CN113033672B - 基于特征增强的多类别光学图像旋转目标自适应检测方法 - Google Patents

基于特征增强的多类别光学图像旋转目标自适应检测方法 Download PDF

Info

Publication number
CN113033672B
CN113033672B CN202110335732.6A CN202110335732A CN113033672B CN 113033672 B CN113033672 B CN 113033672B CN 202110335732 A CN202110335732 A CN 202110335732A CN 113033672 B CN113033672 B CN 113033672B
Authority
CN
China
Prior art keywords
target
convolution
layer
sub
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110335732.6A
Other languages
English (en)
Other versions
CN113033672A (zh
Inventor
侯彪
程自华
刘佳丽
邬子同
李中华
焦李成
马文萍
马晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110335732.6A priority Critical patent/CN113033672B/zh
Publication of CN113033672A publication Critical patent/CN113033672A/zh
Application granted granted Critical
Publication of CN113033672B publication Critical patent/CN113033672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/22Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection

Abstract

本发明提出了一种基于特征增强的多类别光学图像旋转目标自适应检测方法,实现步骤为:获取训练样本集和测试样本集;构建基于特征增强的光学图像旋转目标检测网络模型;对基于特征增强的光学图像旋转目标检测网络模型进行迭代训练;通过训练好的基于特征增强的光学图像旋转目标检测网络模型对所有目标的边界框位置和类别置信度进行检测。本发明通过特征增强子网络对特征提取子网络提取后的特征进行卷积融合,增强了目标的语义特征和位置特征,同时检测网络在卷积融合后的高分辨率特征图上检测出更多的小尺度目标,减小了小尺度目标漏检的几率,提高了任意方向多尺度旋转目标检测的召回率和准确率,可用于资源管理、安全预警、非法活动识别等领域。

Description

基于特征增强的多类别光学图像旋转目标自适应检测方法
技术领域
本发明属于图像处理技术领域,涉及一种光学图像旋转目标检测方法,具体涉及一种基于特征增强的多类别光学图像旋转目标自适应检测方法,可用于资源管理、安全预警、非法活动识别等领域。
背景技术
近年来随着我国的卫星数量逐渐增多以及获取的图像质量也在不断提升,能够采集到高分辨率的光学图像,这为各种资源的监视和管理等相关研究带来了新的挑战。光学图像旋转目标检测为这方面的研究提供了一种高效的思路。光学图像旋转目标检测是指在已经获取的光学图像上,检测出图像中所有感兴趣目标的边界框位置和类别,旋转目标指的是目标的边界框位置包含边界框的中心点坐标、边界框的长、边界框的宽以及边界框的长边与水平方向的逆时针夹角。然而光学图像旋转目标检测仍存在一些难点,例如背景信息的复杂度高、目标的尺寸变化大、目标密集排列以及目标以任意方向出现。
现有的光学图像目标检测方法主要分为传统的目标检测方法和基于深度学习的目标检测方法。传统的目标检测方法在给定的图像上选择一些候选的区域,对这些区域提取特征,再使用训练的分类器进行分类,该类传统的检测方法在信息丰富的光学图像上检测精度普遍低且消耗时间过长。基于深度学习的目标检测方法中具有代表性的有J.Redmon等人在2016年提出的YOLOV3算法。针对传统的目标检测算法普遍出现的运算速度慢的缺点,YOLOV3直接在输出层回归边界框的位置和所属类别信息,从而满足实时性能需求,但由于YOLOV3为水平边界框定位的目标检测方法,无法定位旋转目标的角度。
为了获得旋转目标的方向信息,研究学者在YOLOV3的基础上通过设计旋转的先验框去匹配旋转目标实现更精确的定位。例如申请公布号为CN110674674A,名称为“一种基于YOLOV3的旋转目标检测方法”的专利申请,公开了一种基于YOLOV3的旋转目标检测方法,该方法通过重新设计YOLOV3算法中边界框的产生、IOU的计算和损失函数的计算方法,解决了无法定位旋转目标角度以及目标检测准确率和召回率低的问题,但该方法中小尺度目标经过特征提取网络的多次下采样后特征容易丢失,导致小尺度目标的漏检,同时该网络特征提取网络提取目标的语义特征和位置特征不充分,导致目标检测的准确率低。
发明内容
本发明的目的在于克服上述现有技术存在的缺陷,提出了一种基于特征增强的多类别光学图像旋转目标自适应检测方法,用于解决现有技术中存在的任意方向多尺寸密集排列的旋转目标召回率与准确率低的问题。
本发明的技术思路为,获取训练样本集和测试样本集,对训练样本集进行镜像翻转和任意方向扰动角度的数据增强,搭建一个包含主干网络和检测网络的光学图像旋转目标检测网络模型,其中主干网络包含特征提取子网络和特征增强子网络,检测网络包含定位子网络和分类子网络,利用训练样本集训练光学图像旋转目标检测网络模型,得到训练好的光学图像旋转目标检测网络模型,将测试样本作为训练好的光学图像旋转目标检测网络模型的输入进行检测得到所有目标的边界框位置和类别置信度,并滤除目标类别置信度中低于置信度阈值的目标边界框位置和类别置信度,得到过滤后的目标边界框位置和类别置信度,然后通过旋转目标的非极大值抑制RNMS方法对同一目标重复检测的边界框位置的目标的边界框和类别置信度进行过滤,得到过滤后的目标边界框和类别置信度;
根据上述技术思路,实现本发明目的采取技术方案包括如下步骤:
(1)获取训练样本集和测试样本集:
(1a)获取包括M个旋转目标类别的T幅大小为N×N的光学图像H={H1,H2,…,Ht,…,HT},每幅光学图像Ht至少包含K个旋转目标,并通过标注框对每幅光学图像Hi中的每个旋转目标进行标注,将标注框中心的水平坐标x和垂直坐标y、标注框的长l和宽w、标注框的长边与水平方向的逆时针夹角θ作为Ht中每个旋转目标的边界框位置标签,将标注框内目标的类别c作为Ht中每个目标的类别标签,c∈{1,2,…,M},其中,M≥2,T≥20,Ht表示第t幅光学图像,K≥2;
(1b)以l_step为滑动步长,并通过大小为n×n的滑窗将每幅光学图像Ht裁剪为P个光学子图像H’t={H’t1,H’t2,…,H’ts,…,H’tP},得到裁剪后的光学图像集合H’={H’1,H’2,…,H’t,…,H’T},其中,H’ts表示Ht裁剪得到的第s个光学子图像;
(1c)通过光学子图像H’ts中目标相对于Ht中目标的水平偏移量xdiff和垂直偏移量ydiff,计算图像H’ts中目标的水平坐标x’=x-xdiff和垂直坐标y’=y-ydiff,并将图像H’ts中目标的标注框中心的水平坐标x’和垂直坐标y’、标注框的长l和宽w、标注框的长边与水平方向的逆时针夹角θ作为H’ts中目标的边界框位置标签,图像H’ts中目标的标注框的类别c作为H’ts中目标的类别标签;
(1d)对H’t中包含旋转目标的光学子图像集合H”t中的每个光学子图像分别进行镜像翻转和随机角度扰动的数据增强,得到数据增强后的光学子图像集合H”’t,并将H”t和H”’t构成的光学子图像集合以及/>中每个光学子图像的标签作为训练样本集,将从裁剪后的光学子图像集合H’中随机抽取的R×P幅裁剪后的光学子图像集合H*以及H*中每个光学子图像的标签作为测试样本集,其中,/>
(2)构建基于特征增强的光学图像旋转目标检测网络模型:
构建包括顺次连接的主干网络和检测网络的光学图像旋转目标检测网络模型,其中:
主干网络包括顺次连接的特征提取子网络和特征增强子网络;特征提取子网络包括多个卷积层和多个block块,block块包括顺次连接的两个卷积层和一个残差连接层;特征增强子网络包含顺次连接的上采样层和block1块;
检测网络包括并行连接的定位子网络和分类子网络;定位子网络包含顺次连接的卷积层、全连接层和先验框层;分类子网络包含顺次连接的卷积层和全连接层;
(3)对基于特征增强的光学图像旋转目标检测网络模型进行迭代训练:
(3a)初始化迭代次数为w,最大迭代次数为W,W≥10000,并令w=1;
(3b)将从训练样本集随机选取的b个训练样本作为光学图像旋转目标检测网络模型的输入进行前向传播,主干网络中的特征提取子网络对每个训练样本的所有目标进行特征提取,特征增强子网络对特征提取子网络所提取的特征进行合并后,对合并后的特征进行卷积融合,得到融合后的语义特征和位置特征,检测网络中的定位子网络利用融合后的位置特征计算目标预测边界框,分类子网络利用融合后的语义特征计算目标预测类别,其中,b≥10;
(3c)定位子网络采用Smoothl1函数,并通过目标的预测边界框和目标的边界框位置标签计算目标的位置损失值L1,分类子网络采用交叉熵函数,并通过目标的预测类别置信度和目标的类别标签计算目标的类别置信度损失值L2,然后采用随机梯度下降法,并通过L1与L2的和对主干网络和检测网络中的卷积核权重参数ωw和全连接层结点之间的连接权重参数θw进行更新;
(3d)判断w=W是否成立,若是,得到训练好的基于特征增强的光学图像旋转目标检测网络模型,否则,令w=w+1,并执行步骤(3b);
(4)获取光学图像旋转目标的自适应检测结果:
(4a)将测试样本中的每幅光学子图像作为训练好的基于特征增强的光学图像旋转目标检测网络的输入,进行目标的边界框位置和目标的类别置信度检测,得到/>中所有目标的边界框位置和类别置信度,并滤除目标类别置信度中低于置信度阈值λ的目标边界框位置和类别置信度,得到过滤后的目标边界框位置和类别置信度,然后通过旋转目标的非极大值抑制RNMS方法对同一目标重复检测的边界框位置的目标的边界框和类别置信度进行过滤,得到/>的过滤后的目标边界框和类别置信度;
(4b)对测试样本中的每幅光学子图像进行l1倍缩小和l2倍放大,并将缩小后的光学子图像/>和放大后的光学子图像/>作为训练好的基于特征增强的光学图像旋转目标检测网络的输入,进行目标的边界框位置和目标的类别置信度检测,得到/>和/>中所有目标的边界框位置和类别置信度,并滤除目标类别置信度中低于置信度阈值λ的目标边界框位置和类别置信度,得到过滤后的目标边界框位置和类别置信度,然后通过旋转目标的非极大值抑制RNMS方法对同一目标重复检测的边界框位置的目标的边界框和类别置信度进行过滤,得到/>的过滤后的目标的边界框和类别置信度,以及/>的过滤后的目标的边界框和类别置信度;
(4c)对和/>中的过滤后的目标边界框位置和类别置信度进行合并,并通过RNMS方法对同一目标重复检测的边界框位置的目标的边界框和类别置信度进行过滤,得到所有目标的边界框位置和类别置信度,/>
本发明与现有技术相比,具有以下优点:
1、本发明所构建的基于特征增强的光学图像旋转目标检测网络模型中的主干网络,包括有顺次连接的特征提取子网络和特征增强子网络,特征增强子网络通过对特征提取子网络所提取的特征进行卷积融合,增强了目标的语义特征和位置特征,同时检测网络在卷积融合后的高分辨率特征图上检测出更多的小尺度目标,减小了小尺度目标漏检的几率,与现有技术相比,有效提高了任意方向的多尺度旋转目标的召回率和准确率。
2、本发明通过对原始、放大和缩小后的尺度的光学图像进行旋转目标检测,能够检测出更多的旋转目标,与现有技术相比,有效提高了尺度差距大的旋转目标的召回率。
附图说明
图1是本发明的实现流程图;
图2是本发明光学图像旋转目标检测网络模型的结构示意图;
图3是本发明仿真使用的光学图像;
图4是本发明与现有技术目标检测召回率的仿真对比图。
具体实施方式
以下结合附图和具体实施例,对本发明作进一步详细描述:
参照图1,本发明包括如下步骤:
步骤1)获取训练样本集和测试样本集:
(1a)获取包括M个旋转目标类别的T幅大小为N×N的光学图像H={H1,H2,…,Ht,…,HT},每幅光学图像Ht至少包含K个旋转目标,并通过标注框对每幅光学图像Hi中的每个旋转目标进行标注,将标注框中心的水平坐标x和垂直坐标y、标注框的长l和宽w、标注框的长边与水平方向的逆时针夹角θ作为Ht中每个旋转目标的边界框位置标签,将标注框内目标的类别c作为Ht中每个目标的类别标签,c∈{1,2,…,M},其中,M≥2,T≥20,Ht表示第t幅光学图像,K≥2;
本实施例中,旋转目标通过标注框对每幅光学图像Hi中的每个旋转目标进行标注时采用的标注软件为RoLabelImg,获取的光学图像包含240幅分辨率为1米以及300幅分辨率为2米的光学舰船图像,获取的光学图像中包含的8类舰船分别为第1类直升机航母、第2类护卫舰、第3类补给舰、第4类民船、第5类小游艇、第6类大型航母、第7类石油运输船和第8类潜艇,M=8,T=540,N=20000,K=2;
(1b)以l_step为滑动步长,并通过大小为n×n的滑窗将每幅光学图像Ht裁剪为P个光学子图像H’t={H’t1,H’t2,…,H’ts,…,H’tP},得到裁剪后的光学图像集合H’={H’1,H’2,…,H’t,…,H’T},其中,H’ts表示Ht裁剪得到的第s个光学子图像;
本实施例中,l_step=200,n=608,P=9216,所述的8类舰船中第1类直升机航母和第6类大型航母的尺度大,采用608×608的滑窗可以获取完整的直升机航母和大型航母,同时第5类小游艇的尺度小,若采用较大的滑窗,第5类小游艇和第8类潜艇经过特征提取子网络的5次下采样后特征丢失,造成漏检;
(1c)通过光学子图像H’ts中目标相对于Ht中目标的水平偏移量xdiff和垂直偏移量ydiff,计算图像H’ts中目标的水平坐标x’=x-xdiff和垂直坐标y’=y-ydiff,并将图像H’ts中目标的标注框中心的水平坐标x’和垂直坐标y’、标注框的长l和宽w、标注框的长边与水平方向的逆时针夹角θ作为H’ts中目标的边界框位置标签,图像H’ts中目标的标注框的类别c作为H’ts中目标的类别标签;
(1d)对H’t中包含旋转目标的光学子图像集合H”t中的每个光学子图像分别进行镜像翻转和随机角度扰动的数据增强,得到数据增强后的光学子图像集合H”’t,并将H”t和H”’t构成的光学子图像集合以及/>中每个光学子图像的标签作为训练样本集,将从裁剪后的光学子图像集合H’中随机抽取的R×P幅裁剪后的光学子图像集合H*以及H*中每个光学子图像的标签作为测试样本集,其中,/>
本实施例中,R=50,镜像翻转具体指的是对图像进行左右翻转,对图像进行镜像翻转是为了增强旋转目标的中心坐标位置信息,提升模型的泛化能力;随机角度扰动具体指的是随机从5°、10°、15°和20°中选择一个角度对图像进行逆时针旋转,对图像进行随机角度扰动是为了增强旋转目标的角度信息,提升模型的泛化能力;
步骤2)构建基于特征增强的光学图像旋转目标检测网络模型:
构建包括顺次连接的主干网络和检测网络的光学图像旋转目标检测网络模型,其中:
主干网络包括顺次连接的特征提取子网络和特征增强子网络;特征提取子网络包括多个卷积层和多个block块,block块包括顺次连接的两个卷积层和一个残差连接层;特征增强子网络包含顺次连接的一个上采样层和block1块;
检测网络包括并行连接的定位子网络和分类子网络;定位子网络包含顺次连接的卷积层、全连接层和先验框层;分类子网络包含顺次连接的卷积层和全连接层;
特征提取子网络包括5个卷积层和26个block块,具体结构为:第一卷积层、第一至第二block、第二卷积层、第三至第六block、第三卷积层、第七至第十四block、第四卷积层、第十五至第二十二block、第五卷积层和第二十三至第二十六block;
第一卷积层的卷积核尺寸为5×5,第二至第五卷积层卷积核的尺寸均为3×3,激活函数均为ReLU函数,第一至第五卷积层的卷积步长均为2,第一至第五卷积层卷积核的个数分别为64、128、256、512和1024;
每个block包含依次连接的卷积层block_c1和卷积层block_c2,block_c1的卷积核尺寸为1×1,block_c2的卷积核尺寸为3×3,卷积步长均为1,激活函数均为ReLU函数;
特征增强子网络包括顺次连接的一个上采样层和block1,block1包含6个卷积层,具体结构为:并行连接的block_c1、block_c2、block_c2,block_c1、block_c2,block_c1;
特征增强子网络的增强方式为:第二十六block的特征作为定位子网络中第六卷积层以及分类子网络中第九卷积层的输入,分别用于回归大尺度目标的边界框位置以及预测大尺度目标的类别;第二十六block的特征经过上采样层与第二十二block的特征通过通道拼接的方式合并,再经过block1得到第一次增强后的特征作为定位子网络中第七卷积层以及分类子网络中第十卷积层的输入,分别用于回归中尺度目标的边界框位置以及预测中尺度目标的类别;第一次增强后的特征经过上采样层与第十四block的特征通过通道拼接的方式合并,再经过block1得到第二次增强后的特征作为定位子网络中第八卷积层以及分类子网络中第十一卷积层的输入,分别用于回归小尺度目标的边界框位置以及预测小尺度目标的类别;
本实施例中,所述的大尺度目标包含第1类直升机航母、第6类大型航母和第7类石油运输船,中尺度目标包含第2类护卫舰、第3类补给舰和第4类民船,第三先验框层的先验框负责回归小尺度的目标包含第5类小游艇和第8类潜艇,所述的上采样层采用双线性插值方法;
设计特征增强子网络的原因为:低层次的特征分辨率高,包含更多细节的位置和语义信息,但是由于经过的卷积层少,导致噪声较多,高层次的特征分辨率低,对细节的感知能力差,通过通道拼接的方式对特征提取网络的低层次和高层次的特征进行合并,再经过卷积融合使得检测网络同时获得低层次的目标细节语义特征和高层次的空间位置特征,提升目标检测的准确率,同时检测网络在卷积融合后的高分辨率特征图上检测出更多的小尺度目标,减小了小尺度目标漏检的几率;
定位子网络包括3个卷积层、3个全连接层和3个先验框层,具体结构为:第六卷积层、第一全连接层、第一先验框层、第七卷积层、第二全连接层、第二先验框层、第八卷积层、第三全连接层和第三先验框层;
第六卷积层的卷积核个数为1024,卷积核尺寸为5×5,第七卷积层的卷积核个数为512,卷积核尺寸为3×3,第八卷积层的卷积核个数为256,卷积核尺寸为3×3,该三个卷积层的卷积步长均为1,激活函数均为ReLU函数;
第一、第二和第三全连接层的隐层单元个数分别为135、180和180;
第一先验框层的三个先验框的长分别为0.728、0.573和0.478,宽分别为0.147、0.115和0.096,第二先验框层的四个先验框的长分别为0.374、0.248、0.159和0.095,宽分别为0.074、0.049、0.036和0.049,第三先验框层的四个先验框的长分别为0.057、0.043、0.030和0.029,宽分别为0.029、0.021、0.016和0.013,该三个先验框层的角度均为0°,20°,40°,60°,80°,100°,120°,140°,160°;
分类子网络包括3个卷积层和3个全连接层,具体结构为:第九卷积层、第四全连接层、第十卷积层、第五全连接层、第十一卷积层、第六全连接层;
第九卷积层的卷积核个数为1024,卷积核尺寸为5×5,第十卷积层的卷积核个数为512,卷积核尺寸为3×3,第十一卷积层的卷积核个数为256,卷积核尺寸为3×3,该三个卷积层的卷积步长均为1,激活函数均为ReLU函数;
第四、第五和第六全连接层的隐层单元个数分别为243、324和324。
本实施例中,利用Kmeans聚类算法设计先验框的长和宽。其中,第一先验框层、第二先验框层和第三先验框层的先验框分别用于回归大尺度、中尺度和小尺度目标的边界框位置,因此该三个先验框层的先验框尺度从大到小排序依次为第一先验框层的先验框、第二先验框层的先验框、第三先验框层的先验框;所述的训练样本集的大尺度目标所占比例为25%,因此为第一先验框层设计3个尺度的先验框的长和宽,中尺度目标和小尺度目标在所有目标中所占比例分别为45%和30%,因此为第二和第三先验框层设计4个尺度的先验框的长和宽;先验框的长和宽的数值为608×608大小的训练样本尺寸归一化后的数值;
通过Kmeans聚类算法计算得到先验框的长和宽的指的是将所有旋转目标的长度和宽度作为聚类的两个维度,以任意两个目标边界框的交并比IOU的值作为它们的距离,通过Kmeans聚类算法对旋转目标边界框的长度和宽度进行迭代聚类,其中两个目标边界框的IOU的值越大,距离就越近。具体步骤为:初始化迭代次数为V=1,最大迭代次数V=500,随机挑选11个目标边界框的长度和宽度作为11个目标边界框集合的聚类中心;对于剩余的每个目标边界框,通过计算目标边界框和该11个目标边界框集合的聚类中心的IOU值,将目标边界框加入与其距离最小的目标边界框集合;将11个目标边界框集合中所有边界框长度和宽度的平均值分别作为新的目标边界框集合的聚类中心的长度和宽度,若这11个目标边界框集合下一轮与上一轮的聚类中心长度和宽度的差值分别达到阈值ldiff=0.001以及wdiff=0.001或者达到迭代次数V=500,聚类结束,得到11个目标边界框集合的聚类中心的长度和宽度,否则V=V+1,继续下一轮迭代;
任意两个同一中心点、长和宽,旋转框角度偏差20°的旋转边界框的交并比RIOU的值为0.4,因此设计负责检测舰船目标的同一中心点、长和宽的先验框的角度偏差为20°,保证先验框能够匹配到任意角度的旋转目标;
步骤3)对基于特征增强的光学图像旋转目标检测网络模型进行迭代训练:
(3a)初始化迭代次数为w,最大迭代次数为W,W≥10000,并令w=1;
本实施例中,W=300000,设计W=300000是为了让网络训练更充分;
(3b)将从训练样本集随机选取的b个训练样本作为光学图像旋转目标检测网络模型的输入进行前向传播,主干网络中的特征提取子网络对每个训练样本的所有目标进行特征提取,特征增强子网络对特征提取子网络所提取的特征进行合并后,对合并后的特征进行卷积融合,得到融合后的语义特征和位置特征,检测网络中的定位子网络利用融合后的位置特征计算目标预测边界框,分类子网络利用融合后的语义特征计算目标预测类别,其中,b≥10;
本实施例中,b=16,设计b=16是因为实验所用设备的内存限制,每次迭代的训练样本的数量最大只能设置到16,否则超出内存;
(3c)定位子网络采用Smoothl1函数,并通过目标的预测边界框和目标的边界框位置标签计算目标的位置损失值L1,分类子网络采用交叉熵函数,并通过目标的预测类别置信度和目标的类别标签计算目标的类别置信度损失值L2,然后采用随机梯度下降法,并通过L1与L2的和对主干网络和检测网络中的卷积核权重参数ωw和全连接层结点之间的连接权重参数θw进行更新;
步骤(3c)中所述的目标的位置损失值L1、目标的类别置信度损失值L2、Smoothl1函数和交叉熵函数的表达式,以及卷积核权重参数ωw和各全连接层结点之间的连接权重参数θw的更新公式分别为:
其中,gtboxi为第i个目标的边界框位置标签,pboxi为第i个目标的预测边界框,pi为第i个目标的M类的预测类别置信度向量,pij为第i个目标第j类的预测类别置信度,yi为第i个目标的M类的类别标签向量,若第i个目标的类别为c,则yi=[0,…,1,…,0],1的位置在类别标签向量yi的第c个位置,yij为yi的第j个位置的值,K’表示目标总数;η表示学习率,1e-6≤η≤0.1,ωw+1和θw+1分别表示ωw和θw更新后的结果,表示偏导计算;
本实施例中,初始学习率η=0.001,在迭代到第15万次时,学习率η=0.0001,迭代到第20万次时学习率η=0.00001,优化器函数使用随机梯度下降SGD,学习率在网络迭代到一定次数时进行衰减的是为了防止损失函数陷入局部最小值;
(3d)判断w=W是否成立,若是,得到训练好的基于特征增强的光学图像旋转目标检测网络模型,否则,令w=w+1,并执行步骤(3b);
步骤4)获取光学图像旋转目标的自适应检测结果:
(4a)将测试样本中的每幅光学子图像作为训练好的基于特征增强的光学图像旋转目标检测网络的输入,进行目标的边界框位置和目标的类别置信度检测,得到/>中所有目标的边界框位置和类别置信度,并滤除目标类别置信度中低于置信度阈值λ的目标边界框位置和类别置信度,得到过滤后的目标边界框位置和类别置信度,然后通过旋转目标的非极大值抑制RNMS方法对同一目标重复检测的边界框位置的目标的边界框和类别置信度进行过滤,得到/>的过滤后的目标边界框和类别置信度;
步骤(4a)中所述的旋转目标的非极大值抑制RNMS方法具体步骤为:
(4a1)对所有旋转目标的类别置信度进行排序,得到一个旋转目标的边界框的集合{B1,B2,…,Bf,…,Bn},其中,Bf表示{B1,B2,…,Bf,…,Bn}中第f个边界框;
(4a2)分别计算边界框B1与边界框Bf的交并比若/>大于旋转边界框交并比阈值/>则说明边界框Bf与边界框B1检测的是同一目标,因此将边界框Bf从集合中删去,若/>小于等于旋转边界框交并比阈值/>则说明边界框Bf与边界框B1检测的不是同一目标,因此保留边界框Bf,得到一个新的旋转目标的边界框的集合其中,Bf∈{B2,B3…,Bf,…,Bn};
(4a3)若结束;否则将集合替代集合{B1,B2,…,Bf,…,Bn},执行步骤(4a2);
(4b)对测试样本中的每幅光学子图像进行l1倍缩小和l2倍放大,并将缩小后的光学子图像/>和放大后的光学子图像/>作为训练好的基于特征增强的光学图像旋转目标检测网络的输入,进行目标的边界框位置和目标的类别置信度检测,得到/>和/>中所有目标的边界框位置和类别置信度,并滤除目标类别置信度中低于置信度阈值λ的目标边界框位置和类别置信度,得到过滤后的目标边界框位置和类别置信度,然后通过旋转目标的非极大值抑制RNMS方法对同一目标重复检测的边界框位置的目标的边界框和类别置信度进行过滤,得到/>的过滤后的目标的边界框和类别置信度,以及/>的过滤后的目标的边界框和类别置信度;
本实施例中,l1=1,l2=0.5,λ=0.5,对图像进行0.5倍放大,是为了将小尺度目标和中尺度目标放大,特征提取子网络对特征进行5次下采样后依然能够提取更多小尺度目标和中尺度目标的特征,进而检测出更多的小尺度目标和中尺度目标,提升小尺度目标和中尺度目标的召回率;对图像进行1倍缩小,是为了实现图像分辨率为1米和2米的自适应检测,进而提升目标的召回率。
(4c)对和/>中的过滤后的目标边界框位置和类别置信度进行合并,并通过RNMS方法对同一目标重复检测的边界框位置的目标的边界框和类别置信度进行过滤,得到所有目标的边界框位置和类别置信度,/>
以下结合仿真实验,对本发明效果作进一步说明:
1.仿真条件和内容:
仿真实验采用如图3所示的从“谷歌地图”下载的国内外多个地区的17级和18级光学图像,地面分辨率1米和2米。
仿真实验在CPU型号为Intel(R)Core(TM)i7-8750H、GPU型号为NVIDIA GeForceRTX 2080 Ti的服务器上进行。操作系统为UBUNTU 16.04系统,深度学习框架为Caffe,编程语言为Python3.5;
对本发明和现有的一种基于YOLOV3的旋转目标检测方法的召回率进行对比仿真,其结果如图4所示;
2.仿真结果分析:
参照图4,图4(a)为现有技术对图3进行光学图像舰船目标检测,其中,旋转边界框指出检测出的舰船目标的位置,旋转边界框的上方文字显示了目标的类别置信度,从图4(a)可以看出,图中大多数舰船目标都能被检测到,但是存在较多漏检的舰船目标;图4(b)为本发明对图3进行光学图像舰船目标检测,其中,旋转边界框指出检测出的舰船目标的位置,旋转边界框的上方文字显示了目标的类别和类别置信度,从图4(b)可以看出,只有少量的漏检舰船目标,并可以检测到密集排列的舰船目标。由此说明,本发明能够检测出绝大多数舰船目标,提升了旋转目标检测的召回率。

Claims (3)

1.一种基于特征增强的多类别光学图像旋转目标自适应检测方法,其特征在于,包括如下步骤:
(1)获取训练样本集和测试样本集:
(1a)获取包括M个旋转目标类别的T幅大小为N×N的光学图像H={H1,H2,…,Ht,…,HT},每幅光学图像Ht至少包含K个旋转目标,并通过标注框对每幅光学图像Ht中的每个旋转目标进行标注,将标注框中心的水平坐标x和垂直坐标y、标注框的长l和宽w、标注框的长边与水平方向的逆时针夹角θ作为Ht中每个旋转目标的边界框位置标签,将标注框内目标的类别c作为Ht中每个目标的类别标签,c∈{1,2,…,M},其中,M≥2,T≥20,Ht表示第t幅光学图像,K≥2;
(1b)以l_step为滑动步长,并通过大小为n×n的滑窗将每幅光学图像Ht裁剪为P个光学子图像H′t={H′t1,H′t2,…,H′ts,…,H′tP},得到裁剪后的光学图像集合H'={H′1,H′2,…,H′t,…,H′T},其中,H′ts表示Ht裁剪得到的第s个光学子图像;
(1c)通过光学子图像H′ts中目标相对于Ht中目标的水平偏移量xdiff和垂直偏移量ydiff,计算图像H′ts中目标的水平坐标x'=x-xdiff和垂直坐标y'=y-ydiff,并将图像H′ts中目标的标注框中心的水平坐标x'和垂直坐标y'、标注框的长l和宽w、标注框的长边与水平方向的逆时针夹角θ作为H′ts中目标的边界框位置标签,图像H′ts中目标的标注框的类别c作为H′ts中目标的类别标签;
(1d)对H′t中包含旋转目标的光学子图像集合H″t中的每个光学子图像分别进行镜像翻转和随机角度扰动的数据增强,得到数据增强后的光学子图像集合H″′t,并将H″t和H″′t构成的光学子图像集合以及/>中每个光学子图像的标签作为训练样本集,将从裁剪后的光学子图像集合H'中随机抽取的R×P幅裁剪后的光学子图像集合H*以及H*中每个光学子图像的标签作为测试样本集,其中,/>
(2)构建基于特征增强的光学图像旋转目标检测网络模型:
构建包括顺次连接的主干网络和检测网络的光学图像旋转目标检测网络模型,其中:主干网络包括顺次连接的特征提取子网络和特征增强子网络;特征提取子网络包括5个卷积层和26个block块,具体结构为:第一卷积层、第一至第二block、第二卷积层、第三至第六block、第三卷积层、第七至第十四block、第四卷积层、第十五至第二十二block、第五卷积层和第二十三至第二十六block;每个block包含顺次连接的卷积层block_c1和卷积层block_c2,block_c1的卷积核尺寸为1×1,block_c2的卷积核尺寸为3×3,卷积步长均为1,激活函数均为ReLU函数;block块包括顺次连接的两个卷积层和一个残差连接层;特征增强子网络包含顺次连接的一个上采样层和block1块;特征增强子网络包括顺次连接的一个上采样层和block1,block1包含6个卷积层,该6个卷积层被分为并行排布的三组:第一组包括顺次连接的block_c1、block_c2、block_c2,第二组包括顺次连接的block_c1、block_c2,第三组包括block_c1;
检测网络包括并行连接的定位子网络和分类子网络;定位子网络包含顺次连接的卷积层、全连接层和先验框层;分类子网络包含顺次连接的卷积层和全连接层;
(3)对基于特征增强的光学图像旋转目标检测网络模型进行迭代训练:
(3a)初始化迭代次数为w,最大迭代次数为W,W≥10000,并令w=1;
(3b)将从训练样本集随机选取的b个训练样本作为光学图像旋转目标检测网络模型的输入进行前向传播,主干网络中的特征提取子网络对每个训练样本的所有目标进行特征提取,特征增强子网络对特征提取子网络所提取的特征进行合并后,对合并后的特征进行卷积融合,得到融合后的语义特征和位置特征,检测网络中的定位子网络利用融合后的位置特征计算目标预测边界框,分类子网络利用融合后的语义特征计算目标预测类别,其中,b≥10;
(3c)定位子网络采用Smoothl1函数,并通过目标的预测边界框和目标的边界框位置标签计算目标的位置损失值L1,分类子网络采用交叉熵函数,并通过目标的预测类别置信度和目标的类别标签计算目标的类别置信度损失值L2,然后采用随机梯度下降法,并通过L1与L2的和对主干网络和检测网络中的卷积核权重参数ωw和全连接层结点之间的连接权重参数θw进行更新;
(3d)判断w=W是否成立,若是,得到训练好的基于特征增强的光学图像旋转目标检测网络模型,否则,令w=w+1,并执行步骤(3b);
(4)获取光学图像旋转目标的自适应检测结果:
(4a)将测试样本中的每幅光学子图像作为训练好的基于特征增强的光学图像旋转目标检测网络的输入,进行目标的边界框位置和目标的类别置信度检测,得到/>中所有目标的边界框位置和类别置信度,并滤除目标类别置信度中低于置信度阈值λ的目标边界框位置和类别置信度,得到过滤后的目标边界框位置和类别置信度,然后通过旋转目标的非极大值抑制RNMS方法对同一目标重复检测的边界框位置的目标的边界框和类别置信度进行过滤,得到/>的过滤后的目标边界框和类别置信度;
(4b)对测试样本中的每幅光学子图像进行l1倍缩小和l2倍放大,并将缩小后的光学子图像/>和放大后的光学子图像/>作为训练好的基于特征增强的光学图像旋转目标检测网络的输入,进行目标的边界框位置和目标的类别置信度检测,得到/>和/>中所有目标的边界框位置和类别置信度,并滤除目标类别置信度中低于置信度阈值λ的目标边界框位置和类别置信度,得到过滤后的目标边界框位置和类别置信度,然后通过旋转目标的非极大值抑制RNMS方法对同一目标重复检测的边界框位置的目标的边界框和类别置信度进行过滤,得到/>的过滤后的目标的边界框和类别置信度,以及/>的过滤后的目标的边界框和类别置信度;
(4c)对和/>中的过滤后的目标边界框位置和类别置信度进行合并,并通过RNMS方法对同一目标重复检测的边界框位置的目标的边界框和类别置信度进行过滤,得到所有目标的边界框位置和类别置信度,/>
2.根据权利要求1所述的基于特征增强的多类别光学图像旋转目标自适应检测方法,其特征在于,步骤(2)中所述的特征提取子网络、特征增强子网络、定位子网络和分类子网络,具体结构和参数分别为:
第一卷积层的卷积核尺寸为5×5,第二至第五卷积层卷积核的尺寸均为3×3,激活函数均为ReLU函数,第一至第五卷积层的卷积步长均为2,第一至第五卷积层卷积核的个数分别为64、128、256、512和1024;
定位子网络包括3个卷积层、3个全连接层和3个先验框层,具体结构为:第六卷积层、第一全连接层、第一先验框层、第七卷积层、第二全连接层、第二先验框层、第八卷积层、第三全连接层和第三先验框层;其中,第六卷积层与第一全连接层相连,第七卷积层与第二全连接层相连,第八卷积层与第三全连接层相连;
第六卷积层的卷积核个数为1024,卷积核尺寸为5×5,第七卷积层的卷积核个数为512,卷积核尺寸为3×3,第八卷积层的卷积核个数为256,卷积核尺寸为3×3,该三个卷积层的卷积步长均为1,激活函数均为ReLU函数;
第一、第二和第三全连接层的隐层单元个数分别为135、180和180;
第一先验框层的三个先验框的长分别为0.728、0.573和0.478,宽分别为0.147、0.115和0.096,第二先验框层的四个先验框的长分别为0.374、0.248、0.159和0.095,宽分别为0.074、0.049、0.036和0.049,第三先验框层的四个先验框的长分别为0.057、0.043、0.030和0.029,宽分别为0.029、0.021、0.016和0.013,该三个先验框层的角度均为0°,20°,40°,60°,80°,100°,120°,140°,160°;
分类子网络包括3个卷积层和3个全连接层,具体结构为:第九卷积层、第四全连接层、第十卷积层、第五全连接层、第十一卷积层、第六全连接层;其中,第九卷积层与第四全连接层相连,第十卷积层与第五全连接层相连,第十一卷积层与第六全连接层相连;
第九卷积层的卷积核个数为1024,卷积核尺寸为5×5,第十卷积层的卷积核个数为512,卷积核尺寸为3×3,第十一卷积层的卷积核个数为256,卷积核尺寸为3×3,该三个卷积层的卷积步长均为1,激活函数均为ReLU函数;
第四、第五和第六全连接层的隐层单元个数分别为243、324和324。
3.根据权利要求1所述的基于特征增强的多类别光学图像旋转目标自适应检测方法,其特征在于,步骤(3c)中所述的目标的位置损失值L1、目标的类别置信度损失值L2、Smoothl1函数和交叉熵函数的表达式,以及卷积核权重参数ωw和各全连接层结点之间的连接权重参数θw的更新公式分别为:
其中,gtboxi为第i个目标的边界框位置标签,pboxi为第i个目标的预测边界框,pi为第i个目标的M类的预测类别置信度向量,pij为第i个目标第j类的预测类别置信度,yi为第i个目标的M类的类别标签向量,若第i个目标的类别为c,则yi=[0,…,1,…,0],1的位置在类别标签向量yi的第c个位置,yij为yi的第j个位置的值,K'表示目标总数;η表示学习率,1e-6≤η≤0.1,ωw+1和θw+1分别表示ωw和θw更新后的结果,表示偏导计算。
CN202110335732.6A 2021-03-29 2021-03-29 基于特征增强的多类别光学图像旋转目标自适应检测方法 Active CN113033672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110335732.6A CN113033672B (zh) 2021-03-29 2021-03-29 基于特征增强的多类别光学图像旋转目标自适应检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110335732.6A CN113033672B (zh) 2021-03-29 2021-03-29 基于特征增强的多类别光学图像旋转目标自适应检测方法

Publications (2)

Publication Number Publication Date
CN113033672A CN113033672A (zh) 2021-06-25
CN113033672B true CN113033672B (zh) 2023-07-28

Family

ID=76452766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110335732.6A Active CN113033672B (zh) 2021-03-29 2021-03-29 基于特征增强的多类别光学图像旋转目标自适应检测方法

Country Status (1)

Country Link
CN (1) CN113033672B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108960143A (zh) * 2018-07-04 2018-12-07 北京航空航天大学 一种高分辨率可见光遥感图像中的舰船检测深度学习方法
CN108960135A (zh) * 2018-07-03 2018-12-07 西北工业大学 基于高分辨遥感图像的密集舰船目标精确检测方法
CN109685152A (zh) * 2018-12-29 2019-04-26 北京化工大学 一种基于dc-spp-yolo的图像目标检测方法
CN110503112A (zh) * 2019-08-27 2019-11-26 电子科技大学 一种增强特征学习的小目标检测及识别方法
CN110874593A (zh) * 2019-11-06 2020-03-10 西安电子科技大学 基于掩膜的遥感图像旋转目标检测方法
WO2020102988A1 (zh) * 2018-11-20 2020-05-28 西安电子科技大学 基于特征融合和稠密连接的红外面目标检测方法
CN111881918A (zh) * 2020-06-11 2020-11-03 中国人民解放军战略支援部队信息工程大学 一种多尺度旋转船舶目标检测算法
CN111914815A (zh) * 2020-09-05 2020-11-10 广东鲲鹏智能机器设备有限公司 一种垃圾目标的机器视觉智能识别系统及方法
CN112307976A (zh) * 2020-10-30 2021-02-02 北京百度网讯科技有限公司 目标检测方法、装置、电子设备以及存储介质
CN112395969A (zh) * 2020-11-13 2021-02-23 中国人民解放军空军工程大学 一种基于特征金字塔的遥感图像旋转舰船检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10346720B2 (en) * 2017-11-08 2019-07-09 Bae Systems Information And Electronic Systems Integration Inc. Rotation variant object detection in Deep Learning

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108960135A (zh) * 2018-07-03 2018-12-07 西北工业大学 基于高分辨遥感图像的密集舰船目标精确检测方法
CN108960143A (zh) * 2018-07-04 2018-12-07 北京航空航天大学 一种高分辨率可见光遥感图像中的舰船检测深度学习方法
WO2020102988A1 (zh) * 2018-11-20 2020-05-28 西安电子科技大学 基于特征融合和稠密连接的红外面目标检测方法
CN109685152A (zh) * 2018-12-29 2019-04-26 北京化工大学 一种基于dc-spp-yolo的图像目标检测方法
CN110503112A (zh) * 2019-08-27 2019-11-26 电子科技大学 一种增强特征学习的小目标检测及识别方法
CN110874593A (zh) * 2019-11-06 2020-03-10 西安电子科技大学 基于掩膜的遥感图像旋转目标检测方法
CN111881918A (zh) * 2020-06-11 2020-11-03 中国人民解放军战略支援部队信息工程大学 一种多尺度旋转船舶目标检测算法
CN111914815A (zh) * 2020-09-05 2020-11-10 广东鲲鹏智能机器设备有限公司 一种垃圾目标的机器视觉智能识别系统及方法
CN112307976A (zh) * 2020-10-30 2021-02-02 北京百度网讯科技有限公司 目标检测方法、装置、电子设备以及存储介质
CN112395969A (zh) * 2020-11-13 2021-02-23 中国人民解放军空军工程大学 一种基于特征金字塔的遥感图像旋转舰船检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
An improved object detection algorithm based on multi-scaled and deformable convolutional neural networks;Cao D 等;《Human-centric Computing and Information Sciences》;20200411;第306-311页 *
Rotated object detection with forward-looking sonar in underwater applications;Neves G 等;《Expert Systems with Applications》;20121231;第1-22页 *
自适应旋转区域生成网络的遥感图像舰船目标检测;徐志京 等;《激光与光电子学进展》;20200914;第1-14页 *
遥感影像船舶检测的特征金字塔网络建模方法;邓睿哲 等;《测绘学报》;20200630;第787-797页 *

Also Published As

Publication number Publication date
CN113033672A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN111091105B (zh) 基于新的边框回归损失函数的遥感图像目标检测方法
CN110532859B (zh) 基于深度进化剪枝卷积网的遥感图像目标检测方法
CN112966684B (zh) 一种注意力机制下的协同学习文字识别方法
CN110084195B (zh) 基于卷积神经网络的遥感图像目标检测方法
CN111738112B (zh) 基于深度神经网络和自注意力机制的遥感船舶图像目标检测方法
CN108596055B (zh) 一种复杂背景下高分辨遥感图像的机场目标检测方法
CN108491854B (zh) 基于sf-rcnn的光学遥感图像目标检测方法
CN112488210A (zh) 一种基于图卷积神经网络的三维点云自动分类方法
CN106897681B (zh) 一种遥感图像对比分析方法及系统
CN108038846A (zh) 基于多层卷积神经网络的输电线路设备图像缺陷检测方法及系统
CN107346420A (zh) 一种基于深度学习的自然场景下文字检测定位方法
CN112101278A (zh) 基于k近邻特征提取和深度学习的宅基地点云分类方法
CN109871875B (zh) 一种基于深度学习的建筑物变化检测方法
CN106408030A (zh) 基于中层语义属性和卷积神经网络的sar图像分类方法
CN104038792B (zh) 用于iptv监管的视频内容分析方法及设备
CN110210431A (zh) 一种基于点云语义标注和优化的点云分类方法
CN111539422B (zh) 基于Faster RCNN的飞行目标协同识别方法
JP2020038661A (ja) 車線モデルを利用して車線を検出し得る学習方法及び学習装置そしてこれを利用したテスト方法及びテスト装置{learning method, learning device for detecting lane using lane model and test method, test device using the same}
CN114612835A (zh) 一种基于YOLOv5网络的无人机目标检测模型
CN111259733A (zh) 一种基于点云图像的船舶识别方法及装置
CN101710422A (zh) 基于全局流形原型聚类算法与分水岭算法的图像分割方法
CN114926469A (zh) 语义分割模型训练方法、语义分割方法、存储介质及终端
CN114997501A (zh) 基于样本失衡的深度学习矿产资源分类预测方法及系统
CN114332473A (zh) 目标检测方法、装置、计算机设备、存储介质及程序产品
CN113033672B (zh) 基于特征增强的多类别光学图像旋转目标自适应检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant