CN113035989A - 一种基于发光聚合物的太阳能聚光板 - Google Patents

一种基于发光聚合物的太阳能聚光板 Download PDF

Info

Publication number
CN113035989A
CN113035989A CN201911239914.2A CN201911239914A CN113035989A CN 113035989 A CN113035989 A CN 113035989A CN 201911239914 A CN201911239914 A CN 201911239914A CN 113035989 A CN113035989 A CN 113035989A
Authority
CN
China
Prior art keywords
polymer
solar
dimethyloctyloxy
phenylacetylene
quantum efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911239914.2A
Other languages
English (en)
Inventor
吴凯丰
罗消
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201911239914.2A priority Critical patent/CN113035989A/zh
Publication of CN113035989A publication Critical patent/CN113035989A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种基于发光聚合物的太阳能聚光板。该太阳能聚光板主要由具有高荧光量子效率的发光聚合物作为光吸收和发射材料,聚合物本身也作为光波导介质。利用聚合物较大的消光系数高效吸光,并通过其较大的光谱斯托克斯位移有效减小自吸收损失,最终通过聚合物光波导到侧面的太阳能电池实现光电转换。所述的发光聚合物具有高的荧光量子效率和大的光谱斯托克斯位移。作为优选方案,发光聚合物选用聚[{2,5‑二(3′,7′‑二甲基辛氧基)‑1,4‑苯乙炔}‑co‑{3‑(4′‑(3”,7”‑二甲基辛氧基)苯基)‑1,4‑苯乙炔}‑co‑{3‑(3′‑(3”,7”‑二甲基辛氧基)苯基)‑1,4‑苯乙炔}](Super yellow PPV),最终获得高达27.5%的内部量子效率。

Description

一种基于发光聚合物的太阳能聚光板
技术领域
本发明涉及一种基于发光聚合物的太阳能聚光板。
背景技术
太阳能聚光板(LSCs)是一种吸收太阳光并利用全反射效应波导荧光到板的边缘,进而耦合到光伏电池,从而产生电力的荧光器件。相比传统太阳能模块,LSCs具有更低的光伏成本,以及实现(半)透明窗户、智能建筑、智慧交通和温室大棚的潜力。其中,板边缘发射的光子与吸收的太阳光子之比定义了LSC的内部量子效率(int);板边缘发射的光子与入射的太阳光子之比定义了LSC的外部量子效率(ext);其中,extint×absabs代表LSC对太阳光子的吸收效率。传统的聚光板通常将荧光材料(如有机染料,胶体量子点)溶于惰性聚合物中形成荧光波导层,通过吸收太阳光发射光子并波导到板的边缘进行光电转换。通常,荧光材料在聚合物中具有较差的溶解度,大致荧光散射现象较为严重,最终致使器件的内部量子效率较低。
近年来,光学活性、高荧光量子效率的发光聚合物在有机电子器件中兴起,这类聚合物在常见的有机溶剂(如甲苯、氯仿等)中具有极好的溶解度,同时兼具高的荧光量子效率和大的光谱斯托克斯位移,因此可通过简单的溶液法制备高效的太阳能聚光板。
我们通过溶液法制备了聚[{2,5-二(3′,7′-二甲基辛氧基)-1,4-苯乙炔}-co-{3-(4′-(3”,7”-二甲基辛氧基)苯基)-1,4-苯乙炔}-co-{3-(3′-(3”,7”-二甲基辛氧基)苯基)-1,4-苯乙炔}](Super yellow PPV)薄膜,测试发现其具有61.57%的荧光量子效率和较大的光谱斯托克斯位移。基于该发光聚合物制备了LSC。该器件可实现27.5%的内部量子效率。假定该LSC对太阳光子的吸收效率为30%,那么该器件可实现8.3%的外部量子效率。该发明为今后发展基于发光聚合物的高性能LSC提供了基础,为最终实现商业化奠定了前提。
发明内容
本发明的目的在于,提供一种基于发光聚合物的太阳能聚光板,以解决太阳能聚光板效率偏低、工艺繁琐的技术问题。
所述的太阳能聚光板由发光聚合物组成的波导层和玻璃衬底组成。
所述的发光聚合物具有较高的荧光量子效率(20%-100%)和大的光谱斯托克斯位移(>100meV)。
所述的发光聚合物可以是一种或二种聚合物以上。
所述的高效太阳能聚光板采用本领域公知的方法制备得到。优选的发光聚合物是Super yellow PPV;优选的制备方法为刮刀流延法,该方案制备简单,并在今后有望实现加工成本低廉的太阳能聚光板制备。
为了验证上述太阳能聚光板是否真正实现了高效的光学效率,本发明采用的验证技术方案为:
利用稳态吸收和荧光光谱,确定发光聚合物的基本光吸收、发射特性和荧光量子效率。
基于上述光谱数据和积分球系统,建立模型,测量并计算基于该发明制备的LSC的光学效率。
本发明太阳能聚光板主要由具有高荧光量子效率的发光聚合物作为光吸收和发射材料,聚合物本身也作为光波导介质。利用聚合物较大的消光系数高效吸光,并通过其较大的光谱斯托克斯位移有效减小自吸收损失,最终通过聚合物光波导到侧面的太阳能电池实现光电转换。所述的发光聚合物具有高的荧光量子效率和大的光谱斯托克斯位移。作为优选方案,发光聚合物选用聚[{2,5-二(3′,7′-二甲基辛氧基)-1,4-苯乙炔}-co-{3-(4′-(3”,7”-二甲基辛氧基)苯基)-1,4-苯乙炔}-co-{3-(3′-(3”,7”-二甲基辛氧基)苯基)-1,4-苯乙炔}](Super yellow PPV),最终获得高达27.5%的内部量子效率。
附图说明
图1,发光聚合物太阳能聚光板示意图。
图2,发光聚合物太阳能聚光板实物图:(a)紫外光照射;(b)日光照射。
图3,(a)发光聚合物Super yellow PPV的分子结构;(b)Super yellow PPV的紫外-可见吸收光谱和荧光光谱。
图4,(a)发光聚合物太阳能聚光板的荧光量子效率测量;(b)发光聚合物太阳能聚光板的总发射、边发射和面发射荧光光谱。
具体实施方式
本发明通过实施例和附图做进一步的说明。
实施例
本实施例所述一种基于发光聚合物的太阳能聚光板,其制备方法包括以下步骤:
10mL的氯仿溶液与0.5g的Super yellow PPV(1500000的平均分子量)混合搅拌10小时,将混合物低速(2000转/分钟)离心取上清液,利用刮刀流延法将其均匀涂布在25平方厘米玻璃基底上,静置直至溶剂完全挥发,形成太阳能聚光板,示意图如图1所示,实物图如图2。
我们制备获得的太阳能聚光板是否能实现高效的光学效率,需利用光学检测手段与理论计算结合予以验证,验证检测主要从以下三个方面进行:
(1)Super yellow PPV发光聚合物的吸收、荧光光谱。
利用稳态吸收和荧光光谱检测手段,对Super yellow PPV发光聚合物(图3a)氯仿溶液的吸收和荧光特性进行测试,其中,紫外-可见稳态吸收光谱采用安捷伦carry 5000仪器获得;荧光光谱的激发波长为365nm,采用海洋光学Maya 2000Pro光纤光谱仪获得,如图3b所示。Super yellow PPV具有较大的光谱斯托克斯位移。
(2)基于Super yellow PPV发光聚合物LSC的荧光光谱。
利用积分球与光纤光谱仪搭建LSC荧光光谱测试系统,采用365nm光激发LSC样品,测试LSC的吸收强度和总发光强度,并计算得到LSC的荧光量子效率(ηPL,LSC=61.57%),如图4a;将LSC的四周用黑色胶带覆盖,测得LSC的面发射荧光强度;利用总发光光谱减去面发射光谱获得LSC边发射荧光光谱。如图4b所示,通过光谱积分计算可知该LSC的边发射荧光效率为ηedge=44.7%,说明该LSC可有效减小荧光材料的自吸收损失。因此,该LSC的内部光学效率ηint=ηPL,LSC×ηedge=27.5%。
(3)计算Super yellow PPV发光聚合物太阳能聚光板的光学效率。
假定Super yellow PPV发光聚合物对太阳光的吸收效率ηabs=30%(测定方法参见Nature Photonics,2018,12,105.);基于图4b测出太阳能聚光板的内部量子效率(ηint,测定方法参见Nature Photonics,2018,12,105.),可计算出外部量子效率(测定方法参见Nature Photonics,2018,12,105.)ηext=ηabs×ηint=8.3%。
本发明涉及一种基于发光聚合物的太阳能聚光板。该太阳能聚光板主要由具有高荧光量子效率的发光聚合物作为光吸收和发射材料,聚合物本身也作为光波导介质。利用聚合物较大的消光系数高效吸光,并通过其较大的光谱斯托克斯位移有效减小自吸收损失,最终通过聚合物光波导到侧面的太阳能电池实现光电转换。所述的发光聚合物具有高的荧光量子效率和大的光谱斯托克斯位移。作为优选方案,发光聚合物选用聚[{2,5-二(3′,7′-二甲基辛氧基)-1,4-苯乙炔}-co-{3-(4′-(3”,7”-二甲基辛氧基)苯基)-1,4-苯乙炔}-co-{3-(3′-(3”,7”-二甲基辛氧基)苯基)-1,4-苯乙炔}](Super yellow PPV),最终获得高达27.5%的内部量子效率。
综上所述,我们发明的这种基于发光聚合物的高效太阳能聚光板,可以有效地减小荧光材料在聚合物中光学散射导致的自吸收损失,同时获得优异的波导效率和荧光效率,最终实现较高的器件光学效率。该发明对今后基于发光聚合物的高性能太阳能聚光板研发具有极大的指导价值和意义。

Claims (4)

1.一种基于发光聚合物的太阳能聚光板,包括附着于玻璃衬底上的波导层和玻璃衬底,其特征在于:该太阳能聚光板波导层由发光聚合物构成,其中,发光聚合物作为光吸收和发射体,荧光量子效率为20%-100%;聚合物也作为光波导介质,具有10000-10000000的平均分子量(优选为1000000-2000000,更优选为1500000)。
2.根据权利要求1所述的太阳能聚光板,其特征在于:所述的发光聚合物具有较高的荧光量子效率(20%-100%)和大的光谱斯托克斯位移(>100meV)。
3.根据权利要求1或2所述的太阳能聚光板,其特征在于:所述的发光聚合物可以是一种或二种聚合物以上;
优选方案为:聚[{2,5-二(3′,7′-二甲基辛氧基)-1,4-苯乙炔}-co-{3-(4′-(3”,7”-二甲基辛氧基)苯基)-1,4-苯乙炔}-co-{3-(3′-(3”,7”-二甲基辛氧基)苯基)-1,4-苯乙炔}](Super yellow PPV)。
4.根据权利要求1所述的太阳能聚光板,其特征在于:利用聚合物较大的消光系数高效吸光,并通过其较大的光谱斯托克斯位移有效减小自吸收损失,最终通过聚合物光波导到侧面的太阳能电池实现光电转换。
CN201911239914.2A 2019-12-06 2019-12-06 一种基于发光聚合物的太阳能聚光板 Pending CN113035989A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911239914.2A CN113035989A (zh) 2019-12-06 2019-12-06 一种基于发光聚合物的太阳能聚光板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911239914.2A CN113035989A (zh) 2019-12-06 2019-12-06 一种基于发光聚合物的太阳能聚光板

Publications (1)

Publication Number Publication Date
CN113035989A true CN113035989A (zh) 2021-06-25

Family

ID=76450748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911239914.2A Pending CN113035989A (zh) 2019-12-06 2019-12-06 一种基于发光聚合物的太阳能聚光板

Country Status (1)

Country Link
CN (1) CN113035989A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751366A (zh) * 2012-07-11 2012-10-24 大连海事大学 太阳能荧光聚集器及其制备方法
WO2015034342A1 (en) * 2013-09-06 2015-03-12 University Of Malaya Enhanced electron injection organic light emitting diode
CN106133921A (zh) * 2013-03-21 2016-11-16 密歇根州立大学董事会 透明能量收集装置
WO2019202529A1 (en) * 2018-04-19 2019-10-24 Eni S.P.A. Luminescent solar concentrators of neutral coloration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751366A (zh) * 2012-07-11 2012-10-24 大连海事大学 太阳能荧光聚集器及其制备方法
CN106133921A (zh) * 2013-03-21 2016-11-16 密歇根州立大学董事会 透明能量收集装置
WO2015034342A1 (en) * 2013-09-06 2015-03-12 University Of Malaya Enhanced electron injection organic light emitting diode
WO2019202529A1 (en) * 2018-04-19 2019-10-24 Eni S.P.A. Luminescent solar concentrators of neutral coloration

Similar Documents

Publication Publication Date Title
McKenna et al. Towards efficient spectral converters through materials design for luminescent solar devices
Ma et al. Carbon dots and AIE molecules for highly efficient tandem luminescent solar concentrators
US11688818B2 (en) Transparent energy-harvesting devices
Correia et al. Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials
Meinardi et al. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’nanocrystals in a mass-polymerized PMMA matrix
Griffini et al. Thin-film luminescent solar concentrators: A device study towards rational design
Mulder et al. Dye alignment in luminescent solar concentrators: II. Horizontal alignment for energy harvesting in linear polarizers
Uekert et al. Nanostructured organosilicon luminophores in highly efficient luminescent down-shifting layers for thin film photovoltaics
Mateen et al. Indoor/outdoor light-harvesting by coupling low-cost organic solar cell with a luminescent solar concentrator
Ma et al. Large Stokes-shift AIE fluorescent materials for high-performance luminescent solar concentrators
Tatsi et al. Thermoresponsive host polymer matrix for self-healing luminescent solar concentrators
Li et al. Luminescent solar concentrators performing under different light conditions
Corsini et al. Highly emissive fluorescent silica-based core/shell nanoparticles for efficient and stable luminescent solar concentrators
Gajic et al. Circular luminescent solar concentrators
Yang et al. Integration of near-infrared harvesting transparent luminescent solar concentrators onto arbitrary surfaces
CN107251236A (zh) 混合式集中光伏装置
Liu et al. Red-emissive carbon quantum dots enable high efficiency luminescent solar concentrators
Li et al. Low-loss, high-transparency luminescent solar concentrators with a bioinspired self-cleaning surface
US20200235254A1 (en) Luminescent solar concentrator using a metal-free emitter
CN105247690B (zh) 聚光设备
CN113035989A (zh) 一种基于发光聚合物的太阳能聚光板
El-Bashir Coumarin-doped PC/CdSSe/ZnS nanocomposite films: A reduced self-absorption effect for luminescent solar concentrators
Tonezzer et al. Luminescent solar concentrators–state of the art and future perspectives
CN112928984A (zh) 一种基于聚集诱导发光分子的叠层太阳能聚光板
Yu et al. Integration of Conjugated Copolymers‐Based Luminescent Solar Concentrators with Excellent Color Rendering and Organic Photovoltaics for Efficiently Converting Light to Electricity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210625