CN113019361A - 树枝状硅钛杂化纳米球负载贵金属催化剂及其制备方法 - Google Patents

树枝状硅钛杂化纳米球负载贵金属催化剂及其制备方法 Download PDF

Info

Publication number
CN113019361A
CN113019361A CN202110230324.4A CN202110230324A CN113019361A CN 113019361 A CN113019361 A CN 113019361A CN 202110230324 A CN202110230324 A CN 202110230324A CN 113019361 A CN113019361 A CN 113019361A
Authority
CN
China
Prior art keywords
noble metal
titanium
nanospheres
dendritic
nanosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110230324.4A
Other languages
English (en)
Inventor
王亚斌
赵瑜
黄亮珠
李雪礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanan University
Original Assignee
Yanan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanan University filed Critical Yanan University
Priority to CN202110230324.4A priority Critical patent/CN113019361A/zh
Publication of CN113019361A publication Critical patent/CN113019361A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种树枝状硅钛杂化纳米球负载贵金属催化剂及其制备方法,所述制备方法包括:在负压条件下将树枝状介孔二氧化硅纳米球在钛前驱体的有机溶液中进行超声分散,获得分散产物;利用无水乙醇清洗分散产物并进行煅烧,获得树枝状硅钛杂化纳米球;将树枝状硅钛杂化纳米球超声分散于甲苯中,并加入有机硅烷偶联剂进行回流反应,获得功能化纳米球;将功能化纳米球超声分散于含贵金属离子的无机盐溶液中,并滴加硼氢化钠溶液,进行离心分离及干燥,得到树枝状硅钛杂化纳米球负载贵金属催化剂。该方法依靠负压将钛前驱体挤入树枝状二氧化硅纳米球孔道,通过煅烧生成硅钛杂化纳米球,工艺简单、沉积速度快、且产物化学组成均匀。

Description

树枝状硅钛杂化纳米球负载贵金属催化剂及其制备方法
技术领域
本发明属于纳米催化剂材料制备技术领域,具体涉及一种树枝状硅钛杂化纳米球负载贵金属催化剂及其制备方法。
背景技术
树枝状介孔二氧化硅纳米球具有三维中心辐射状孔道和多级孔结构,此特异结构使其具有更大的孔体积、更高的比表面积、粒子内表面更易接触等特点,因而该材料是一种极具前景的新型纳米催化剂载体平台。相对于传统二氧化硅负载贵金属型催化剂(如六方结构的SBA-15和MCM-41),树枝状介孔二氧化硅纳米球负载贵金属型催化剂的性能更加优越,一方面源于辐射孔道和多级孔结构能够负载更多催化成分,使得反应活性位点急剧增加,另一方面在于负载于辐射孔道和多级孔结构的催化成分能够被稳定分散和保护,显示出优异的循环使用寿命。
纯二氧化硅组成的树枝状介孔二氧化硅纳米球骨架结构没有催化活性,贵金属多分散于其孔道内形成负载型催化剂。二氧化钛(TiO2)光催化活性高、稳定性好、对人体无毒、价格低廉,故其应用领域十分广泛,遍及有机废水的降解、贵金属离子的还原、空气净化、杀菌等。近期,Polshettiwar课题组利用原子沉积技术和氨水辅助液相沉积技术在树枝状介孔二氧化硅纳米球孔道内负载了二氧化钛纳米颗粒,得到的杂化纳米球可在紫外光照射下高效分解水产氢。但是,上述两种制备树枝状硅钛杂化纳米球的技术存在一些不足:原子沉积技术需要先进设备,沉积速率低且制备成本高;氨水辅助液相沉积技术难以控制钛前驱体水解速度,产物化学组成不均匀,形貌重现性不好。因此,开发成本低廉、工艺简单、产物化学组成均匀的树枝状硅钛杂化纳米球的制备工艺方法势在必行。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种树枝状硅钛杂化纳米球负载贵金属催化剂及其制备方法。本发明要解决的技术问题通过以下技术方案实现:
本发明提供了一种树枝状硅钛杂化纳米球负载贵金属催化剂的制备方法,包括:
S1:在负压条件下将树枝状介孔二氧化硅纳米球在含钛前驱体的有机溶液中进行超声分散,获得分散产物;
S2:利用无水乙醇清洗所述分散产物并进行煅烧,获得树枝状硅钛杂化纳米球;
S3:将所述树枝状硅钛杂化纳米球超声分散于甲苯中,并加入有机硅烷偶联剂进行回流反应,获得功能化纳米球;
S4:将所述功能化纳米球超声分散于含贵金属离子的无机盐溶液中,并滴加硼氢化钠溶液,进行离心分离及干燥,得到所述树枝状硅钛杂化纳米球负载贵金属催化剂。
在本发明的一个实施例中,所述S1包括:
将树枝状介孔二氧化硅纳米球超声分散于含钛前驱体的有机溶液中,连接真空水泵,在小于-0.08MPa压力下超声分散至少15min。
在本发明的一个实施例中,所述钛前驱体为四氯化钛、双(乙酰丙酮基)二异丙基钛酸酯、钛酸四丁酯或钛酸异丙酯。
在本发明的一个实施例中,所述S2包括:
利用无水乙醇对所述分散产物进行至少3次清洗,并在600-800℃煅烧3-8小时,获得树枝状硅钛杂化纳米球。
在本发明的一个实施例中,所述S3包括:
将所得树枝状硅钛杂化纳米球超声分散于甲苯中,加入所述有机硅烷偶联剂,并在100-120℃温度条件下回流反应6-12小时,获得功能化纳米球。
在本发明的一个实施例中,所述有机硅烷偶联剂为胺基类硅烷、巯基类硅烷、脲基类硅烷或异氰酸基类硅烷。
在本发明的一个实施例中,所述S4包括:
将所述功能化纳米球超声分散于含贵金属离子的无机盐溶液中,以至少5秒一滴的速度滴加预定量的硼氢化钠溶液并搅拌以使所述贵金属离子完全还原为贵金属纳米粒子,随后进行离心干燥,得到所述树枝状硅钛杂化纳米球负载贵金属催化剂。
在本发明的一个实施例中,所述含贵金属离子的无机盐溶液包括硝酸银、醋酸钯、氯金酸钠、氯铂酸钠、氯化铑、氯化铷或醋酸铱。
本发明的另一方面提供了一种根据上述实施例中任一项所述的制备方法制备的树枝状硅钛杂化纳米球负载贵金属催化剂,包括:
二氧化硅:质量百分比为60%~65%;
锐钛矿型二氧化钛:质量百分比为12%~20%;
硅烷:质量百分比为2%~16%;
贵金属:质量百分比为0.8%~13%。
与现有技术相比,本发明的有益效果在于:
1、本发明的树枝状硅钛杂化纳米球负载贵金属催化剂的制备方法,采用真空技术,依靠负压将钛前驱体挤入树枝状二氧化硅纳米球孔道,通过煅烧生成硅钛杂化纳米球,相对于传统的原子沉积技术和氨水辅助液相沉积技术,本发明的方法成本低廉、工艺简单、沉积速度快、生成的催化剂化学组成均匀、易于实施。
2、本发明提出以树枝状硅钛杂化纳米球为载体,通过有机硅烷功能化其界面引入活性基团,在孔道内牢固负载贵金属纳米粒子,使得二氧化钛和贵金属协同提高催化剂性能。该过程生成的催化剂形貌均匀、尺寸均一、稳定性强,能够高效光解水产氢、还原对硝基苯酚等。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明实施例提供的一种枝状硅钛杂化纳米球负载贵金属催化剂的制备方法的流程图;
图2是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的扫描电子显微镜图;
图3是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的透射电子显微镜图;
图4是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的X射线衍射图;
图5是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的光解水产氢图;
图6是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的光解水产氢循环图;
图7是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的降解对硝基苯酚紫外吸收光谱图;
图8是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的降解对硝基苯酚动力学曲线图;
图9是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的降解对硝基苯酚循环图。
具体实施方式
为了进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及具体实施方式,对依据本发明提出的树枝状硅钛杂化纳米球负载贵金属催化剂及其制备方法进行详细说明。
有关本发明的前述及其他技术内容、特点及功效,在以下配合附图的具体实施方式详细说明中即可清楚地呈现。通过具体实施方式的说明,可对本发明为达成预定目的所采取的技术手段及功效进行更加深入且具体地了解,然而所附附图仅是提供参考与说明之用,并非用来对本发明的技术方案加以限制。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。
实施例一
请参见图1,图1是本发明实施例提供的一种枝状硅钛杂化纳米球负载贵金属催化剂的制备方法的流程图。该制备方法包括:
S1:在负压条件下将树枝状介孔二氧化硅纳米球在钛前驱体的有机溶液中进行超声分散,获得分散产物;
本实施例中所使用的树枝状介孔二氧化硅纳米球种类无特别限定,天然或人工合成二氧化硅基材均可。所述钛前驱体优选的为四氯化钛、双(乙酰丙酮基)二异丙基钛酸酯、钛酸四丁酯或钛酸异丙酯。
具体地,步骤S1包括:
将0.5g树枝状介孔二氧化硅纳米球超声分散于5.0mL含钛前驱体的有机溶液,连接真空水泵,在-0.1MPa压力下超声分散15min。
S2:利用无水乙醇清洗所述分散产物并进行煅烧,获得树枝状硅钛杂化纳米球;
在本实施例中,利用无水乙醇对所述分散产物进行3次清洗,并在650℃煅烧5小时,获得树枝状硅钛杂化纳米球,其中,所述树枝状硅钛杂化纳米球中形成锐钛矿型二氧化钛基材。
S3:将所述树枝状硅钛杂化纳米球超声分散于甲苯中,并加入有机硅烷偶联剂进行回流反应,获得功能化纳米球;
具体地,将所得树枝状硅钛杂化纳米球超声分散于50.0mL甲苯中,加入所述有机硅烷偶联剂,并在110℃温度条件下回流反应8小时,获得功能化纳米球。
需要说明的是,本实施例用来改性树枝状硅钛杂化纳米球的有机硅烷偶联剂需含与贵金属有化学键合能力的活性功能基团,如胺基类硅烷、巯基类硅烷、脲基类硅烷、异氰酸基类硅烷等,优选的为3-氨基丙基三乙氧基硅烷、3-巯基丙基三乙氧基硅烷、3-脲基丙基三乙氧基硅烷、3-异氰酸酯基丙基三乙氧基硅烷等。在本实施例中,所述有机硅烷偶联剂选用3-巯基丙基三乙氧基硅烷偶联剂。
S4:将所述功能化纳米球超声分散于含贵金属离子的无机盐溶液中,并滴加硼氢化钠溶液,进行离心分离及干燥,得到所述树枝状硅钛杂化纳米球负载贵金属催化剂。
所述含贵金属离子的无机盐溶液包括硝酸银、醋酸钯、氯金酸钠、氯铂酸钠、氯化铑、氯化铷或醋酸铱。本实施例所选用的为硝酸银溶液。
在本实施例中,将所述功能化纳米球超声分散于硝酸银溶液中,以至少5秒一滴的速度滴加预定量的硼氢化钠溶液,搅拌5小时以使所述硝酸银溶液中的银离子完全还原为银纳米粒子,随后进行离心干燥,得到所述树枝状硅钛杂化纳米球负载银纳米粒子催化剂。
本实施例的制备方法所得树枝状硅钛杂化纳米球负载贵金属催化剂中,二氧化硅含量在60%~65%、锐钛矿型二氧化钛含量在12%~20%、改性硅烷含量在2%~16%、贵金属含量在0.8%~13%,各成分含量的总和为100%,其中,贵金属为纳米颗粒,如银、钯、金、铂、铑、铷、铱等。请参见图2和图3,图2是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的扫描电子显微镜图;图3是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的透射电子显微镜图。从图2和图3可以看出,该催化剂具有中心辐射状及多级孔结构,其直径在200nm~600nm之间,孔直径介于5nm~60nm之间。请参见图4,图4是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的X射线衍射图,从图4中可以看出,催化剂显示出特征的锐钛矿二氧化钛峰和单质银峰。
本实施例采用真空技术,依靠负压将钛前驱体二氧化钛基材挤入树枝状二氧化硅纳米球孔道,通过煅烧生成硅钛杂化纳米球,制备出以树枝状硅钛杂化纳米球为载体,有机硅烷为偶联剂,在孔道内负载贵金属纳米粒子的新型催化剂。
在树枝状硅钛杂化纳米球负载贵金属催化剂中,二氧化硅为基础骨架结构,不仅能够维持催化剂结构和形貌,而且在实际应用中阻挡外力对催化剂的破坏;锐钛矿型二氧化钛为光催化活性物质,能够增加催化剂在光反应条件下的催化活性;硅烷偶联剂为稳定剂,能够化学键合贵金属纳米粒子,防止其在催化过程中的扩散、团聚和流失;贵金属纳米粒子为助催化剂,其与二氧化钛的协同催化作用大幅度提高催化反应的活性和选择性。
进一步地,本实施例的树枝状硅钛杂化纳米球负载贵金属催化剂可以用于光解水产氢,具体地:
将50mg本实施例的树枝状硅钛杂化纳米球负载银纳米粒子催化剂加入到50.0mL、10wt%的三乙醇胺水溶液中超声30分钟形成混合溶液,将所述混合溶液加入到100mL反应瓶并将其放置于气氛控制器中;通入30分钟氮气排除瓶内的空气,抽真空一个小时;随后将混合溶液放于多通道光催化反应装置中,氙灯光照射5小时,每隔一小时通过气相色谱仪在线监测产生的氢气量。
请参见图5和图6,图5是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的光解水产氢图;图6是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的光解水产氢循环图。从图5可以看出,随着时间增加,氢产量逐渐增加直至336.8μmol·g-1,在5个小时的反应速率为67.4μmol·g-1·h-1。从图6可以看出,5次循环后,催化性能基本保持不变,证明该催化剂的稳定性能。
进一步地,本实施例的树枝状硅钛杂化纳米球负载贵金属催化剂可以用于还原对硝基苯酚,具体地:
取2.5mL、0.12mmol/L的对硝基苯酚溶液和0.5mL、500mmol/L的硼氢化钠溶液加入到3.0mL的石英比色皿中,再加入0.01mL、0.5mg/mL本实例所制备得到的树枝状硅钛杂化纳米球负载银纳米粒子催化剂,每隔400秒用紫外分光光度计对反应过程进行检测。结果如图7所示,随着反应时间增加,400nm处吸光度逐渐下降,表明对硝基苯酚逐渐减少。在300nm处吸光度逐渐增加,表明对硝基苯酚的还原产物对氨基苯酚逐渐增加。请参见图8,图8是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的降解对硝基苯酚动力学曲线图,其中,C初始表示对硝基苯酚的原始浓度,C实时表示对硝基苯酚的实时浓度,C与吸光度成正比,因此-ln(C实时/C初始)可由紫外分光光度计测定的吸光度确定,图8表明该催化反应的反应速率常数为1.480×10-3s-1。图9是本发明实施例提供的一种树枝状硅钛杂化纳米球负载银纳米粒子催化剂的降解对硝基苯酚循环图。可以看出,完全反应后进行10次循环后,催化剂依旧能还原98%的对硝基苯酚,证明该催化剂稳定的化学性能。
本实施例的树枝状硅钛杂化纳米球负载贵金属催化剂的制备方法,采用真空技术,依靠负压将钛前驱体挤入树枝状二氧化硅纳米球孔道,通过煅烧生成硅钛杂化纳米球,相对于传统的原子沉积技术和氨水辅助液相沉积技术,本发明的方法成本低廉、工艺简单、沉积速度快、产物化学组成均匀、易于实施。另外,本发明实施例提出以树枝状硅钛杂化纳米球为载体,通过有机硅烷功能化其界面引入活性基团,在孔道内牢固负载贵金属纳米粒子,使得二氧化钛和贵金属协同提高催化剂性能。该过程产物为新型催化剂类型,其形貌均匀、尺寸均一、稳定性强,能够高效光解水产氢、还原对硝基苯酚等。
实施例二
本实施例提供了一种枝状硅钛杂化纳米球负载铂纳米粒子催化剂的制备方法。该制备方法包括:
步骤1:将0.6g树枝状介孔二氧化硅纳米球超声分散于含4.0mL双(乙酰丙酮基)二异丙基钛酸酯的圆底烧瓶中,连接真空水泵,在-0.08MPa压力下超声分散20分钟,获得分散产物。
步骤2:用无水乙醇清洗所述分散产物3次,在600℃煅烧8小时。
步骤3:将上述所得树枝状硅钛杂化纳米球超声分散于含50.0mL甲苯的圆底烧瓶中,加入3-氨基丙基三乙氧基硅烷,100℃回流反应12小时。
步骤4:得到功能化纳米球超声分散于50.0mL、20mmol/L的氯铂酸钠溶液,以5秒一滴的速度滴加20.0mL、100mmol/L硼氢化钠溶液并继续搅拌5小时以使所述氯铂酸钠溶液中的铂离子完全还原为铂纳米粒子,离心分离干燥,得到目标产物枝状硅钛杂化纳米球负载铂纳米粒子催化剂。
实施例三
本实施例提供了另一种枝状硅钛杂化纳米球负载金纳米粒子催化剂的制备方法。本实施例的制备方法包括:
步骤1:将0.8g树枝状介孔二氧化硅纳米球超声分散于含8.0mL钛酸四丁酯的圆底烧瓶中,连接真空水泵,在-0.1MPa压力下超声分散30分钟,获得分散产物。
步骤2:用无水乙醇清洗所述分散产物4次,在800℃煅烧3小时。
步骤3:将上述所得树枝状硅钛杂化纳米球超声分散于含50.0mL甲苯的圆底烧瓶中,加入3-异氰酸酯基丙基三乙氧基硅烷,120℃回流反应6小时。
步骤4:得到功能化纳米球超声分散于50.0mL、30mmol/L的氯金酸钠溶液,以8秒一滴的速度滴加20.0mL、200mmol/L硼氢化钠溶液并搅拌5小时以使所述氯金酸钠溶液中的金离子完全还原为金纳米粒子,离心分离干燥,得到目标产物枝状硅钛杂化纳米球负载金纳米粒子催化剂。
实施例四
本实施例提供了另一种枝状硅钛杂化纳米球负载铑纳米粒子催化剂的制备方法。本实施例的制备方法包括:
步骤1:将0.5g树枝状介孔二氧化硅纳米球超声分散于含5.0mL钛酸异丙酯的圆底烧瓶中,连接真空水泵,在-0.12MPa压力下超声分散25分钟,获得分散产物。
步骤2:用无水乙醇清洗所述分散产物3次,在650℃煅烧5小时。
步骤3:将上述所得树枝状硅钛杂化纳米球超声分散于含50.0mL甲苯的圆底烧瓶中,加入3-脲基丙基三乙氧基硅烷,110℃回流反应8小时。
步骤4:得到功能化纳米球超声分散于50.0mL、40mmol/L的氯化铑盐溶液,以至少5秒一滴的速度滴加40.0mL、100mmol/L硼氢化钠溶液至完毕,继续搅拌5小时以使所述氯化铑盐溶液中的铑离子完全还原为铑纳米粒子,离心分离干燥,得到目标产物枝状硅钛杂化纳米球负载铑纳米粒子催化剂。
实施例五
在上述实施例的基础上,本实施例提供了一种利用上述实施例所述的制备方法制备的树枝状硅钛杂化纳米球负载贵金属催化剂,所述催化剂包括:
二氧化硅:质量百分比为60%~65%;
锐钛矿型二氧化钛:质量百分比为12%~20%;
硅烷:质量百分比为2%~16%;
贵金属纳米粒子:质量百分比为0.8%~13%。
本发明实施例的催化剂在制备过程中采用真空技术,依靠负压将钛前驱体挤入树枝状二氧化硅纳米球孔道,通过煅烧生成硅钛杂化纳米球,制备出以树枝状硅钛杂化纳米球为载体,有机硅烷为偶联剂,在孔道内负载贵金属纳米粒子的催化剂。所述贵金属纳米粒子为银、钯、金、铂、铑、铷、铱等。
在树枝状硅钛杂化纳米球负载贵金属催化剂中,二氧化硅为基础骨架结构,不仅能够维持催化剂结构和形貌,而且在实际应用中阻挡外力对催化剂的破坏;锐钛矿型二氧化钛为光催化活性物质,能够增加催化剂在光反应条件下的催化活性;硅烷偶联剂为稳定剂,能够化学键合贵金属纳米粒子,防止其在催化过程中的扩散、团聚和流失;贵金属纳米粒子为助催化剂,其与二氧化钛的协同催化作用大幅度提高催化反应的活性和选择性。该树枝状硅钛杂化纳米球负载贵金属催化剂形貌均匀、尺寸均一、稳定性强,能够高效光解水产氢、还原对硝基苯酚等。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (9)

1.一种树枝状硅钛杂化纳米球负载贵金属催化剂的制备方法,其特征在于,包括:
S1:在负压条件下将树枝状介孔二氧化硅纳米球在含钛前驱体的有机溶液中进行超声分散,获得分散产物;
S2:利用无水乙醇清洗所述分散产物并进行煅烧,获得树枝状硅钛杂化纳米球;
S3:将所述树枝状硅钛杂化纳米球超声分散于甲苯中,并加入有机硅烷偶联剂进行回流反应,获得功能化纳米球;
S4:将所述功能化纳米球超声分散于含贵金属离子的无机盐溶液中,并滴加硼氢化钠溶液,进行离心分离及干燥,得到所述树枝状硅钛杂化纳米球负载贵金属催化剂。
2.根据权利要求1所述的树枝状硅钛杂化纳米球负载贵金属催化剂的制备方法,其特征在于,所述S1包括:
将树枝状介孔二氧化硅纳米球超声分散于含钛前驱体的有机溶液中,连接真空水泵,在小于-0.08MPa压力下超声分散至少15min。
3.根据权利要求2所述的树枝状硅钛杂化纳米球负载贵金属催化剂的制备方法,其特征在于,所述钛前驱体为四氯化钛、双(乙酰丙酮基)二异丙基钛酸酯、钛酸四丁酯或钛酸异丙酯。
4.根据权利要求1所述的树枝状硅钛杂化纳米球负载贵金属催化剂的制备方法,其特征在于,所述S2包括:
利用无水乙醇对所述分散产物进行至少3次清洗,并在600-800℃煅烧3-8小时,获得树枝状硅钛杂化纳米球。
5.根据权利要求1所述的树枝状硅钛杂化纳米球负载贵金属催化剂的制备方法,其特征在于,所述S3包括:
将所得树枝状硅钛杂化纳米球超声分散于甲苯中,加入有机硅烷偶联剂,并在100-120℃温度条件下回流反应6-12小时,获得功能化纳米球。
6.根据权利要求5所述的树枝状硅钛杂化纳米球负载贵金属催化剂的制备方法,其特征在于,所述有机硅烷偶联剂为胺基类硅烷、巯基类硅烷、脲基类硅烷或异氰酸基类硅烷。
7.根据权利要求1所述的树枝状硅钛杂化纳米球负载贵金属催化剂的制备方法,其特征在于,所述S4包括:
将所述功能化纳米球超声分散于含贵金属离子的无机盐溶液中,以至少5秒一滴的速度滴加预定量的硼氢化钠溶液并搅拌以使所述贵金属离子完全还原为贵金属纳米粒子随后进行离心干燥,得到所述树枝状硅钛杂化纳米球负载贵金属催化剂。
8.根据权利要求7所述的树枝状硅钛杂化纳米球负载贵金属催化剂的制备方法,其特征在于,所述含贵金属离子的无机盐溶液包括硝酸银、醋酸钯、氯金酸钠、氯铂酸钠、氯化铑、氯化铷或醋酸铱。
9.一种根据权利要求1至8中任一项所述的制备方法制备的树枝状硅钛杂化纳米球负载贵金属催化剂,其特征在于,包括:
二氧化硅:质量百分比为60%~65%;
锐钛矿型二氧化钛:质量百分比为12%~20%;
硅烷:质量百分比为2%~16%;
贵金属:质量百分比为0.8%~13%。
CN202110230324.4A 2021-03-02 2021-03-02 树枝状硅钛杂化纳米球负载贵金属催化剂及其制备方法 Pending CN113019361A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110230324.4A CN113019361A (zh) 2021-03-02 2021-03-02 树枝状硅钛杂化纳米球负载贵金属催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110230324.4A CN113019361A (zh) 2021-03-02 2021-03-02 树枝状硅钛杂化纳米球负载贵金属催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN113019361A true CN113019361A (zh) 2021-06-25

Family

ID=76465519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110230324.4A Pending CN113019361A (zh) 2021-03-02 2021-03-02 树枝状硅钛杂化纳米球负载贵金属催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN113019361A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114345327A (zh) * 2022-03-01 2022-04-15 南京艾伊科技有限公司 电化学二氧化硫传感器的负载型纳米金催化剂及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206562A1 (en) * 2007-01-12 2008-08-28 The Regents Of The University Of California Methods of generating supported nanocatalysts and compositions thereof
CN104741140A (zh) * 2015-02-17 2015-07-01 浙江工业大学 一种胺基功能化介孔二氧化硅微球负载型非均相催化剂及制备方法与应用
CN108786792A (zh) * 2018-06-25 2018-11-13 福州大学 一种金属/半导体复合光催化剂及其制备与应用
CN109331817A (zh) * 2018-11-22 2019-02-15 成都新柯力化工科技有限公司 一种用于分解空气中有机物的光催化材料及制备方法
CN110586192A (zh) * 2019-09-27 2019-12-20 浙江工业大学上虞研究院有限公司 一种树状介孔模板负载二氧化钛光催化剂的制备方法
CN110787795A (zh) * 2019-09-11 2020-02-14 浙江工业大学 一种多层级双孔结构复合光催化剂及其制备与应用
CN111482169A (zh) * 2020-04-14 2020-08-04 中北大学 负载贵金属的纳米光催化剂及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206562A1 (en) * 2007-01-12 2008-08-28 The Regents Of The University Of California Methods of generating supported nanocatalysts and compositions thereof
CN104741140A (zh) * 2015-02-17 2015-07-01 浙江工业大学 一种胺基功能化介孔二氧化硅微球负载型非均相催化剂及制备方法与应用
CN108786792A (zh) * 2018-06-25 2018-11-13 福州大学 一种金属/半导体复合光催化剂及其制备与应用
CN109331817A (zh) * 2018-11-22 2019-02-15 成都新柯力化工科技有限公司 一种用于分解空气中有机物的光催化材料及制备方法
CN110787795A (zh) * 2019-09-11 2020-02-14 浙江工业大学 一种多层级双孔结构复合光催化剂及其制备与应用
CN110586192A (zh) * 2019-09-27 2019-12-20 浙江工业大学上虞研究院有限公司 一种树状介孔模板负载二氧化钛光催化剂的制备方法
CN111482169A (zh) * 2020-04-14 2020-08-04 中北大学 负载贵金属的纳米光催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XUAN WANG ET AL.: "Nano-Au-modified TiO2 grown on dendritic porous silica particles for enhanced CO2 photoreduction", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *
YABIN WANG ET AL.: "Structure-dependent adsorptive or photocatalytic performances of solid and hollow dendritic mesoporous silica & titania nanospheres", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *
ZHENGPING DONG ET AL.: "Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol", 《APPLIED CATALYSIS B:ENVIRONMENTAL》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114345327A (zh) * 2022-03-01 2022-04-15 南京艾伊科技有限公司 电化学二氧化硫传感器的负载型纳米金催化剂及制备方法

Similar Documents

Publication Publication Date Title
Hirakawa et al. Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light
Zhang et al. In situ Fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation
Chen et al. Introduction: titanium dioxide (TiO2) nanomaterials
Yu et al. Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework
Tanaka et al. Simultaneous and stoichiometric water oxidation and Cr (VI) reduction in aqueous suspensions of functionalized plasmonic photocatalyst Au/TiO2–Pt under irradiation of green light
Peiró et al. Low-temperature deposition of TiO2 thin films with photocatalytic activity from colloidal anatase aqueous solutions
Zhang et al. Role of particle size in nanocrystalline TiO2-based photocatalysts
Di Paola et al. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol
Yu et al. Stable Au25 (SR) 18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity
Wang et al. Preparation and photocatalytic properties of Zr4+-doped TiO2 nanocrystals
Ye et al. Two different roles of metallic Ag on Ag/AgX/BiOX (X= Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge
Peng et al. Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method
Tachikawa et al. Photoinduced charge separation in titania nanotubes
Li et al. Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization
Lv et al. Effects of polyoxometalate and fluoride on adsorption and photocatalytic degradation of organic dye X3B on TiO2: the difference in the production of reactive species
Liu et al. Enhanced photocatalysis on TiO2 nanotube arrays modified with molecularly imprinted TiO2 thin film
Usseglio et al. (I2) n encapsulation inside TiO2: a way to tune photoactivity in the visible region
Chowdhury et al. Sacrificial hydrogen generation from aqueous triethanolamine with Eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation
Li et al. High-efficient photocatalytic hydrogen evolution on eosin Y-sensitized Ti− MCM41 zeolite under visible-light irradiation
Zhang et al. Facet-dependent interfacial charge transfer in Fe (III)-grafted TiO2 nanostructures activated by visible light
Ghosh-Mukerji et al. Selective photocatalysis by means of molecular recognition
Einaga et al. Generation of active sites for CO photooxidation on TiO2 by platinum deposition
Kong et al. Rattle-type Au@ TiO2 hollow microspheres with multiple nanocores and porous shells and their structurally enhanced catalysis
Singh et al. Low-temperature activation conditions for PAMAM dendrimer templated Pt nanoparticles
Biradar et al. Photocatalytic degradation of dyes using one-step synthesized silica nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210625

RJ01 Rejection of invention patent application after publication