CN113038143A - Hyper-spectral image lossless compression coding system - Google Patents
Hyper-spectral image lossless compression coding system Download PDFInfo
- Publication number
- CN113038143A CN113038143A CN202110241805.5A CN202110241805A CN113038143A CN 113038143 A CN113038143 A CN 113038143A CN 202110241805 A CN202110241805 A CN 202110241805A CN 113038143 A CN113038143 A CN 113038143A
- Authority
- CN
- China
- Prior art keywords
- algorithm
- transformation
- lossless compression
- transform
- wavelet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006835 compression Effects 0.000 title claims abstract description 63
- 238000007906 compression Methods 0.000 title claims abstract description 63
- 230000009466 transformation Effects 0.000 claims abstract description 62
- 230000002441 reversible effect Effects 0.000 claims abstract description 22
- 239000011159 matrix material Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 17
- 238000001228 spectrum Methods 0.000 claims description 11
- 230000009977 dual effect Effects 0.000 claims description 9
- 238000010606 normalization Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 3
- 238000013139 quantization Methods 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 2
- 238000013433 optimization analysis Methods 0.000 claims description 2
- 238000012856 packing Methods 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 9
- 238000000844 transformation Methods 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 235000021049 nutrient content Nutrition 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/63—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
- H04N19/64—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets characterised by ordering of coefficients or of bits for transmission
- H04N19/647—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets characterised by ordering of coefficients or of bits for transmission using significance based coding, e.g. Embedded Zerotrees of Wavelets [EZW] or Set Partitioning in Hierarchical Trees [SPIHT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/63—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
Abstract
本发明公开了一种超光谱图像无损压缩编码系统,所述系统利用参数化三波段谱间整数可逆变换结合小波提升方案变换去谱间变换,去除谱间和空间冗余,采用SPIHT编码算法实现超光谱图像的无损压缩,去冗余变换包括:XCJRCT变换和小波变换提升方案,SPIHT编码算法通过编码器、译码器并行运算和抗干扰容错,基于时间复杂性算法进行优化分析。本发明解决了现有超光谱图像无损压缩效率低、压缩比低的问题。
The invention discloses a lossless compression coding system for hyperspectral images. The system utilizes parameterized three-band inter-spectral integer reversible transformation combined with wavelet lifting scheme transformation to remove inter-spectral transformation, removes inter-spectral and spatial redundancy, and adopts SPIHT coding algorithm to realize Lossless compression of hyperspectral images, de-redundancy transforms include: XCJRCT transform and wavelet transform promotion scheme, SPIHT coding algorithm is optimized and analyzed based on time complexity algorithm through parallel operation of encoder and decoder, anti-interference and fault tolerance. The invention solves the problems of low lossless compression efficiency and low compression ratio of the existing hyperspectral images.
Description
技术领域technical field
本发明涉及超光谱图像领域,具体涉及一种超光谱图像无损压缩编码系统。The invention relates to the field of hyperspectral images, in particular to a lossless compression coding system for hyperspectral images.
背景技术Background technique
超光谱遥感图像在农业、地理、资源以及军事等领域具有重要应用前景,农业工程领域利用光谱探测传感器及时、准确地获取耕地土壤养分含量信息,利用相关性分析法提取土壤速效磷含量的敏感波段及特征波段组合,通过超光谱图像数据反射率小波变换,建立各种敏感波段组合的土壤速效磷光谱诊断模型。依托光谱技术和计算机视觉技术作为研究方法,研究农作物环境生态因子自动化检测方法,分析光谱和图像数据特征具有更广泛的实用价值。Hyperspectral remote sensing images have important application prospects in the fields of agriculture, geography, resources and military. In the field of agricultural engineering, spectral detection sensors are used to obtain timely and accurate information on soil nutrient content in cultivated land, and correlation analysis is used to extract sensitive bands of soil available phosphorus content. And characteristic waveband combination, through the wavelet transform of hyperspectral image data reflectivity, the soil available phosphorus spectral diagnosis model with various sensitive waveband combinations is established. Relying on spectral technology and computer vision technology as research methods, it is of wider practical value to study the automatic detection method of crop environmental ecological factors and analyze the characteristics of spectral and image data.
谱间变换是多光谱图像、超光谱图像等图像处理的重要和关键步骤,通过谱间变换实现高压缩比,超光谱图像压缩编码的研究主要集中在去冗余和编码算法。传统的典型压缩算法无损压缩效率低下,压缩比低,难以满足需求。Inter-spectral transformation is an important and key step in image processing such as multi-spectral images and hyperspectral images. High compression ratio is achieved through inter-spectral transformation. The research on hyperspectral image compression and coding mainly focuses on de-redundancy and coding algorithms. The traditional typical compression algorithm has low lossless compression efficiency and low compression ratio, which is difficult to meet the demand.
发明内容SUMMARY OF THE INVENTION
为此,本发明提供一种超光谱图像无损压缩编码系统,以解决现有超光谱图像无损压缩效率低、压缩比低的问题。Therefore, the present invention provides a hyperspectral image lossless compression coding system to solve the problems of low lossless compression efficiency and low compression ratio of the existing hyperspectral images.
为了实现上述目的,本发明提供如下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:
本发明公开了一种超光谱图像无损压缩编码系统,所述系统利用参数化三波段谱间整数可逆变换结合小波提升方案变换去谱间变换,去除谱间和空间冗余,采用SPIHT编码算法实现超光谱图像的无损压缩,去冗余变换包括:XCJRCT变换和小波变换提升方案,SPIHT编码算法通过编码器、译码器并行运算和抗干扰容错,基于时间复杂性算法进行优化分析。The invention discloses a lossless compression coding system for hyperspectral images. The system utilizes parameterized three-band inter-spectral integer reversible transformation combined with wavelet lifting scheme transformation to remove inter-spectral transformation, removes inter-spectral and spatial redundancy, and adopts SPIHT coding algorithm to realize Lossless compression of hyperspectral images, de-redundancy transforms include: XCJRCT transform and wavelet transform promotion scheme, SPIHT coding algorithm is optimized and analyzed based on time complexity algorithm through parallel operation of encoder and decoder, anti-interference and fault tolerance.
进一步地,所述XCJRCT变换以三波段谱间整数实现矩阵可逆变换,进行最优变换求解,三波段谱间整数可逆变换矩阵显示形式XCJRCT变换为:Further, the XCJRCT transform realizes the matrix reversible transformation with three-band inter-spectral integers, and performs the optimal transformation solution, and the three-band inter-spectral integer reversible transformation matrix display form XCJRCT transforms into:
其中γ、λ为变换时可调整参数,可以根据实际处理问题的需要选择其数值大小,In1、In2、In3为输入信号,Out1、Out2、Out3为输出信号,‘>>’为二进制左移符号。Among them, γ and λ are parameters that can be adjusted during transformation, and their numerical values can be selected according to the actual needs of dealing with problems. In 1 , In 2 , and In 3 are input signals, and Out 1 , Out 2 , and Out 3 are output signals. '>>' is the binary left shift symbol.
进一步地,所述小波变换提升方案包括:分裂、预测、更新和优化提升;Further, the wavelet transform promotion scheme includes: splitting, predicting, updating and optimizing promotion;
分裂,将原始信号Sj,k分裂成为两个互不相交的子集Sj+1,k和dj+1,通常是先对原始信号Sj,k进行Lazy小波或Polyphase小波变换,将一个原始信号序列分成偶数序列和奇数序列,即split(Sj,k)=(Sj,2k,Sj,2k+1)=(Sj+1,k,dj+1,k);Splitting, splitting the original signal S j,k into two mutually disjoint subsets S j+1,k and d j+1 , usually first perform Lazy wavelet or Polyphase wavelet transform on the original signal S j,k , and transform An original signal sequence is divided into an even sequence and an odd sequence, namely split(S j,k )=(S j,2k ,S j,2k+1 )=(S j+1,k ,d j+1,k );
预测,针对数据间的相关性,可用Sj+1,k去预测dj+1,k,故可采用一个与数据集合结构无关的预测算子P,使得dj+1,k=P(Sj+1,k),用dj+1,k与预测值P(Sj+1,k)的差值去代替dj+1,k,则此差值反映了两者的逼近程度,如果预测是合理的,则差值数据集所包含的信息比原始子集dj+1,k包含的信息少;For prediction, for the correlation between data, S j+1,k can be used to predict d j+1,k , so a prediction operator P that is independent of the structure of the data set can be used, so that d j+1 ,k=P( S j+1,k ), use the difference between d j+1,k and the predicted value P(S j+1,k ) to replace d j+1,k , then this difference reflects the approximation degree of the two , if the prediction is reasonable, the difference data set contains less information than the original subset d j+1,k ;
更新,经过分裂和预测两个步骤产生的系数子集Sj+1,k的某些整体性质并不和原始数据中的性质一致,需要进行更新过程,通过算子U产生一个更好的子数据集Sj+1,k,使之保持原数据集Sj,k的一些特性,Sj+1,k的定义为Sj+1,k=Sj,2k+1+U(dj+1,k),对于数据子集Sj+1,k进行相同的分裂、预测和更新,即可把Sj+1,k分解成dj+2,k和Sj+2,k,经过J次分解后,原始数据S0,k的小波变换表示为{SJ,dJ,dJ-1,……,d1},其中SJ代表了信号的低频部分,而{dJ,dJ-1,……,d1}则是信号的高频部分,Update, some overall properties of the coefficient subset S j+1,k generated by the two steps of splitting and prediction are not consistent with the properties of the original data, and an update process is required to generate a better sub-set through the operator U. The data set S j+1,k keeps some characteristics of the original data set S j,k , the definition of S j+1,k is S j+1,k =S j,2k+1 +U(d j +1,k ), perform the same splitting, prediction and update for the data subset S j+1,k, then S j+1,k can be decomposed into d j+2,k and S j+2,k , After decomposing J times, the wavelet transform of the original data S 0,k is expressed as {S J ,d J ,d J-1 ,...,d 1 }, where S J represents the low-frequency part of the signal, and {d J ,d J-1 ,...,d 1 } is the high frequency part of the signal,
优化提升,根据实际情况交替的应用对偶提升步和更新提升步来改善小波变换的性质。Optimized lifting, applying dual lifting steps and update lifting steps alternately according to the actual situation to improve the properties of wavelet transform.
进一步地,所述优化提升过程基于提升方案的正变换算法可以写成和 Further, the forward transformation algorithm based on the improvement scheme of the optimization promotion process can be written as and
对偶提升步Dual lift step
更新提升步update step
经过M对更新提升步和对偶提升步之后,结合比例因子nl和nh,偶样点变成了低通系数,奇样点变成了高通系数,即After M pairs of update boosting steps and dual boosting steps, combined with the scale factors n l and n h , the even sample points become low-pass coefficients, and the odd sample points become high-pass coefficients, that is,
通常,M称为提升步数,nl和nh称为归一化因子,并且n1×nh=1,对于不同的双正交小波,nl和nh的值步同。Usually, M is called the number of lifting steps, n l and n h are called normalization factors, and n 1 ×n h =1, for different biorthogonal wavelets, the values of n l and n h are synchronized.
进一步地,所述SPIHT编码算法的编码器、译码器并行运算方案从DWT系数完全预见,即对于第i位平面该像素点系数相对于当前阈值的重要性为第i+1位平面到最高位MSB在该像素点系数位的逻辑或运算,位平面之间是相对独立的,每个系数在各个位平面的重要性信息可以同时获得,实现平面的并行处理。Further, the parallel operation scheme of the encoder and the decoder of the SPIHT coding algorithm is completely foreseen from the DWT coefficient, that is, the importance of the pixel coefficient relative to the current threshold for the i-th bit plane is from the i+1th bit plane to the highest. The bit MSB is relatively independent between the bit planes in the logical OR operation of the coefficient bits of the pixel point, and the importance information of each coefficient in each bit plane can be obtained at the same time, realizing parallel processing of the planes.
进一步地,所述SPIHT编码算法的编码器、译码器抗干扰容错性方案包括:超光谱图像编码算法和打包小波树图像压缩算法;Further, the encoder and decoder anti-interference fault tolerance scheme of the SPIHT encoding algorithm includes: a hyperspectral image encoding algorithm and a packed wavelet tree image compression algorithm;
所述超光谱图像编码算法将输入数据划分成多个相互独立的且长度大体相同的数据包,对每个数据包实施本文中的编码算法,当其中某些包丢失后,接收端依靠已经接收到的数据包,来近似的恢复那部分丢失的信息,图像恢复的质量取决于接收到了多少个数据包,而不取决于接收到了具体哪个包;The hyperspectral image coding algorithm divides the input data into multiple independent data packets with roughly the same length, and implements the coding algorithm in this paper for each data packet. The received data packets are used to approximately restore the lost information. The quality of image restoration depends on how many data packets are received, not on which specific packet is received;
所述打包小波树图像压缩算法将小波零树类型的编码器输出的码流,分成固定长度的片段,这些片段是可以独立解码的,一个片段中的错误并不会影响到其他片段,从而实现抗干扰和容错功能。The packaged wavelet tree image compression algorithm divides the code stream output by the wavelet zero-tree type encoder into fixed-length segments, and these segments can be decoded independently. Errors in one segment will not affect other segments, thereby realizing Anti-interference and fault tolerance.
进一步地,所述SPIHT编码算法基本步骤为:Further, the basic steps of the SPIHT encoding algorithm are:
S1、初始化S1, initialization
输出置LSP为空,将坐标(i,j)∈H送入LIP,并将H中有后代(即高频部分:HLJ、LHJ、HHJ)的送入LIS,作为A型值output Set LSP to be empty, send coordinates (i,j)∈H to LIP, and send those with descendants in H (ie high-frequency parts: HLJ, LHJ, HHJ) to LIS as the A-type value
S2、排序过程S2, sorting process
S21、对每一(i,j)∈LIP,作输出Sn(i,j),若Sn(i,j)=1,将(i,j)移入LSP,并输出C(i,j)的符号;S21. For each (i,j)∈LIP, output Sn (i,j), if Sn (i,j)=1, move (i,j) into LSP, and output C(i,j) )symbol;
S22、对每一(i,j)∈LIS,作S22. For each (i,j)∈LIS, do
S221、若为A型值,则S221. If it is an A-type value, then
①输出Sn(D(i,j));①Output Sn (D(i,j));
②若Sn(D(i,j))=1则对每一(k,l)∈O(i,j),作:②If Sn (D(i,j))=1, then for each (k,l)∈O(i,j), do:
输出Sn(k,l);output Sn (k,l);
若Sn(k,l)=1,将(k,l)送入LSP并输出其符号;If Sn (k,l)=1, send (k,l) into LSP and output its symbol;
若Sn(k,l)=0,将(k,l)送入LIP末尾;If Sn (k,l)=0, send (k,l) to the end of LIP;
③若L(i,j)≠φ,将(k,l)移到LIS的末尾,作为B型值;否则,将(i,j)从LIS中删除;③If L(i,j)≠φ, move (k,l) to the end of LIS as a B-type value; otherwise, delete (i,j) from LIS;
S222、若为B型值,则S222. If it is a B-type value, then
①输出Sn(L(i,j));①Output Sn (L(i,j));
②若Sn(L(i,j))=1,则②If Sn (L(i,j))=1, then
对每一(k,l)∈O(i,j)加到LIS的末尾,作为A型值;Add to the end of LIS for each (k,l)∈O(i,j) as a type A value;
将(i,j)从LIS中删除;remove (i,j) from the LIS;
S3、细化过程:对每一(i,j)∈LSP(不包括最近一次分裂过程产生的)输出|ci,j|的第n个最重要的位;S3. Refinement process: output the nth most significant bit of |ci ,j | for each (i,j)∈LSP (excluding the most recent splitting process);
S4、量化步长刷新,n=n-1;返回S2;S4, quantization step refresh, n=n-1; return to S2;
编码的终止由给定的码率决定,如果是无失真压缩则编码到n=0为止,解码时,只需将上述算法中的输出变为输入即可。The termination of encoding is determined by a given code rate. If it is lossless compression, it is encoded until n=0. When decoding, the output in the above algorithm only needs to be changed into the input.
本发明具有如下优点:The present invention has the following advantages:
本发明公开了一种超光谱图像无损压缩编码系统,采用XCJRCT的三波段谱间整数可逆变换矩阵,结合小波变换提升方案和SPIHT编码器、译码器算法,仿真实验验证了Canal超光谱测试图像SPIHT算法编码器、译码器算法的时间复杂性,通过超光谱标准测试图像canal.bsq前160波段的SPIHT压缩编码实验数据,实现了Canal超光谱测试图像SPIHT算法编码器、译码器算法的时间复杂性测试,通过比较典型压缩算法无损压缩对比实验,验证了采用本文方案更有效率,压缩比更高。本文提出的XCJRCT变换超光谱图像无损压缩编码算法,结合提升小波变换方案非常有效的实现了超光谱图像无损压缩,为工程领域光谱探测传感器硬件开发提供了一种高效率算法,使光谱探测传感器实时采集、传输、识别和反馈环境生态因子。The invention discloses a hyperspectral image lossless compression coding system, which adopts the three-band inter-spectral integer reversible transformation matrix of XCJRCT, combines the wavelet transform lifting scheme and the SPIHT encoder and decoder algorithm, and the simulation experiment verifies the Canal hyperspectral test image The time complexity of the SPIHT algorithm encoder and decoder algorithm, through the SPIHT compression coding experimental data of the first 160 bands of the hyperspectral standard test image canal.bsq, the SPIHT algorithm encoder and decoder algorithm of the Canal hyperspectral test image are realized. The time complexity test, by comparing the lossless compression comparison experiment of typical compression algorithms, verifies that the scheme in this paper is more efficient and has a higher compression ratio. The XCJRCT transform hyperspectral image lossless compression coding algorithm proposed in this paper, combined with the enhanced wavelet transform scheme, effectively realizes the lossless compression of hyperspectral images, and provides a high-efficiency algorithm for the hardware development of spectral detection sensors in the engineering field. Collect, transmit, identify and feedback environmental ecological factors.
附图说明Description of drawings
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引申获得其它的实施附图。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that are required to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only exemplary, and for those of ordinary skill in the art, other implementation drawings can also be derived from the provided drawings without any creative effort.
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。The structures, proportions, sizes, etc. shown in this specification are only used to cooperate with the contents disclosed in the specification, so as to be understood and read by those who are familiar with the technology, and are not used to limit the conditions for the implementation of the present invention, so there is no technical The substantive meaning above, any modification of the structure, the change of the proportional relationship or the adjustment of the size should still fall within the technical content disclosed in the present invention without affecting the effect and the purpose that the present invention can produce. within the range that can be covered.
图1为本发明实施例提供的提升方案归一因子的实现过程图;Fig. 1 is the realization process diagram of the normalization factor of the promotion scheme provided by the embodiment of the present invention;
图2为本发明实施例提供的提升方案的分解和重构图;FIG. 2 is a decomposition and reconstruction diagram of a lifting scheme provided by an embodiment of the present invention;
图3为本发明实施例提供的基于DWT和位平面的并行编码器示意图;3 is a schematic diagram of a parallel encoder based on DWT and a bit plane provided by an embodiment of the present invention;
图4为本发明实施例提供的编码器、译码器抗干扰容错性方案示意图;FIG. 4 is a schematic diagram of an anti-interference and fault tolerance solution for an encoder and a decoder provided by an embodiment of the present invention;
图5为本发明实施例提供的相邻波段的相关系数示意图;5 is a schematic diagram of a correlation coefficient of adjacent bands provided by an embodiment of the present invention;
图6为本发明实施例提供的超光谱图像canal.bsq前160波段无损压缩比随波段变化曲线示意图。FIG. 6 is a schematic diagram of a change curve of the lossless compression ratio of the first 160 bands of the hyperspectral image canal.bsq with the band according to an embodiment of the present invention.
具体实施方式Detailed ways
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The embodiments of the present invention are described below by specific specific embodiments. Those who are familiar with the technology can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. Obviously, the described embodiments are part of the present invention. , not all examples. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例Example
本实施例公开了一种超光谱图像无损压缩编码系统,所述系统利用参数化三波段谱间整数可逆变换结合小波提升方案变换去谱间变换,去除谱间和空间冗余,采用SPIHT编码算法实现超光谱图像的无损压缩,去冗余变换包括:XCJRCT变换和小波变换提升方案,SPIHT编码算法通过编码器、译码器并行运算和抗干扰容错,基于时间复杂性算法进行优化分析。This embodiment discloses a lossless compression coding system for hyperspectral images. The system utilizes parameterized three-band inter-spectral integer reversible transform combined with wavelet lifting scheme transform to remove inter-spectral transform, removes inter-spectral and spatial redundancy, and adopts SPIHT coding algorithm It realizes the lossless compression of hyperspectral images, and the de-redundant transformation includes: XCJRCT transform and wavelet transform promotion scheme. The SPIHT coding algorithm performs optimization analysis based on the time complexity algorithm through the parallel operation of the encoder and the decoder, and anti-interference and fault tolerance.
通过对不同领域的数值模拟和可视化研究,验证了该方法的适应性和可理解性。对于任意n×n的可逆矩阵A,若|det|=a≠1,不论是否考虑变换结果所对应的实际物理意义,即不论矩阵的行列式值的模是否为1,总可以通过改造变换矩阵将其变为行列式值的模为1的矩阵。若矩阵的行列式值的模等于1,则矩阵A存在有限布的基本三角阵分解,所以可以构造参数化的N波段谱间整数可逆变换矩阵,这样的整数可逆变换有无限多个,可以根据实际处理问题的需要选择最优变换,采用能量最低原则实现的参数化N波段谱间整数可逆变换就是一种实例。由矩阵理论可知,对非奇异矩阵A,必须存在三角分解A=PLDU,其中P、L、D、U分别为置换矩阵、单位下三角阵、对角阵和单位上三角阵|detD|=|detPD|=|detPLDU|=|detA|=1,也就是能够找到n×n整数实现的可逆变换矩阵A。对于这一研究成果虽然给出了构造性的证明,但是并没有参数化,因此也就无从谈到最优变换求解问题。可以证明著名的三波段(R、G、B)谱间整数实现的矩阵可逆变换SHIRCT、RCT、YFbFr、YCbCr并不是最优的。这正是我们研究这个问题的主要切入点之一。在此,以三波段谱间整数实现的矩阵可逆变换为例说明最优变换求解问题,以示所研究问题的重要性。The adaptability and comprehensibility of the method are verified through numerical simulation and visualization studies in different fields. For any n×n invertible matrix A, if |det|=a≠1, regardless of whether the actual physical meaning corresponding to the transformation result is considered, that is, regardless of whether the modulus of the determinant value of the matrix is 1, the transformation matrix can always be transformed by transforming the matrix. Turn it into a
令make
其中,in,
Δ1=a1×(1+c2×d1)+a2×[b1×(1+c2×d1)+b2×d1]+d1,Δ2=a1×(c1+c2×d2)+a2×[b1×(c1+c2×d2)+1+b2×d2]+d2,Δ3=a1×c2+a2×(b1×c2+b2)+1,令T=PLAPR,此处Δ 1 =a 1 ×(1+c 2 ×d 1 )+a 2 ×[b 1 ×(1+c 2 ×d 1 )+b 2 ×d 1 ]+d 1 , Δ 2 =a 1 ×( c 1 +c 2 ×d 2 )+a 2 ×[b 1 ×(c 1 +c 2 ×d 2 )+1+b 2 ×d 2 ]+d 2 , Δ 3 =a 1 ×c 2 +a 2 ×(b 1 ×c 2 +b 2 )+1, let T=PLAPR, where
则but
由公式(1)和公式(2)中的T可知,矩阵的第1、2行与a1和a2无关,所以可以将整数实现的矩阵可逆变换参数化。b1=-0.5,b2=-0.1,c1=1,c2=0.5,d1=-0.5,d2=-0.5,得It can be known from T in formula (1) and formula (2) that the first and second rows of the matrix have nothing to do with a 1 and a 2 , so the matrix reversible transformation realized by integer can be parameterized. b 1 =-0.5, b 2 =-0.1, c 1 =1, c 2 =0.5, d 1 =-0.5, d 2 =-0.5, we get
得Δ1=0.75×a1-0.34375×a2-0.5,Δ2=0.96875×a1+0.65625×a2-0.5,Δ3=0.5×a1-0.3125×a2+1。为了使变换具有最好的效果,显然有Δ1+Δ2+Δ3=0,则得a1=0,这样,可以推得参数化的变换矩阵。Δ 1 =0.75×a 1 -0.34375×a 2 -0.5, Δ 2 =0.96875×a 1 +0.65625×a 2 -0.5, Δ 3 =0.5×a 1 -0.3125×a 2 +1. In order to make the transformation have the best effect, it is obvious that Δ 1 +Δ 2 +Δ 3 =0, then a 1 =0, in this way, the parameterized transformation matrix can be derived.
a2=0.75,则得到著名的SHIRCT变换。a 2 =0.75, the famous SHIRCT transform is obtained.
设Z=[Z1,Z2,Z3]T,X=[X1,X2,X3]T,则Z2=(0.3125×X1-0.65625×X2+0.34375×X3)×a2+X1-0.5×(X2+X3)=Z3×a2+X1-0.5×(X2+X3),考虑到图像压缩的实际效果,希望|Z2|尽可能的小,由于是一个参数化的表达式,且Z2 and X1-0.5×(X2+X3)都是定值,因此a2的选择对Z2的影响非常大,a2的不同代表了不同的可逆变换,理论上这样的可逆变换有无限多个,但是总希望找到最优的一个,可以根据实际处理问题的需要选择最优变换,例如采用能量最低原则实现的参数化三波段谱间整数可逆变换等。本实施例给出的三波段谱间整数可逆变换矩阵显式形式XCJRCT变换如下:Assuming Z=[Z 1 , Z 2 , Z 3 ] T , X=[X 1 , X 2 , X 3 ] T , then Z 2 =(0.3125×X 1 -0.65625×X 2 +0.34375×X 3 )× a 2 +X 1 -0.5×(X 2 +X 3 )=Z 3 ×a 2 +X 1 -0.5×(X 2 +X 3 ), considering the actual effect of image compression, it is hoped that |Z 2 | is small, because it is a parameterized expression, and Z 2 and X 1 -0.5×(X 2 +X 3 ) are fixed values, so the choice of a 2 has a great influence on Z 2 , and the difference of a 2 Represents different reversible transformations. In theory, there are infinitely many such reversible transformations, but it is always hoped to find the optimal one. The optimal transformation can be selected according to the needs of the actual problem, such as the parametric three-band realized by the principle of minimum energy. Integer reversible transformation between spectra, etc. The explicit form XCJRCT transformation of the three-band inter-spectral integer reversible transformation matrix given in this embodiment is as follows:
其中γ、λ为变换时可调整参数,可以根据实际处理问题的需要选择其数值大小,In1、In2、In3为输入信号,Out1、Out2、Out3为输出信号,‘>>’为二进制左移符号。以上变换可以由加法和移位完成,便于硬件实现。3波段谱间整数可逆变换矩阵写成一般参数形式如下:Among them, γ and λ are parameters that can be adjusted during transformation, and their numerical values can be selected according to the actual needs of dealing with problems. In 1 , In 2 , and In 3 are input signals, and Out 1 , Out 2 , and Out 3 are output signals. '>>' is the binary left shift symbol. The above transformation can be completed by addition and shift, which is convenient for hardware implementation. The integer reversible transformation matrix between the 3-band spectra is written in the general parameter form as follows:
选择适当的算法可得Choose an appropriate algorithm to get
其中,δ1=x1×(1+z2×w1)+x2×[y1×(z1+z2×w2)+y2×w2+1]+w1,δ2=x1×(z1+z2×w2)+x2×[y1×(z1+z2×w2)+y2×w2+1]+w2,δ3=x1×z2+x2×(y1×z2×y2)+1。Wherein, δ 1 =x 1 ×(1+z 2 ×w 1 )+x 2 ×[y 1 ×(z 1 +z 2 ×w 2 )+y 2 ×w 2 +1]+w 1 , δ 2 =x 1 ×(z 1 +z 2 ×w 2 )+x 2 ×[y 1 ×(z 1 +z 2 ×w 2 )+y 2 ×w 2 +1]+w 2 , δ 3 =x 1 ×z 2 +x 2 ×(y 1 ×z 2 ×y 2 )+1.
因此,γ、λ为变换时可调整参数,x1、x2、y1、y2、z1、z2、w1和w2为整数可逆变换矩阵形成参数,参数选择的不同将形成不同的整数可逆变换矩阵。Therefore, γ and λ are adjustable parameters during transformation, and x 1 , x 2 , y 1 , y 2 , z 1 , z 2 , w 1 and w 2 are integer reversible transformation matrix formation parameters. The integer invertible transformation matrix of .
小波变换DWT是目前公认的去除空间冗余非常好的变换,而且对于DWT在去除空间冗余方面所获得的认知相当成熟,但是利用DWT去除谱间冗余却未必是最好的,甚至是效果极差。例如利用DWT去除7个波段图像的谱间冗余,只进行一次分解,这样并未达到去冗余的效果,因为参与DWT变换的波段数不是2的幂次,考虑到边界延拓则不适合采用DWT去除谱间冗余,因为每延拓一点就要多出一帧图像数据,这个数据量是巨大的,将对冗余效果产生严重不良影响。如果一定要用DWT去除谱间冗余,可以采用DWT和其他变换的混合变换,对2的幂次部分采用DWT,对其余部分采用其他变换。因此,本文提出统一的参数化N波段谱间整数可逆变换,参数化N波段谱间整数可逆变换非常灵活,既可以单独实现谱间去冗余,也可以同DWT或减影变换结合起来实现谱间去冗余。此外,另一个巨大优势就是该变换可以由加法及移位完成,运算速度快,便于硬件实现。Wavelet transform DWT is currently recognized as a very good transform for removing spatial redundancy, and the knowledge obtained by DWT in removing spatial redundancy is quite mature, but using DWT to remove inter-spectral redundancy is not necessarily the best, even Very poor effect. For example, DWT is used to remove the inter-spectral redundancy of 7-band images, and only one decomposition is performed, which does not achieve the effect of de-redundancy, because the number of bands involved in DWT transformation is not a power of 2, which is not suitable for boundary continuation. Using DWT to remove the redundancy between spectra, because each extension point requires one more frame of image data, the amount of data is huge, which will have a serious adverse effect on the redundancy effect. If DWT must be used to remove inter-spectral redundancy, a hybrid transformation of DWT and other transformations can be used, DWT is used for the power of 2 part, and other transformations are used for the rest. Therefore, this paper proposes a unified parameterized integer reversible transform between N-band spectra. The parameterized integer reversible transform between N-band spectra is very flexible. It can achieve spectral de-redundancy alone, or can be combined with DWT or subtraction transform to achieve spectral to remove redundancy. In addition, another huge advantage is that the transformation can be completed by addition and shifting, which is fast and easy to implement in hardware.
S、TS和S+P变换都可以看成Swelden提升方案的特殊情形。用提升方案实现的小波变换过程可以分为分裂、预测、更新、优化提升步四个步骤。S, TS and S+P transformations can all be regarded as special cases of the Swelden lifting scheme. The wavelet transform process implemented by the lifting scheme can be divided into four steps: splitting, predicting, updating, and optimizing the lifting step.
⑴分裂⑴ split
将原始信号Sj,k分裂成为两个互不相交的子集Sj+1,k和dj+1,通常是先对原始信号Sj,k进行Lazy小波或Polyphase小波变换,将一个原始信号序列分成偶数序列和奇数序列,即split(Sj,k)=(Sj,2k,Sj,2k+1)=(Sj+1,k,dj+1,k)。Split the original signal S j,k into two mutually disjoint subsets S j+1,k and d j+1 , usually first perform Lazy wavelet or Polyphase wavelet transform on the original signal S j,k , and transform a The signal sequence is divided into an even sequence and an odd sequence, ie split(S j,k )=(S j,2k ,S j,2k+1 )=(S j+1,k ,d j+1,k ).
⑵预测(2) Prediction
针对数据间的相关性,可用Sj+1,k去预测dj+1,k,故可采用一个与数据集合结构无关的预测算子P,使得dj+1,k=P(Sj+1,k),用dj+1,k与预测值P(Sj+1,k)的差值去代替dj+1,k,则此差值反映了两者的逼近程度。如果预测是合理的,则差值数据集所包含的信息比原始子集dj+1,k包含的信息要少得多。For the correlation between data, S j+1,k can be used to predict d j+1,k , so a prediction operator P that is independent of the data set structure can be used, so that d j+1,k =P(S j +1,k ), use the difference between d j+1,k and the predicted value P(S j+1,k ) to replace d j+1,k , then this difference reflects the approximation degree of the two. If the predictions are reasonable, the difference dataset contains much less information than the original subset d j+1,k .
⑶更新⑶ update
经过以上两个步骤产生的系数子集Sj+1,k的某些整体性质(如均值)并不和原始数据中的性质一致,因此需采用更新过程。其目的是通过算子U产生一个更好的子数据集Sj+1,k,使之保持原数据集Sj,k的一些特性,Sj+1,k的定义为Sj+1,k=Sj,2k+1+U(dj+1,k)。对于数据子集Sj+1,k进行相同的分裂、预测和更新,即可把Sj+1,k分解成dj+2,k和Sj+2,k,经过J次分解后,原始数据S0,k的小波变换表示为{SJ,dJ,dJ-1,……,d1},其中SJ代表了信号的低频部分,而{dJ,dJ-1,……,d1}则是信号的高频部分。Some overall properties (such as the mean) of the coefficient subset S j+1,k generated by the above two steps are not consistent with the properties in the original data, so an update process is required. The purpose is to generate a better sub-data set S j+1,k through the operator U to keep some characteristics of the original data set S j,k , S j+1,k is defined as S j+1, k =S j,2k+1 +U(d j+1,k ). For the data subset S j+1,k to perform the same splitting, prediction and update, S j+1,k can be decomposed into d j+2,k and S j+2,k , after J times of decomposition, The wavelet transform of the original data S 0,k is expressed as {S J ,d J ,d J-1 ,...,d 1 }, where S J represents the low-frequency part of the signal, and {d J ,d J-1 , ...,d 1 } is the high frequency part of the signal.
⑷优化提升步⑷Optimize the lifting step
即根据实际情况交替的应用对偶提升步和更新提升步来改善小波变换的性质。基于提升方案的正变换算法可以写成和 That is, according to the actual situation, the dual lifting step and the update lifting step are alternately applied to improve the properties of the wavelet transform. The forward transformation algorithm based on the lifting scheme can be written as and
对偶提升步Dual lift step
更新提升步update step
经过M对更新提升步和对偶提升步之后,结合比例因子nl和nh,偶样点变成了低通系数,奇样点变成了高通系数,即After M pairs of update boosting steps and dual boosting steps, combined with the scale factors n l and n h , the even sample points become low-pass coefficients, and the odd sample points become high-pass coefficients, that is,
通常,M称为提升步数,nl和nh称为归一化因子,并且n1×nh=1,对于不同的双正交小波,nl和nh的值步同。以三级小波变换为例,正交变换后的归一化过程如图1所示。Usually, M is called the number of lifting steps, n l and n h are called normalization factors, and n 1 ×n h =1, for different biorthogonal wavelets, the values of n l and n h are synchronized. Taking the three-level wavelet transform as an example, the normalization process after the orthogonal transform is shown in Figure 1.
逆变换可以写成The inverse transform can be written as
最后得到偶样点和奇样点,即偶样点为奇样点为在实际应用中,通常利用提升方案实现整数-整数小波变换,即Finally, even samples and odd samples are obtained, that is, the even samples are The odd point is In practical applications, the integer-integer wavelet transform is usually implemented using a lifting scheme, i.e.
写成written as
为取整数运算,提升方案的分解和重构如图2所示。 For integer operations, the decomposition and reconstruction of the boosting scheme is shown in Figure 2.
本实施例通过研究并行编码结构,主要是为了编码器硬件实现打下坚实基础,研究发现DWT变换后的位平面之间是通过幅值相互关联的,并且可以从DWT系数完全可以预见的,即对于第i位平面该像素点系数相对于当前阈值的重要性为第i+1位平面到最高位MSB在该像素点系数位的逻辑或运算。所以可以认为位平面之间是相对独立的,每个系数在各个位平面的重要性信息可以同时获得,这样位平面的并行处理就成为可能,基于DWT和位平面的并行编码器如图3所示。图3中编码算法采用SPIHT,具体实现时根据并行编码树结构适当修改SPIHT编码算法In this embodiment, the parallel coding structure is studied, mainly to lay a solid foundation for the hardware implementation of the encoder. The study finds that the bit planes transformed by DWT are correlated with each other through amplitudes, and can be completely predicted from the DWT coefficients, that is, for The importance of the pixel coefficient of the i-th bit plane relative to the current threshold is the logical OR operation of the i+1-th bit plane to the most significant MSB in the pixel coefficient bits. Therefore, it can be considered that the bit planes are relatively independent, and the importance information of each coefficient in each bit plane can be obtained at the same time, so that the parallel processing of the bit planes becomes possible. The parallel encoder based on DWT and bit planes is shown in Figure 3. Show. The coding algorithm in Fig. 3 adopts SPIHT, and the SPIHT coding algorithm is appropriately modified according to the parallel coding tree structure in the specific implementation.
通过研究压缩编码的抗干扰、容错性实现高鲁棒性容错编码算法,具体方案实现有以下两个方面内容。By studying the anti-interference and fault tolerance of compression coding, a highly robust fault-tolerant coding algorithm can be realized. The specific scheme is realized in the following two aspects.
⑴超光谱图像编码算法⑴Hyperspectral image coding algorithm
将输入数据划分成多个相互独立的且长度大体相同的数据包,对每个数据包实施本文中的编码算法。当其中某些包丢失后,接收端依靠已经接收到的数据包,来近似的恢复那部分丢失的信息。图像恢复的质量取决于接收到了多少个数据包,而不取决于接收到了具体哪个包。Divide the input data into multiple independent data packets with approximately the same length, and implement the encoding algorithm in this paper for each data packet. When some of the packets are lost, the receiving end relies on the received data packets to approximately recover the lost information. The quality of image restoration depends on how many packets are received, not on which packets are received.
⑵打包小波零树图像压缩算法(2) Packed wavelet zero-tree image compression algorithm
将小波零树类型的编码器输出的码流,分成固定长度的片段,这些片段是可以独立解码的,一个片段中的错误并不会影响到其他片段,从而实现抗干扰和容错功能。结合本文提出编码算法的抗干扰、容错方案。编码器、译码器抗干扰容错性方案如图4所示。The code stream output by the wavelet zero-tree encoder is divided into fixed-length segments. These segments can be decoded independently. Errors in one segment will not affect other segments, so as to achieve anti-interference and fault tolerance functions. Combined with this paper, the anti-jamming and fault-tolerant scheme of coding algorithm is proposed. The anti-interference and fault-tolerant scheme of the encoder and decoder is shown in Figure 4.
SPIHT编码算法基本步骤为:The basic steps of the SPIHT encoding algorithm are:
S1、初始化S1, initialization
输出置LSP为空,将坐标(i,j)∈H送入LIP,并将H中有后代(即高频部分:HLJ、LHJ、HHJ)的送入LIS,作为A型值output Set LSP to be empty, send coordinates (i,j)∈H to LIP, and send those with descendants in H (ie high-frequency parts: HLJ, LHJ, HHJ) to LIS as the A-type value
S2、排序过程S2, sorting process
S21、对每一(i,j)∈LIP,作输出Sn(i,j),若Sn(i,j)=1,将(i,j)移入LSP,并输出C(i,j)的符号;S21. For each (i,j)∈LIP, output Sn (i,j), if Sn (i,j)=1, move (i,j) into LSP, and output C(i,j) )symbol;
S22、对每一(i,j)∈LIS,作S22. For each (i,j)∈LIS, do
S221、若为A型值,则S221. If it is an A-type value, then
①输出Sn(D(i,j));①Output Sn (D(i,j));
②若Sn(D(i,j))=1则对每一(k,l)∈O(i,j),作:②If Sn (D( i,j ))=1, then for each (k,l)∈O(i,j), do:
输出Sn(k,l);output Sn (k,l);
若Sn(k,l)=1,将(k,l)送入LSP并输出其符号;If Sn (k,l)=1, send (k,l) into LSP and output its symbol;
若Sn(k,l)=0,将(k,l)送入LIP末尾;If Sn (k,l)=0, send (k,l) to the end of LIP;
③若L(i,j)≠φ,将(k,l)移到LIS的末尾,作为B型值;否则,将(i,j)从LIS中删除;③If L(i,j)≠φ, move (k,l) to the end of LIS as a B-type value; otherwise, delete (i,j) from LIS;
S222、若为B型值,则S222. If it is a B-type value, then
①输出Sn(L(i,j));①Output Sn (L(i,j));
②若Sn(L(i,j))=1,则②If Sn (L(i,j))=1, then
对每一(k,l)∈O(i,j)加到LIS的末尾,作为A型值;Add to the end of LIS for each (k,l)∈O(i,j) as a type A value;
将(i,j)从LIS中删除;remove (i,j) from the LIS;
S3、细化过程:对每一(i,j)∈LSP(不包括最近一次分裂过程产生的)输出|ci,j|的第n个最重要的位;S3. Refinement process: output the nth most significant bit of |ci ,j | for each (i,j)∈LSP (excluding the most recent splitting process);
S4、量化步长刷新,n=n-1;返回S2;S4, quantization step refresh, n=n-1; return to S2;
编码的终止由给定的码率决定,如果是无失真压缩则编码到n=0为止,解码时,只需将上述算法中的输出变为输入即可。The termination of encoding is determined by a given code rate. If it is lossless compression, it is encoded until n=0. When decoding, the output in the above algorithm only needs to be changed into the input.
本实施例中为了研究编码器、译码器算法的存储复杂性及时间复杂性,针对内存存储做了优化的前提下,通过所有测试条件相同的条件下,对各种编码器、译码器算法进行了测试。本文采用Canal超光谱图像进行测试,提供了24幅3波段彩色标准测试图像(768×512×24bits)的测试,SPIHT算法编码器、译码器算法的时间复杂性测试如表1所示。In this embodiment, in order to study the storage complexity and time complexity of the encoder and decoder algorithms, under the premise of optimizing the memory storage, all the encoders and decoders are tested under the same test conditions. Algorithms were tested. This paper uses Canal hyperspectral images for testing, and provides 24 3-band color standard test images (768×512×24bits) for testing. The time complexity test of the SPIHT algorithm encoder and decoder algorithm is shown in Table 1.
表1Canal超光谱测试图像SPIHT算法编码器、译码器算法的时间复杂性测试Table 1 Time complexity test of SPIHT algorithm encoder and decoder algorithm for Canal hyperspectral test image
表1测试结果,验证了Canal超光谱测试图像SPIHT算法编码器、译码器算法的时间复杂性相差是非常大。The test results in Table 1 verify that the time complexity of the Canal hyperspectral test image SPIHT algorithm encoder and decoder algorithm are very different.
本实施例中,进行仿真实验测试的超光谱图像canal.bsq光谱分辨率10nm,光谱范围400nm-2400nm,共223波段,canal.bsq相邻波段的谱间互相关系数Ri,相邻波段的相关系数如图5所示。In this embodiment, the hyperspectral image canal.bsq tested by the simulation experiment has a spectral resolution of 10 nm, a spectral range of 400 nm-2400 nm, a total of 223 bands, the spectral cross-correlation coefficient Ri of adjacent bands of canal.bsq, and the correlation between adjacent bands. The coefficients are shown in Figure 5.
图5中第106波段-113波段和第152波段-157波段,第217波段-222波段谱间相关性有非常明显的下降。将整个超光谱图像分成5个部分,可以根据谱段相关性的不同分组进行变换。通过分析发现已公开的去除谱间冗余的预测和变换等并没有有效的提高压缩比,因此有必要研究基于分段的矩阵变换来去除谱间冗余,提高超光谱图像压缩的效果。In Figure 5, the spectral correlations between bands 106-113, bands 152-157, and bands 217-222 have a very obvious decrease. The entire hyperspectral image is divided into 5 parts, which can be transformed according to different groupings of spectral band correlations. Through analysis, it is found that the published predictions and transformations to remove spectral redundancy have not effectively improved the compression ratio. Therefore, it is necessary to study segment-based matrix transformation to remove spectral redundancy and improve the effect of hyperspectral image compression.
因此,本文采用160波段canal.bsq超光谱遥感图像进行压缩仿真实验。通过超光谱图像采用谱间、空间联合变换去冗余的办法实现去冗余,谱间变换采用XCJRCT变换,帧内变换采用CDF(2,2)提升方案小波变换,然后对变换结果实施SPIHT编码,表2是对超光谱遥感测试图像canal.bsq前160波段的SPIHT压缩编码实验结果。Therefore, this paper adopts the 160-band canal.bsq hyperspectral remote sensing image for compression simulation experiment. The hyperspectral image is de-redundant by using inter-spectral and spatial joint transformation to achieve de-redundancy. Inter-spectral transformation adopts XCJRCT transformation, and intra-frame transformation adopts CDF (2, 2) lifting scheme wavelet transformation, and then implements SPIHT coding on the transformation result. , Table 2 shows the experimental results of SPIHT compression coding for the first 160 bands of the hyperspectral remote sensing test image canal.bsq.
表2超光谱图像canal.bsq前160波段的SPIHT压缩编码实验结果Table 2 Experimental results of SPIHT compression coding for the first 160 bands of hyperspectral image canal.bsq
本实施例和其它典型的无损压缩算法进行了实验对比,JPEG-LS是基于LOCO-I算法的无损压缩算法,通过上下文模型和误差反馈有效降低误差图像的熵,然后通过游程编码实现对误差图像的编码。将160波段分成10组,谱间采用1D-CDF(2,2)DWT,帧内采用2D-CDF(2,2)DWT进行SPIHT压缩编码,超光谱图像canal.bsq前160波段无损压缩比随波段变化曲线如图6所示。This embodiment is compared with other typical lossless compression algorithms. JPEG-LS is a lossless compression algorithm based on the LOCO-I algorithm. It effectively reduces the entropy of the error image through the context model and error feedback, and then realizes the error image through run-length coding. 's encoding. The 160 bands are divided into 10 groups, 1D-CDF(2,2) DWT is used between the spectra, and 2D-CDF(2,2) DWT is used for SPIHT compression coding in the frame. The lossless compression ratio of the first 160 bands of the hyperspectral image canal.bsq varies with The band change curve is shown in Figure 6.
160波段平均无损压缩比为2.728695;160波段无损压缩比随波段变化曲线。WinZip是Microsoft提出的一种著名的无损图像压缩方法,ARJ方法采用的是单趟自适应Huffman无损压缩算法,DPCM是典型的基于预测的无损压缩算法。本文算法与典型压缩算法对比实验结果如表3所示。The average lossless compression ratio of the 160-band is 2.728695; the lossless compression ratio of the 160-band varies with the band. WinZip is a well-known lossless image compression method proposed by Microsoft. The ARJ method adopts a single-pass adaptive Huffman lossless compression algorithm. DPCM is a typical prediction-based lossless compression algorithm. The experimental results of the comparison between the algorithm in this paper and the typical compression algorithm are shown in Table 3.
表3本文算法与典型压缩算法对比实验结果Table 3 The experimental results of the comparison between the algorithm in this paper and the typical compression algorithm
从实验结果可知,各个波段的无损压缩比随波段的变化比较快,压缩比变化范围为[1.5984,4.1686],压缩比2.728695,变换方案比JPEG-LS、WinZip、ARJ和DPCM等典型算法分别提高了73.692%、67.713%、65.175%、59.108%。因此,采用XCJRCT小波提升方案非常有效。It can be seen from the experimental results that the lossless compression ratio of each band changes faster with the band, the compression ratio changes in the range of [1.5984, 4.1686], and the compression ratio is 2.728695. The transformation scheme is higher than typical algorithms such as JPEG-LS, WinZip, ARJ and DPCM, respectively. 73.692%, 67.713%, 65.175%, 59.108%. Therefore, adopting the XCJRCT wavelet lifting scheme is very effective.
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。Although the present invention has been described in detail above with general description and specific embodiments, some modifications or improvements can be made on the basis of the present invention, which will be obvious to those skilled in the art. Therefore, these modifications or improvements made without departing from the spirit of the present invention fall within the scope of the claimed protection of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110241805.5A CN113038143A (en) | 2021-03-04 | 2021-03-04 | Hyper-spectral image lossless compression coding system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110241805.5A CN113038143A (en) | 2021-03-04 | 2021-03-04 | Hyper-spectral image lossless compression coding system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113038143A true CN113038143A (en) | 2021-06-25 |
Family
ID=76467636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110241805.5A Pending CN113038143A (en) | 2021-03-04 | 2021-03-04 | Hyper-spectral image lossless compression coding system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113038143A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010074288A (en) * | 2001-05-04 | 2001-08-04 | 이호석 | Image encoding and decoding method |
CN101754008A (en) * | 2008-12-10 | 2010-06-23 | 解成俊 | Uniform parametric three-band spectral integer reversible transformation |
CN102396222A (en) * | 2009-06-09 | 2012-03-28 | 索尼公司 | Adaptive entropy coding for images and videos using set partitioning in generalized hierarchical trees |
CN102905137A (en) * | 2012-11-01 | 2013-01-30 | 重庆邮电大学 | Fast Difference Vector Quantization Compression Coding Method for Hyperspectral Signals |
US20130051691A1 (en) * | 2011-08-25 | 2013-02-28 | Shantanu Rane | Method for Distributed Source Coding of Wavelet Coefficients in Zerotrees |
-
2021
- 2021-03-04 CN CN202110241805.5A patent/CN113038143A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010074288A (en) * | 2001-05-04 | 2001-08-04 | 이호석 | Image encoding and decoding method |
CN101754008A (en) * | 2008-12-10 | 2010-06-23 | 解成俊 | Uniform parametric three-band spectral integer reversible transformation |
CN102396222A (en) * | 2009-06-09 | 2012-03-28 | 索尼公司 | Adaptive entropy coding for images and videos using set partitioning in generalized hierarchical trees |
US20130051691A1 (en) * | 2011-08-25 | 2013-02-28 | Shantanu Rane | Method for Distributed Source Coding of Wavelet Coefficients in Zerotrees |
CN102905137A (en) * | 2012-11-01 | 2013-01-30 | 重庆邮电大学 | Fast Difference Vector Quantization Compression Coding Method for Hyperspectral Signals |
Non-Patent Citations (2)
Title |
---|
刘爱平: "基于SPIHT算法的高光谱图像压缩研究", 《中国优秀硕士论文全文数据库》 * |
刘雪霞: "基于3D-SPIHT编码算法的超光谱图像压缩研究", 《中国优秀硕士论文全文数据库》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2930930B1 (en) | Image data processing | |
CN112134567B (en) | An adaptive real-time compression method and system for absorption spectrum data | |
JPH11163733A (en) | Encoding method and device | |
CN101848311B (en) | JPEG2000 EBCOT encoder based on Avalon bus | |
CN102186076A (en) | Image compression method and image compression device for real-time code rate pre-allocation | |
Yadav et al. | Flow-MotionNet: A neural network based video compression architecture | |
CN104869426A (en) | JPEG coding method lowering image diamond effect under low compression code rate | |
CN113038143A (en) | Hyper-spectral image lossless compression coding system | |
CN101493945A (en) | Point interference image compression method and device based on wavelet transform | |
CN111131834A (en) | Reversible self-encoder, encoding and decoding method, image compression method and device | |
CN110572682A (en) | An Embedded Zerotree Wavelet Image Coding and Compression Method | |
CN103761753A (en) | Decompression method based on texture image similarity | |
Li et al. | Research on lossless compression coding algorithm of N-band parametric spectral integer reversible transformation combined with the lifting scheme for hyperspectral images | |
CN106131575A (en) | The method for compressing image combined with Chinese remainder theorem based on wavelet transformation | |
CN113709144B (en) | High-frequency signal compression method | |
CN1564604A (en) | Gradation tree set partitioning image compression method based on tree shaped structure | |
Zhu et al. | An improved SPIHT algorithm based on wavelet coefficient blocks for image coding | |
Wagh et al. | Design & implementation of JPEG2000 encoder using VHDL | |
CN114882133B (en) | Image encoding and decoding method, system, device and medium | |
Farhan et al. | Lossless image compression using shift coding | |
Srinivasan et al. | Selection of optimal wavelet for lossless EEG compression for real-time applications | |
Rajeshwari et al. | DWT based Multimedia Compression | |
Narasimhulu et al. | Hybrid LWT and DCT based High-Quality Image Compression | |
Hashim et al. | Image Compressionusing Hybrid Method | |
El-Sharkawey et al. | Comparison between (RLE & Huffman and DWT) Algorithms for Data Compression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Changcheng Inventor after: Xie Chengjun Inventor after: Chen Deyun Inventor before: Li Changcheng Inventor before: Xie Chengjun Inventor before: Tang You Inventor before: Chen Dong Inventor before: Wang Yongjiang Inventor before: Yu Zhicai |