CN113029216A - 基于同轴双波导光纤的多参量传感器 - Google Patents

基于同轴双波导光纤的多参量传感器 Download PDF

Info

Publication number
CN113029216A
CN113029216A CN202110243193.3A CN202110243193A CN113029216A CN 113029216 A CN113029216 A CN 113029216A CN 202110243193 A CN202110243193 A CN 202110243193A CN 113029216 A CN113029216 A CN 113029216A
Authority
CN
China
Prior art keywords
fiber
core
optical fiber
parameter
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110243193.3A
Other languages
English (en)
Other versions
CN113029216B (zh
Inventor
鞠涛
孟令知
苑立波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202110243193.3A priority Critical patent/CN113029216B/zh
Publication of CN113029216A publication Critical patent/CN113029216A/zh
Application granted granted Critical
Publication of CN113029216B publication Critical patent/CN113029216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35367Sensor working in reflection using reflected light other than backscattered to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/3538Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明提供的是一种基于同轴双波导光纤的多参量传感器。其特征是:它由宽带光源,光谱仪和多参量光纤传感器组成。该多参量光纤生化传感器是由一段局部扭转的多芯光纤焊接同轴双波导光纤,同轴双波导光纤的环形芯被刻蚀裸露出来,并镀有纳米金膜,形成SPR传感区,用于生化参量的测量;与此同时,在同轴双波导光纤的中间芯写入光纤Bragg光栅,用于温度参量的测量。通过改变多芯螺旋光纤的螺距可以有效地调节谐振波长和灵敏度,实现不同入射角的SPR传感。本发明结构灵活紧凑,可广泛应用于化学、生物、医学、生命科学等光纤传感领域。

Description

基于同轴双波导光纤的多参量传感器
(一)技术领域
本发明涉及的是一种基于同轴双波导光纤的多参量传感器,可用于生化传感应用场景下的对生化参量和温度参量同时测量,可广泛应用于化学、生物、医学、生命科学光纤传感等领域,属于光纤传感领域。
(二)背景技术
表面等离子体共振(Surface plasmon resonance,SPR)是指光在负、正介电常数材料的界面上反射后,导电电子产生的共振振荡。由于该技术对周围材料的折射率变化具有较高的灵敏度,在物理、化学和生物传感领域得到了广泛的研究。最常用的SPR传感装置是基于棱镜和光纤的。与基于棱镜的SPR传感器件相比,光纤型SPR传感器件具有体积小、柔韧性好、制造方便、抗电磁干扰等优点。
SPR传感中应用的光纤有几种,包括单模光纤、光子晶体光纤、纳米/微光纤、多模光纤和特种光纤。SPR传感器可以通过在光纤端部、光纤包覆面、光纤侧面抛光来实现。在基于棱镜的SPR传感系统中,通过改变入射角可以很容易地调制传感器的固有谐振波长。在大多数光纤生化SPR传感系统中,光纤纤芯的几何结构是固定的,因此其固有谐振波长和传感器的灵敏度很难被调制。
一种有效的方法是使用侧面抛光弯曲光纤SPR传感器,通过改变弯曲半径来实现这种调制。然而,由于光纤纤芯模式与表面等离子体模式(SPM)的耦合,其灵敏度也可能受到SPR激励方法的限制。
专利CN202010114018.X公开了一种光纤生化传感器及其制作方法,使用单模光纤刻写布拉格光纤光栅,同时在布拉格光栅对应的包层部分或全部刻蚀至纤芯形成至少一个凹槽,能够实现生化物质浓度的检测。但是该传感器需要用到氢氟酸刻蚀,具有较大的危险性。
专利CN201810786002.6公开了一种楔形尖端纳米结构集成光纤表面等离子体共振生化传感器,将阶跃折射率多模光纤裸露的光纤纤芯端面通过研磨并抛光处理形成楔形斜面,能够同时实现两种生化分子的实时检测。但是该传感器无法实现多参量的光纤生化传感器测量。
专利CN201510689013.9公开了一种光纤纤芯与包层交界面的Bragg光栅生化传感器及方法,其特点是光纤纤芯的前段设置长周期光纤光栅,在光纤的中段位于光纤纤芯和光纤包层的交界面设置光纤纤芯与包层交界面的Bragg光栅。但是该传感器无法实现多参量的光纤生化传感器测量。
专利CN201510779036.9公开了一种基于倏逝波技术的特种光纤生化传感器,其特点是采用特种多孔微结构光纤,作为探测探针,并结合光纤耦合透镜实现生化传感。但是该传感器结构复杂难以集成,并且无法实现多参量的光纤生化传感器测量。
专利CN201910129549.3公开了一种基于SPR效应的螺旋微结构光纤折射率传感器,其特点是采用螺旋微结构光纤,微结构光纤包层外表面涂覆有等离子体激元材料层,等离子体激元材料层外表面涂覆氧化物薄膜层。该传感器可以实现生化参数的测量,但是无法实现多参量的光纤生化传感器测量。
专利CN201711018321.4公开了一种基于表面等离子体共振的温度传感器及其制备方法,其特点是金膜沉积在侧面抛磨单模光纤的抛磨面上,温敏薄膜固化在金膜上。温敏薄膜实现稳定传感测量,金膜处实现生化传感测量。但是该传感器很难被调制其固有谐振波长和传感器的灵敏度。
专利CN201911303389.6公开了一种基于同轴双波导光纤SPR纳米显微成像装置,其特点是对同轴双波导光纤一端研磨,并在光纤锥体圆台端面镀有金属层,激发表面等离激元。该传感器能够实现生化参数的测量,但是无法同时测量温度参数。
专利CN202011304034.1公开了一种温度补偿的大测量范围的SPR传感器及制作使用方法,其特点是采用三芯光纤、同轴双波导光纤、空芯光纤等实现SPR传感参数的测量,以及能在一定程度上实现温度补偿。但是该传感器结构复杂,稳定性较差。
为了克服在先技术的不足,本发明公开了一种基于同轴双波导光纤的新型多参量生化传感器。通过改变多芯螺旋光纤的螺距来有效地调节谐振波长和灵敏度锥体,就如同改变棱镜型SPR传感器的入射角一样。同轴双波导光纤经过蚀刻后使得环形纤芯裸露出来,在此裸露环形纤芯表面镀有纳米金膜,形成表面等离子波(SPR)敏感探头,实现生化参量的传感测量;在同轴双波导光纤的中间芯刻写光纤Bragg光栅(FBG)实现温度参量的测量。与在先技术相比,由于采用多芯光纤和同轴双波导光纤,其结构紧凑灵活,满足了生化传感对多参量测量的需求。
(三)发明内容
本发明的目的在于提供一种结构紧凑灵活、可批量生产的一种基于同轴双波导光纤的多参量传感器。
本发明的目的是这样实现的:
该基于同轴双波导光纤的多参量传感系统由宽带光源,光谱仪和多参量光纤传感器组成,该多参量光纤传感器由一段多芯(双芯或四芯或七芯)螺旋光纤焊接一段同轴双波导光纤组成,同轴双波导光纤经过蚀刻后使得环形纤芯裸露出来,在此裸露环形纤芯表面镀有纳米金膜,形成表面等离子波(SPR)敏感探头,在同轴双波导光纤的中间芯刻写光纤Bragg光栅(FBG)实现温度参量的测量,并且通过多芯螺旋光纤的螺距改变来有效地调节谐振波长和灵敏度,实现不同入射角的SPR传感。
图1与图2给出了基于同轴双波导光纤的多参量传感器的工作原理图。
如图1所示,首先,将宽谱光源1的宽谱光耦合输入到单模光纤3中,之后该宽谱光耦合输入到多芯光纤6的中间芯中,再经过多芯光纤内耦合器(由拉锥或热扩散制备而成的)将光由中间纤芯分配到每个纤芯中。多芯光纤6另一端局部扭转,调节多芯螺旋光纤7的螺距调节SPR的入射角。该传感器由多芯(双芯或四芯或七芯)螺旋光纤7焊接一段同轴双波导光纤8组成,同轴双波导光纤8经过刻蚀后使得环形纤芯裸露出来,在此裸露环形纤芯表面镀有纳米金膜,形成SPR传感区,用于生化参数测量;同轴双波导光纤8的中间芯被写入FBG,以实现温度的测量。
为了论述清晰起见,将光在传感探头中的光传播分为三个阶段,如图2所示。阶段I为中间的纤芯与同轴双波导光纤21中间芯直接耦合,当宽谱光波到达FBG23时,由于有一部分布拉格反射光被FBG23反射,所以透过FBG23的光谱将出现一个尖锐的下凹峰,由光谱仪2读出,测量出传感区的环境温度;阶段II为,与此同时,分布在中心纤芯周围的多个螺旋纤芯出射的斜光束被注入到环形波导纤芯中,在环形波导中形成螺旋传输光束。当这些螺旋光束在环形波导中传播时,可分解为两个部分,一部分当满足SPR谐振条件时,即可在金薄膜层22产生表面等离子波;另一部分,是作为辐射模式诱导出的包层回音壁模式(WGMs)由环形波导的螺旋传输光束的分量诱导出来的,即由于环形波导纤芯的卷曲作用,部分传导模式被转换为环形波导层的WGMs。其次,这种被诱导出的WGMs模的倏逝波可以在金薄膜层22与周围介质的边界处激发表面等离子体波(SPW)。相应地,当包层WGMs与SPM之间的传播常数相等或接近时,可以有效地激发整个金薄膜层22的SPM。阶段III为,将这两部分SPM,即环形包覆WGMs和斜入射反射区SPM耦合后,可以将这两种SPR信号直接输出到接收光谱仪2中。并通过计算机分析光谱仪接收的传感信号,实现生化应用场景中的对温度和生化参数的多参量传感需求。
通过热扩散技术实现多芯光纤纤芯间耦合,如图3所示。对多芯光纤进行热扩散处理,纤芯的掺杂剂缓慢向外扩散,使得多芯光纤的每个芯之间能够发生耦合。输入多芯光纤中间芯的光束,经过热扩散区时,中间芯的光束耦合输入到边芯中,输出到多芯光纤每个纤芯中。控制加热温度、加热时间,能够有效调节中间芯与边芯的分光比。
所述多参量光纤传感器是由具有螺旋形多芯光纤纤端出射的斜入射螺旋光束实现SPR激发的,用多芯螺旋光纤激发出来的斜入射光束对称的入射入同轴双波导光纤的环形芯中,可形成多个SPR激发区,构成了SPR感测区域。
所述多参量光纤传感器中的同轴双波导光纤,其中的一部分是采用氢氟酸蚀刻的方法使得环形芯裸露出来,并在环形芯的裸露处镀制金纳米薄膜,从而在金膜表面激发出表面等离子体波实现SPR传感。侧边镀膜区域的涂层长度近似等于多芯螺旋光纤的螺距。
所述多参量光纤传感器通过在同轴双波导光纤的中间芯刻写光纤Bragg光栅(FBG)实现温度参量的传感测量。
所述多参量传感器,多芯(双芯或四芯或七芯)螺旋光纤,可以通过对多芯(双芯或四芯或七芯)光纤一端局部扭转制成多芯螺旋光纤,激发出斜入射光束。
所述多参量传感器,多芯光纤内耦合器通过拉锥或者热扩散的方式,实现多芯光纤纤芯间的耦合。
所述多参量传感器,该多参量光纤传感器能够实现SPR传感,又可同时实现温度传感,特别适合于生物化学感测场合,满足生化传感应用场景下的对生化参量和温度参量同时测量的需求。
本发明提供的基于同轴双波导光纤的多参量传感器,能够同时实现生化参数和温度参数的测量。与在先技术相比,由于采用多芯光纤和同轴双波导光纤,其结构紧凑灵活,满足了生化传感对多参量测量的需求。
(四)附图说明
图1是基于同轴双波导光纤的多参量光纤传感系统示意图。该基于同轴双波导光纤的多参量光纤传感系统包括:宽带光源1,光谱仪2,单模光纤3,多参量光纤传感区4,传感信号接收光纤5,多芯光纤6,局部扭转的多芯螺旋光纤7,同轴双波导光纤8。
图2是多参量光纤传感探头SPR激发与温度多参量传感原理图。同轴双波导21,在裸露出的环形芯表面镀有纳米金膜22,中间芯的FBG23。
图3为通过热扩散技术实现多芯光纤纤芯间耦合的示意图。
图4是实施例中采用的同轴双波导光纤的截面图。41为同轴双波导光纤的包层,42为同轴双波导光纤的环形芯,43为同轴双波导光纤的纤芯。
图5是实施例中采用的多芯光纤的截面图。51为四芯光纤的包层,52为四芯光纤的边芯,53为四芯光纤的中间纤芯。
图6是基于同轴双波导光纤的多参量传感器系统实施传感测量的示意图。该实施例中基于同轴双波导光纤的多参量传感器系统包括:宽谱光源61,光谱仪62,单模光纤63,注射泵64,传感信号接收光纤65,废液池66,多参量光纤传感器67,计算机68。
(五)具体实施方式
下面结合具体的实施例来进一步阐述本发明。
实施例1:
本实施例同轴双波导光纤的截面示意图,如图4所示。41为同轴双波导光纤的包层,42为同轴双波导光纤的环形芯,43为同轴双波导光纤的纤芯。
本实施例四芯光纤的截面示意图,如图5所示。51为四芯光纤的包层,52为四芯光纤的边芯,53为四芯光纤的中间纤芯。
本实施例所选用的单模光纤的几何尺寸为,包层直径为125μm、纤芯直径为8μm,纤芯的数值孔径为0.12;所选用四芯光纤包层51的直径为125μm、四个芯的直径均为8μm,中间芯53位于光纤轴心,其它三个边芯52位于等边三角形顶点上,中间芯53到其它边芯52的距离均为45μm,纤芯的数值孔径均为0.12;所选用同轴双波导光纤的几何尺寸为,同轴双波导光纤包层41的直径为125μm、同轴双波导光纤的环形芯42厚度为5μm、同轴双波导光纤的环形芯42内侧到同轴双波导光纤轴心的距离为45μm,同轴双波导光纤纤芯43的直径为8μm,中间芯和环形芯的数值孔径均为0.12。
本实施例中采用热扩散技术实现四芯光纤内纤芯间耦合,如图3所示。将四芯光纤进行热扩散处理,在高温下加热一定时间后,加热区的四芯光纤间的掺杂剂扩散,芯间的折射率分布缓慢变化。加热区形成了光纤耦合器的结构,中间芯的光能够耦合输入边芯中。控制加热温度、加热时间,能够有效调节中间芯与边芯的分光比。
将一段单模光纤焊接四芯光纤,并对四芯光纤热扩散处理实现芯间的耦合,对四芯光纤进行扭转,控制四芯螺旋光纤的螺距。四芯螺旋光纤与同轴双波导光纤焊接。采用紫外光栅刻写平台,在同轴双波导光纤的中间芯写入光纤Bragg光栅(FBG);使用氢氟酸刻蚀同轴双波导光纤,使得同轴双波导光纤的环形芯裸露出来,并在该环形芯镀上一层50纳米的金膜,形成表面等离子波(SPR)敏感探头。即,该光纤生化传感器能够满足生化传感应用场景下的对生化参量和温度参量同时测量的需求。
本实施例基于同轴双波导光纤的多参量传感器系统实施传感测量时,首先,将多参数光纤生化传感器67接入传感测量实验系统中。注射泵64注入含有待探测物质的液体到多参量光纤生化传感器67,并接入废液池66收集流出的废液。宽谱光源61输出的宽谱光耦合输入到单模光纤63中,单模光纤63连接热扩散制作内耦合器的四芯光纤,并且四芯光纤的尾部局部扭转,为螺旋四芯光纤;螺旋四芯光纤连接同轴双波导光纤,该同轴双波导光纤的环形芯被刻蚀裸露出来,并镀有50纳米的金膜,金膜镀制的宽度与螺旋四芯光纤的螺距相同。同轴双波导光纤连接多模光纤作为传感信号接收光纤65,输出的测量光信号输入到多模光纤65中。最后在由光谱仪62采集,通过计算机68分析光谱仪62采集的传感信号,绘制传感测量得到的光谱,即可实现同时对生化和温度的传感测量。
本发明实施例提供的基于同轴双波导光纤的多参量传感器系统,能够满足生化传感应用场景下的对生化参量和温度参量同时测量的需求。与在先技术相比,由于采用了四芯螺旋光纤和同轴双波导光纤,其结构紧凑灵活,满足了对生化传感器多参量测量的需求。
以上所述,仅为本发明的优选实施例,但本发明的保护范围并不局限于此。任何本领域的技术人员根据本发明的精神和范围,对本发明进行各种改动和变化,均应包含在本发明权利要求保护范围内。

Claims (7)

1.一种基于同轴双波导光纤的多参量传感器系统。其特征是:它由宽带光源,光谱仪和多参量光纤传感器组成,该多参量光纤传感器由一段多芯(双芯或四芯或七芯)螺旋光纤焊接一段同轴双波导光纤组成,同轴双波导光纤经过蚀刻后使得环形纤芯裸露出来,在此裸露环形纤芯表面镀有纳米金膜,形成表面等离子波(SPR)敏感探头,同时在同轴双波导光纤的中间芯刻写光纤Bragg光栅(FBG)实现温度参量的测量,并且通过多芯螺旋光纤的螺距改变来有效地调节谐振波长和灵敏度,实现不同入射角的SPR传感。
2.根据权利要求1所述的基于同轴双波导光纤的多参量传感器系统,该多参量光纤传感器是由具有螺旋形多芯光纤纤端出射的斜入射螺旋光束实现SPR激发的,用多芯螺旋光纤激发出来的斜入射光束对称的入射入同轴双波导光纤的环形芯中,可形成多个SPR激发区,构成了SPR感测区域。
3.根据权利要求1所述的基于同轴双波导光纤的多参量传感器系统,该多参量光纤传感器中的同轴双波导光纤,其中的一部分是采用蚀刻的方法使得环形芯裸露出来,并在环形芯的裸露处镀制金纳米薄膜,从而在金膜表面激发出表面等离子体波实现SPR传感。
4.根据权利要求1所述的基于同轴双波导光纤的多参量传感器系统,通过在同轴双波导光纤的中间芯刻写光纤Bragg光栅(FBG)实现温度参量的传感测量。
5.根据权利要求1所述的基于同轴双波导光纤的多参量传感器系统,多芯(双芯或四芯或七芯)螺旋光纤,可以通过对多芯(双芯或四芯或七芯)光纤局部扭转制成多芯螺旋光纤,激发出斜入射光束。
6.根据权利要求1所述的基于同轴双波导光纤的多参量传感器系统,通过拉锥或者热扩散的方式,实现多芯光纤中间芯与周围其它纤芯间的耦合。
7.根据权利要求1所述的基于同轴双波导光纤的多参量传感器系统,该多参量光纤传感器能够实现SPR传感,又可同时实现温度传感,特别适合于生物化学感测场合,满足生化传感应用场景下的对生化参量和温度参量同时测量的需求。
CN202110243193.3A 2021-03-05 2021-03-05 基于同轴双波导光纤的多参量传感器 Active CN113029216B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110243193.3A CN113029216B (zh) 2021-03-05 2021-03-05 基于同轴双波导光纤的多参量传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110243193.3A CN113029216B (zh) 2021-03-05 2021-03-05 基于同轴双波导光纤的多参量传感器

Publications (2)

Publication Number Publication Date
CN113029216A true CN113029216A (zh) 2021-06-25
CN113029216B CN113029216B (zh) 2023-07-28

Family

ID=76468050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110243193.3A Active CN113029216B (zh) 2021-03-05 2021-03-05 基于同轴双波导光纤的多参量传感器

Country Status (1)

Country Link
CN (1) CN113029216B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110116094A1 (en) * 2007-11-15 2011-05-19 Aston University Method of Producing a Surface Plasmon Generator, a Surface Plasmon Generator and a Sensor Incorporating the Surface Plasmon Generator
CN104215610A (zh) * 2014-06-16 2014-12-17 中国计量学院 基于等离子谐振腔的光纤表面等离子体传感器
CN105651738A (zh) * 2016-03-10 2016-06-08 哈尔滨工程大学 一种螺旋芯光纤spr传感器
CN105954236A (zh) * 2016-03-10 2016-09-21 哈尔滨工程大学 一种纤维集成多螺旋芯光纤spr传感阵列芯片
CN109655431A (zh) * 2018-12-12 2019-04-19 桂林电子科技大学 环形芯光纤spr传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110116094A1 (en) * 2007-11-15 2011-05-19 Aston University Method of Producing a Surface Plasmon Generator, a Surface Plasmon Generator and a Sensor Incorporating the Surface Plasmon Generator
CN104215610A (zh) * 2014-06-16 2014-12-17 中国计量学院 基于等离子谐振腔的光纤表面等离子体传感器
CN105651738A (zh) * 2016-03-10 2016-06-08 哈尔滨工程大学 一种螺旋芯光纤spr传感器
CN105954236A (zh) * 2016-03-10 2016-09-21 哈尔滨工程大学 一种纤维集成多螺旋芯光纤spr传感阵列芯片
CN109655431A (zh) * 2018-12-12 2019-04-19 桂林电子科技大学 环形芯光纤spr传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张江涛等: "光纤表面等离子体共振光化学传感器的原理及进展", 《激光与光电子学进展》 *
魏勇 等: "微结构光纤SPR传感器进展", 《应用科学学报》 *

Also Published As

Publication number Publication date
CN113029216B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
Cai et al. Overview of the coupling methods used in whispering gallery mode resonator systems for sensing
Chu et al. Design and analysis of surface-plasmon-resonance-based photonic quasi-crystal fiber biosensor for high-refractive-index liquid analytes
US5061857A (en) Waveguide-binding sensor for use with assays
US5604587A (en) Long capillary waveguide raman cell
Slavı́k et al. Miniaturization of fiber optic surface plasmon resonance sensor
US6343168B1 (en) Optical sensor arrangement
US6021240A (en) Optical sensor activation device
Yang et al. A photonic crystal fiber glucose sensor filled with silver nanowires
Villatoro et al. High resolution refractive index sensing with cladded multimode tapered optical fibre
Zhong et al. Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors
CN209147930U (zh) 一种高分辨率单模多模单模微位移光纤传感器
Hu et al. High sensitivity fiber optic SPR refractive index sensor based on multimode-no-core-multimode structure
Fu et al. Surface plasmon resonance sensor based on photonic crystal fiber filled with silver nanowires
Hu et al. A narrow groove structure based plasmonic refractive index sensor
Teng et al. Investigation of U-shape tapered plastic optical fibers based surface plasmon resonance sensor for RI sensing
Wang et al. High sensitivity cascaded helical-core fiber SPR sensors
Wei et al. Research on vector bending SPR sensor based on V-groove fiber
Ren et al. A High-FOM surface plasmon resonance sensor based on MMF-TUMMF-MMF structure of optical fiber
Liu et al. Fiber SPR micro displacement sensor based on heterocore structure of graded index multimode fiber
CN110823834B (zh) 基于塑料光纤周期性窄槽结构的高灵敏度spr折射率传感器
Ayaz et al. Sensitivity of a tapered fiber refractive index sensor at diameters comparable to wavelength
CN110196070B (zh) 一种微纳光纤布喇格光栅折射率传感器
CN113029216B (zh) 基于同轴双波导光纤的多参量传感器
Lu et al. Characteristics of a capillary single core fiber based on SPR for hydraulic pressure sensing
CN115307567A (zh) 一种基于多芯光纤拉锥的曲率传感器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant