A CN113043263A (en) 2021-06-29
CN113043263B true CN113043263B (en) 2022-07-26

Family

ID=76505286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911363421.XA Active CN113043263B (en) 2019-12-26 2019-12-26 Calibration workpiece of robot

Country Status (1)

Country Link
CN (1) CN113043263B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222712A (en) * 2015-11-02 2016-01-06 西北工业大学 A kind of larger radius of curvature curved surface part normal direction of improvement is measured and method of adjustment
CN107462881A (en) * 2017-07-21 2017-12-12 北京航空航天大学 A kind of laser range sensor scaling method
CN207696560U (en) * 2017-07-05 2018-08-07 深圳配天智能技术研究院有限公司 The calibration system and robot system of robot
CN208189562U (en) * 2018-06-06 2018-12-04 广东工业大学 A kind of calibration system correcting wafer disks
CN110174074A (en) * 2019-06-27 2019-08-27 南京工程学院 A kind of measuring device and method for industrial robot thermal deformation error compensation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655097B (en) * 2013-11-21 2017-04-19 科沃斯机器人股份有限公司 Laser ranging sensor and ranging method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222712A (en) * 2015-11-02 2016-01-06 西北工业大学 A kind of larger radius of curvature curved surface part normal direction of improvement is measured and method of adjustment
CN207696560U (en) * 2017-07-05 2018-08-07 深圳配天智能技术研究院有限公司 The calibration system and robot system of robot
CN107462881A (en) * 2017-07-21 2017-12-12 北京航空航天大学 A kind of laser range sensor scaling method
CN208189562U (en) * 2018-06-06 2018-12-04 广东工业大学 A kind of calibration system correcting wafer disks
CN110174074A (en) * 2019-06-27 2019-08-27 南京工程学院 A kind of measuring device and method for industrial robot thermal deformation error compensation

Also Published As

Publication number Publication date
CN113043263A (en) 2021-06-29

Similar Documents

Publication Publication Date Title
US6070109A (en) Robot calibration system
JP2019526796A (en) Offline vision support method and apparatus for vision alignment of integrated circuit devices
JP5417343B2 (en) System and method for calibrating an end effector alignment using at least one light source
CN109714943B (en) Assembly system and assembly method
CN107799454B (en) Centering fixture for electrostatic chuck system
US11806794B2 (en) Processing device and processing method
TWI729044B (en) Moving sensor coordinate inspection system
JP6812455B2 (en) Parts manufacturing method and parts manufacturing system
CN113043263B (en) Calibration workpiece of robot
CN108733082A (en) The calibration method of robot tooling center points
TWI647037B (en) Fixture correction device and method
CN114367993A (en) Device, system and method for converting space coordinates and scanning coordinates of complex curved surface
CN116834024B (en) Calibration method, calibration device and medium for robot user coordinate system
CN109304731B (en) Robot coordinate system calibration tool
CN106767589B (en) Three-coordinate measuring method and device for clamp block type parts
KR101722536B1 (en) Parts using the laser tracker assembly and the assembly error correction device
CN108405932B (en) Shared fixture for machining and detecting inclined lug holes of support arm parts
Zhang et al. Development of a reconfigurable welding fixture system for automotive body
CN216955078U (en) Optical module detection clamp and detection device
WO2018171274A1 (en) Method and apparatus for flexible detection and positioning
CN213380587U (en) Main shaft indexing precision calibration jig
KR20230037537A (en) Angle calibration method
JP2003165078A (en) Automatic teaching system
US6044310A (en) System for automatic alignment of a workpiece
CN105773491A (en) Positioning fixture for assembling curved-surface thin plate type parts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant