CN113016156A - 基于同步信号块的波束故障检测 - Google Patents

基于同步信号块的波束故障检测 Download PDF

Info

Publication number
CN113016156A
CN113016156A CN201980073272.5A CN201980073272A CN113016156A CN 113016156 A CN113016156 A CN 113016156A CN 201980073272 A CN201980073272 A CN 201980073272A CN 113016156 A CN113016156 A CN 113016156A
Authority
CN
China
Prior art keywords
csi
bfd
ssb
coreset
quasi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980073272.5A
Other languages
English (en)
Other versions
CN113016156B (zh
Inventor
王国童
李华
M·拉加万
张羽书
崔杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of CN113016156A publication Critical patent/CN113016156A/zh
Application granted granted Critical
Publication of CN113016156B publication Critical patent/CN113016156B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了用于执行波束故障检测(BFD)并且具体地用于执行基于同步信号块(SSB)的BFD和/或基于信道状态信息参考信号(CSI‑RS)的BFD的系统、装置、方法和计算机可读介质。本发明所公开的实施方案包括针对用于BFD和物理下行链路控制信道(PDCCH)的SSB的准共址(QCL)和使用案例限制、针对BFD的过渡周期处理以及针对BFD的隐式配置SSB。还描述了其他实施方案并且/或者要求对其进行保护。

Description

基于同步信号块的波束故障检测
相关专利申请
本专利申请要求于2018年11月13日提交的美国临时专利申请第62/760,276号的优先权,该专利申请的内容据此全文以引用方式并入。
技术领域
本专利申请的各种实施方案整体涉及无线通信领域,并且具体地涉及对无线电链路监测和/或波束故障检测(BFD)的增强。
背景技术
下一代无线通信系统被称为第五代(5G)或新无线电(NR)系统,包括无线电链路监测和链路恢复过程功能,其中用户装备监测下行链路无线电链路质量,以用于向高层指示不同步状态和同步状态。所报告的不同步状态和同步状态用于检测无线电链路故障。5G/NR系统还包括波束故障检测(BFD)功能,其中UE用BFD参考信号(RS)显式地或隐式地配置,并且当来自物理层的波束故障实例指示的数量在配置的定时器到期之前达到配置的阈值时,UE宣布波束故障。BFD RS可基于周期性信道状态信息参考信号(CSI-RS)或同步信号块(SSB),其中RS可在任一种情况下被配置。当BFD RS未被配置时,在物理下行链路控制信道(PDCCH)的传输配置指示(TCI)状态下配置的RS可用于BFD。
用于BFD的RS可与PDCCH的对应解调RS(DMRS)准共址(QCLed)。然而,仅CSI-RS可在用于PDCCH的DMRS的TCI状态下进行配置。未定义显式配置的SSB与用于PDCCH的DMRS之间的QCL信息的配置。另外,PDCCH TCI状态可由媒体访问控制(MAC)控制元素(CE)更新,但是显式配置的SSB和周期性CSI-RS或周期性CSI-RS的QCL只能通过无线电资源控制(RRC)信令更新。这可能导致QCL失配过渡时段,并且未定义针对该时段要执行的BFD。此外,由于SSB不能在用于PDCCH的TCI状态下进行配置,因此未定义基于SSB的BFD的隐式配置。
附图说明
图1示出了根据一些实施方案的网络的系统的架构。图2示出了根据一些实施方案的示例性媒体访问控制(MAC)控制元素(CE)。图4示出了根据各种实施方案的示例性准共址链。图3和图5描绘了用于实践本文所讨论的各种实施方案的示例性过程。
图6示出了根据各种实施方案的示例性基础设施装备。图7示出了根据各种实施方案的平台的示例。图8示出了可用于实践本文所讨论的实施方案的通信电路的示例。
具体实施方式
本文所讨论的实施方案提供了对现有波束故障检测(BFD)过程的增强。具体地讲,本公开提供了针对基于同步信号块(SSB)的BFD的实施方案。实施方案包括针对用于BFD和物理下行链路控制信道(PDCCH)的SSB的准共址(QCL)和使用案例限制、针对BFD的过渡时段处理以及针对BFD的隐式配置SSB。还描述了其他实施方案并且/或者要求对其进行保护。
现在参见图1,其中示出了根据各种实施方案的网络的系统100的示例性架构。以下描述是针对结合如由3GPP技术规范提供的第五代(5G)或新无线电(NR)系统标准或长期演进(LTE)系统标准操作的示例性系统100提供的。然而,就这一点而言示例性实施方案不受限制,并且所述实施方案可应用于受益于本文所述原理的其他网络,诸如未来3GPP系统(例如,第六代(6G))系统、IEEE 802.16协议(例如,无线城域网(WMAN)、全球微波接入互操作性(WiMAX)等)等。
如图1所示,系统100包括用户装备(UE)101a和UE 101b(统称为“多个UE 101”或“UE 101”)。UE 101是具有无线电通信能力(诸如无线通信接口)的任何设备,并且描述了通信网络中网络资源的远程用户。在该示例中,UE 101被示出为智能电话,但也可包括任何移动或非移动计算设备,诸如消费平板电脑、可穿戴设备、台式计算机、膝上型计算机、车载信息娱乐(IVI)设备、平视显示器(HUD)设备、物联网(IoT)设备、嵌入式系统或微控制器、联网或“智能”设备等。UE 101包括各种硬件元件,诸如基带电路、存储器电路、射频(RF)电路和接口电路(例如,输入/输出(I/O)接口),其中的一些或全部可经由合适的互连(IX)技术彼此耦接。RF电路包括各种硬件元件(例如,开关、滤波器、放大器、数字信号处理器(DSP)等),这些硬件元件被配置为使用通过非固体介质调制的电磁辐射来实现与无线网络的通信。电子元件可被布置为接收信号路径(或接收(Rx)RF链)以下变频所接收的RF信号并将基带信号提供给基带电路,并且可被布置为传输信号路径以上变频由基带电路提供的基带信号并经由前端模块将RF输出信号提供给天线阵列以进行传输。基带电路和RF电路允许UE 101与无线电接入网络(RAN)110连接或通信地耦接。在各种实施方案中,UE 101可具有多个面板或多个天线阵列并且被配置为在基于多个DCI的多TRP/面板传输中从不同TRP 111接收多个独立调度的数据流。
UE 101b被示出为被配置为经由连接107访问接入点(AP)106。连接107可包括符合任何IEEE 802.11协议的无线局域网(WLAN)连接,其中AP 106可为
Figure BDA0003053536960000031
路由器、网关设备等。在该示例中,示出AP 106连接到互联网而没有连接到无线系统的核心网(下文进一步详细描述)。在各种实施方案中,UE 101b、RAN 110和AP 106可被配置为利用LTE-WLAN聚合(LWA)操作和/或与IPsec隧道(LWIP)集成的LTE/WLAN无线电级别操作。
RAN 110是实现无线电接入技术(RAT)的一组RAN节点111;如本文所用,术语“RAT”是指用于无线电接入的一种类型的技术,诸如NR、E-UTRA、WiFi/WLAN等。RAN 110中的一组RAN节点111经由接口112彼此连接,并且通过接口113连接到CN 120。在实施方案中,当系统100是UTRAN或GERAN系统时,RAN 110可以是通用陆地无线接入网(UTRAN)或GSM(EDGE)RAN(GERAN)的移动专家组(GSM)/增强型数据速率,当系统100是LTE或4G系统时,RAN可以是演进型UTRAN(E-UTRAN),或者当系统100是NR/5G系统时,RAN可以是下一代(NG)RAN或5G RAN。UE 101分别利用连接(或信道)103和104,每个连接包括物理通信接口或层。如本文所用的术语“信道”或“链路”是指用于传送数据或数据流的任何有形的或无形的传输介质。另外,如本文所用的术语“链路”是指通过RAT在两个设备之间进行的用于传输和接收信息的连接。在图1中,连接103和104被示出为空中接口以实现通信耦接,并且可符合蜂窝通信协议,诸如GSM、码分多址(CDMA)、一键通(PTT)和/或蜂窝PPT(POC)、UMTS、LTE、5G/NR等。UE101还可经由包括一个或多个物理和/或逻辑SL信道的接近服务(ProSe)或侧链路(SL)接口105直接交换数据。
RAN 110包括启用连接103和104的一个或多个RAN节点111a和111b(统称为“多个RAN节点111”或“RAN节点111”)。RAN节点111是为网络(例如,核心网(CN)120)和一个或多个用户(例如,UE101)之间的数据和/或语音连接性提供无线电基带功能的基础设施装备。RAN节点111可以被称为UMTS系统中的节点B 111、LTE系统中的演进节点B(eNB)111、5G/NR系统中的下一代节点B(gNB)111或下一代eNB(ng-eNB)、车联万物(V2X)具体实施的道路侧单元(RSU)等。在一些实施方案中,每个RAN节点111可以为传输/接收点(TRP)。在其他实施方案中,每个RAN节点111可以具有多个天线元件,其中每个天线元件可以为单独TRP。
RAN节点111可包括在地理区域(例如,小区)内提供覆盖的地面站(例如,陆地接入点)或卫星站。RAN节点111可被实现为一个或多个专用物理设备诸如宏小区基站和/或用于提供与宏小区相比具有较小覆盖区域、较小用户容量或较高带宽的毫微微小区、微微小区或其他类似小区的低功率基站。RAN节点111中的任一个节点都可作为空中接口协议的终点,并且可以是UE 101的第一联系点。在一些实施方案中,RAN节点111中的任一个都可执行RAN 110的各种逻辑功能,包括但不限于无线电网络控制器(RNC)的功能,诸如无线电承载管理、UL和DL动态无线电资源管理和数据分组调度以及移动性管理。
在一些实施方案中,RAN节点111的全部或部分可被实现为作为虚拟网络(例如,云RAN(CRAN)、虚拟基带单元池(vBBUP)等)的一部分在服务器计算机上运行的一个或多个软件实体。在这些实施方案中,RAN节点111可实现RAN功能分割,其中不同的协议实体由不同的元件操作。如本文所用的术语“元件”是指在给定抽象水平下不可分并且具有清晰限定的边界的单元。一个或多个RAN节点111可以表示经由相应F1接口(图1未示出)连接到集中式单元(CU)的单独分布式单元(DU)。在这些具体实施中,gNB-DU可包括一个或多个远程无线电标头或RFEM,并且gNB-CU可由位于RAN 110中的服务器(未示出)或由服务器池以与CRAN/vBBUP类似的方式操作。
RAN节点111可被配置为经由接口112彼此通信。接口112可包括用于在RAN节点111之间承载用户平面数据的用户平面接口,以及用于在RAN节点111之间承载控制信令的控制平面接口。当系统100为LTE系统时,接口112可以为X2接口112,并且当系统100为5G/NR系统时,接口112可以为Xn接口112。在一些实施方案中,接口112可以为无线回传连接。
在实施方案中,UE 101可被配置为根据各种通信技术,使用正交频分复用(OFDM)通信信号在多载波通信信道上彼此或者与RAN节点111中的任一个进行通信,所述通信技术诸如但不限于OFDMA通信技术(例如,用于DL通信)或单载波频分多址(SC-FDMA)通信技术(例如,用于UL和ProSe/SL通信),但是实施方案的范围在这方面不受限制。OFDM信号可包括多个正交子载波。
DL传输和UL传输可被组织成具有10ms持续时间的帧,其中每个帧包括十个1ms子帧,并且每个子帧包括整数个时隙。时频无线电资源网格可用于指示对应时隙中DL或UL中的物理资源。DL资源网格的每一列和每一行分别对应于一个OFDM符号和一个OFDM子载波,并且UL资源网格的每一列和每一行分别对应于一个SC-FDMA符号和一个SC-FDMA子载波。给定天线端口P、子载波间隔(SCS)配置μ和传输方向(DL或UL)存在一个资源网格。子载波的频率位置是指该子载波的中心频率。用于天线端口P和SCS配置μ的资源网格中的每个元素被称为资源元素(RE)并且由(k,l)p,μ唯一地标识,其中k为频域中的索引(例如,k为相对于参考或参考点的子载波索引),并且l是指时域中相对于某个参考点的符号位置(例如,l为相对于参考或参考点的OFDM符号索引)。RE(k,l)p,μ对应于物理资源和复值
Figure BDA0003053536960000061
换句话讲,
Figure BDA0003053536960000062
是用于天线端口p和SCS配置μ的RE(k,l)的值。
天线端口被限定为使得天线端口上的符号被传送的信道可以从同一天线端口上的另一个符号被传送的信道推断出。如果在其上传送一个天线端口上的符号的信道的大规模属性可以从在其上传送另一天线端口上的符号的信道推断出,则称两个天线端口准共址(QCLed)。大规模属性包括延迟扩展、多普勒扩展、多普勒频移、平均增益、平均延迟和/或空间Rx参数中的一者或多者。
RE的集合构成资源块(RB),该资源块通常被定义为
Figure BDA0003053536960000063
=频域中的12个连续子载波。用于子载波配置μ的物理RB(PRB)块被定义在带宽部分(BWP)内并且被编号为0至
Figure BDA0003053536960000064
其中i为BWP的数量。虚拟RB(VRB)被定义在BWP内并且被编号为0至
Figure BDA0003053536960000065
其中i为BWP的数量。
BWP为用于给定载波上的BWP i中的给定参数μi的连续公共RB的子集。UE 101可被配置为在DL中具有最多四个BWP,其中单个DL BWP在给定时间为活动的。不期望UE 101在活动BWP之外接收PDSCH、PDCCH或CSI-RS(RRM除外)。UE 101可被配置为在UL中具有最多四个BWP,其中单个UL BWP在给定时间为活动的。UE 101不在活动BWP之外传输PUSCH或PUCCH。对于活动小区,UE 101不在活动BWP之外传输SRS。
在SCS配置μ的频域中,公共RB从0向上编号。SCS配置μ的公共RB 0的子载波0的中心与“点A”重合。频域中的公共RB数量
Figure BDA0003053536960000066
与SCS配置μ的资源元素(k,l)之间的关系由
Figure BDA0003053536960000067
给出,其中k相对于点A定义,使得k=0对应于以点A为中心的子载波。
点A用作RB网格的公共参考点,并且对于所有其他情况,根据参数offsetToPointAPCell DL和absoluteFrequencyPointA获得。参数offsetToPointA表示点A与最低RB的最低子载波之间的频率偏移,以RB为单位表达,假设对于FR1为15kHz SCS,对于FR2为60kHzSCS,该最低子载波具有由高层参数subCarrierSpacingCommon提供的SCS并且与UE 101用于初始小区选择的SS/PBCH块重叠。对于所有其他情况中的参数absoluteFrequencyPointA,其中的,参数absoluteFrequencyPointA表示如在绝对射频信道号(ARFCN)中表达的点A的频率位置。
存在使用RB、PRB和/或单独RE传送的若干不同物理信道和物理信号。物理信道对应于承载源自高层的信息的RE集。物理信道包括物理UL信道(例如,物理UL共享信道(PUSCH)、物理UL控制信道(PUCCH)、物理随机接入信道(PRACH)等)和物理DL信道(例如,物理DL共享信道(PDSCH)、物理DL控制信道(PDCCH)、物理广播信道(PBCH)等)。物理信号由物理层(PHY)使用,但不承载源自高层的信息。物理信号包括物理UL信号(例如,解调参考信号(DMRS或DM-RS)、相位跟踪参考信号(PTRS)、探测参考信号(SRS)等)和物理DL信号(例如,DMRS、PTRS、信道状态信息参考信号(CSI-RS)、主同步信号(PSS)、辅同步信号(SSS)等)。
PDSCH向UE 101承载用户数据和高层信令,并且PDCCH承载用于接收PDSCH的DL资源分配信息。每个UE 101监测如由用于控制信息(例如,下行链路控制信息(DCI))的高层信令配置的一个或多个激活的服务小区上的PDCCH候选集,其中监测意味着尝试根据一个或多个监测的DCI格式(例如,DCI格式0至6-2,如3GPP TS 38.212v15.3.0(2018-09)(在下文中为“TS 38.212”)的5.3.3节中所讨论的,DCI格式0_0至2_3,如TS 38.212的7.3节中所讨论的等)解码PDCCH候选集。DCI尤其包括DL分配和/或UL调度许可,包括例如调制和编码格式、资源分配和HARQ信息以及其他信息/命令。每个UE 101根据UE或特定于小区的搜索空间(用于LTE/4G)在一个或多个配置的监测时机监测(或尝试解码)相应组PDCCH候选,或根据对应的搜索空间配置(用于NR/5G)在一个或多个配置的控制资源集(CORESET)中的一个或多个配置的监测时机监测(或尝试解码)相应组PDCCH候选。CORESET包括具有1个至3个OFDM符号的持续时间的PRB集。在CORESET内定义REG和控制信道元素(CCE),其中每个CCE包括REG集。CORESET中支持交织和非交织的CCE到REG映射。承载PDCCH的每个REG承载其自己的DMRS。RRC配置消息中的ControlResourceSet信息元素(IE)用于配置其中用于搜索DCI的时间/频率CORESET(参见例如TS 38.213)。
PDSCH传输由DCI格式1_0和DCI格式1_1调度。DCI格式1_0用于调度一个DL小区中的PDSCH,并且DCI格式1_1用于调度一个小区中的PDSCH。DCI格式1_0尤其包括频域资源分配、时域资源分配和其他字段/元素,如TS 38.212中所讨论。DCI格式1_1包括尤其是带宽部分指示符、频域资源分配、时域资源分配、天线端口,其中没有值数据1、2和3的多个CDM组分别是指CDM组{0}、{0,1}和{0,1,2},并且天线端口{p0,…,pv-1}是根据TS 38.212的表7.3.1.2.2-1/2/3/4给出的DMRS端口的顺序和TS 38.212中讨论的其他字段/元素来确定的。
UE 101可在高层参数PDSCH-Config内配置有最多M个TCI-State配置的列表,以根据具有旨在用于UE 101和给定服务小区的DCI的检测到的PDCCH来解码PDSCH,其中M取决于UE能力maxNumberConfiguredTCIstatesPerCC。PDSCH-Config信息元素(IE)用于配置包括tci-StatesToAddModList参数的UE特定的PDSCH参数,包括指示传输配置的传输配置指示符(TCI)状态的列表。每个TCI-State IE包含tci-StateId,其用于识别用于配置一个或两个DL参考信号和PDSCH的DM-RS端口、PDCCH的DM-RS端口或CSI-RS资源的CSI-RS端口之间的QCL关系的对应TCI-State配置和参数。QCL关系由用于第一DL RS的高层参数qcl-类型1和用于第二DL参考信号(RS)的qcl-类型2(如果配置的话)配置。对于两个DL RS的情况,无论参考是针对相同的DL RS还是针对不同的DL RS,QCL类型都不相同。除了qcl-类型1和qcl-类型2参数之外,TCI-State IE还包含QCL-Info IE,其包括指示RS所在的DL BWP的bwp-Id参数、指示RS的referenceSignal参数(如TS 38.214的子条款5.1.5所规定的那样,使用该RS提供QCL信息)、指示UE 101的服务小区(其中配置了referenceSignal的服务小区,或者其中如果没有referenceSignal字段配置了TCI-State的服务小区)的cell参数,以及指示QCL类型的qcl-类型(如下所述用类型A、类型B、类型C或类型D枚举)。
对应于每个DL RS的QCL类型由QCL-Info中的高层参数qcl-类型给出,并且可采用以下值中的一个值:针对QCL的“QCL-类型A”,其关于(w.r.t)多普勒频移、多普勒扩展、平均延迟、延迟扩展;“QCL-类型B”,其关于多普勒频移、多普勒扩展;“QCL-类型C”,其关于多普勒频移、平均延迟;以及“QCL-类型D”,其关于空间Rx参数。如果TCI-State是参考具有“QCL-类型D”关联的RS配置的,则该RS可以是位于相同或不同CC/DL BWP中的SSB或被配置为周期性地位于相同或不同CC/DL BWP中的CSI-RS资源。
UE接收激活命令(例如,MAC CE),如下文所述并且如3GPP TS38.321v15.3.0(2018-09)的子条款6.1.3.14(下文称为“TS 38.321”)中所述,用于将最多至8个TCI状态映射到DCI字段“Transmission Configuration Indication”的码点。如果不提供用于BFD的RS,则UE 101基于PDCCH的激活TCI-State来执行波束监测,如TS 38.213的条款6中所述。
UE 101和RAN 110之间的无线电接口103、104由无线电资源控制(RRC)协议管理。RRC提供尤其包括RRC连接控制、测量配置和报告等的功能。RRC连接控制尤其包括寻呼规程、无线电配置控制以及RRC连接建立、修改、暂停、恢复和释放。在RRC连接建立期间,网络(NW)可将UE 101配置为执行测量报告或其他类似功能。RRC包括各种UE 101操作状态,包括RRC_CONNECTED、RRC_INACTIVE和RRC_IDLE。当未建立RRC连接时,UE 101处于RRC_IDLE,并且当建立连接时,UE 101处于RRC_CONNECTED和RRC_INACTIVE。处于RRC_CONNECTED的UE101传输单播数据;监测与共享数据信道相关联的控制信道以确定是否为UE 101调度数据;提供信道质量和反馈信息;执行相邻小区测量和测量报告;并且获取系统信息(SI)。
RRC连接控制功能包括尤其是无线电链路故障(RLF)功能、链路恢复功能、波束故障检测(BFD)功能和波束故障恢复(BFR)功能。RLM是指由UE 101用于监测主小区(PCell)的DL无线电链路质量(RLQ)以便向高层指示不同步/同步状态的机制。术语“主小区”或“PCell”是指在主频率上工作的主小区组(MCG)小区,其中UE 101要么执行初始连接建立程序,要么发起连接重建程序。UE 101不需要监测PCell上除活动DL BWP之外的DL BWP中的DLRLQ。如果活动DL BWP是初始DL BWP并且用于SSB和CORESET复用模式2或3,则当由参数/IERadioLinkMonitoringRS提供相关联SSB索引时,预期UE 101使用相关联SSB来执行RLM。术语“SSB”是指同步信号块和同步信号(SS)/PBCH块两者。
处于RRC_CONNECTED时,UE 101基于由NW配置的参考信号(例如,SSB、CSI-RS等)和信号质量阈值在活动BWP中执行RLM。基于SSB的RLM基于与初始DL BWP相关联的SSB,并且只可能被配置用于初始DL BWP和包含与初始DL BWP相关联的SSB的DL BWP。对于其他DL BWP,基于CSI-RS执行RLM。当满足以下标准中的一者时,UE 101宣布RLF:在指示来自物理层的无线电问题之后开始的定时器到期(如果在定时器到期之前无线电问题恢复,则UE停止定时器);检测到随机接入(RA)过程故障;和/或在检测到RLC故障时。在宣布RLF之后,UE 101保持处于RRC_CONNECTED;选择合适的小区并发起RRC连接重建过程;并且/或者如果在宣布RLF之后的特定时间内未发现合适的小区,则进入RRC_IDLE。
为了检测RRC_CONNECTED中的物理层问题,UE 101在从下层接收到针对特殊小区(SpCell)的N310连续“不同步”指示时启动用于对应SpCell的定时器T310,同时定时器T300、T301、T304、T311或T319都不运行。此处,“N310”是从下层接收到的针对SpCell的连续“不同步”指示的最大数量,并且还可指计数器N310的值。为了恢复物理层问题,在定时器T310运行时从下层接收到针对SpCell的N311连续“同步”指示时,UE 101停止用于对应SpCell的定时器T310。此处,“N311”是从下层接收到的针对SpCell的连续“同步”指示的最大数量,并且还可指计数器N311的值。在这种情况下,UE 101在没有显式信令的情况下保持RRC连接,并且UE 101保持整个无线电资源配置。其中L1既不报告“同步”又不报告“不同步”的时间段不影响对连续“同步”或“不同步”指示的数量的评估。
对于RLF的检测,在PCell中的定时器T310到期时;在从MCG MAC层实例接收到随机接入问题指示,同时定时器T300、T301、T304、T311或T319都不运行时;或者在从MCG RLC层实例接收到已经达到最大重传数量的指示时,并且对于仅包括SCell的对应逻辑信道allowedServingCells,如果指示来自MCG RLC层实例并且配置并激活了CA重复,则UE 101发起如3GPP TS 38.331v15.3.0(2018-09)(下文称为“TS 38.331”)的第5.7.5节中指定的故障信息过程以报告RLC故障。否则,UE 101考虑将针对MCG检测RLF;如果未激活接入层(AS)安全性,则在进入如TS 38.331的第5.3.11节中指定的RRC_IDLE时,利用释放原因“其他”执行动作;如果已激活AS安全性但尚未设置SRB2和至少一个DRB,则在进入如TS38.331的第5.3.11节中指定的RRC_IDLE时,利用释放原因“RRC连接故障”执行动作;或发起如TS38.331的第5.3.7节中指定的连接重建过程。
在PSCell中,当定时器T310到期时;在从SCG MAC层实例接收到随机接入问题指示时;或者在从SCG RLC层实例接收到已经达到最大重传数量的指示时,并且对于仅包括SCell的对应逻辑信道allowedServingCells,如果指示来自SCG RLC层实例并且配置并激活了CA重复,则UE 101发起如38.331的第5.7.5节中指定的故障信息过程以报告RLC故障;考虑将针对SCG检测RLF;并且发起如38.331的第5.7.3节中指定的SCG故障信息过程以报告SCG RLF。
为了执行链路恢复过程(LRP),UE 101基于在3GPP TS 38.213v15.3.0(2018-10)(下文称为“TS 38.213”)中指定的集合
Figure BDA0003053536960000111
中的参考信号来评估服务小区的DL RLQ,以便针对一个或多个波束执行BFD。集合
Figure BDA0003053536960000112
中的RS资源配置可以是周期性CSI-RS资源和/或SSB。UE101可以针对服务小区的每个BWP,通过failureDetectionResources被提供周期性CSI-RS资源配置索引的集合
Figure BDA0003053536960000113
和通过用于服务小区的BWP上的RLQ测量的candidateBeamRSList被提供周期性CSI-RS资源配置索引的集合
Figure BDA0003053536960000114
如果UE 101未被提供failureDetectionResources,则UE 101确定集合
Figure BDA0003053536960000115
包括具有与由UE 101用于监测PDCCH的相应CORESET的TCI-State所指示的RS集合中的RS索引相同的值的周期性CSI-RS资源配置索引,并且如果在TCI状态下存在两个RS索引,则集合
Figure BDA0003053536960000116
包括具有用于对应TCI状态的QCL-类型D配置的RS索引。UE 101期望集合
Figure BDA0003053536960000117
包含最多两个RS索引。UE 101期望在集合
Figure BDA0003053536960000118
中具有单个端口RS。
UE 101不需要在活动DL BWP之外执行BFD,并且UE 101不需要在活动DL BWP之外执行候选波束检测(CBD)。在3GPP TS 38.133v15.3.0(2018-10)的条款8.5.5(下文称为“TS38.133”)中讨论基于SSB的波束的CBD,并且在TS 38.133的条款8.5.6中讨论基于CSI-RS的波束的CBD。如果UE 101没有集合
Figure BDA0003053536960000119
则UE 101不需要满足TS 38.133的条款8.5.2和8.5.3中的要求。
阈值Qout,LR和Qin,LR分别对应于3GPP TS 38.133中针对Qout所描述的rlmInSyncOutOfSyncThreshold的默认值,以及rsrp-ThresholdSSB所提供的值。
在该集合
Figure BDA0003053536960000121
中的每个RS资源配置上,UE 101估计RLQ并将其与阈值Qout_LR进行比较,以访问服务小区波束的DL RLQ。阈值Qout_LR被定义为不能可靠地接收集合
Figure BDA0003053536960000122
上给定资源配置的DL无线电级别链路时的级别,并且应对应于假设的PDCCH传输的BLERout=10%误块率。对于基于SSB的BFD,基于TS 38.133的表8.5.2.1-1中列出的假设的PDCCH传输参数来导出Qout_LR_SSB。对于基于CSI-RS的BFD,基于TS 38.133的表8.5.3.1-1中列出的假设的PDCCH传输参数来导出Qout_LR_CSI-RS
UE 101中的物理层(PHY)根据资源配置相对于阈值QoutLR的集合
Figure BDA0003053536960000123
来评估RLQ。对于集合
Figure BDA0003053536960000124
UE 101仅根据与由UE 101监测的PDCCH接收的DM-RS准共址的周期性CSI-RS资源配置或SSB来评估RLQ,如3GPP TS 38.214v15.3.0(2018-10)中所述(下文称为“TS38.214”)。UE 101将Qin,LR阈值应用于从SS/PBCH块获得的L1-RSRP测量。在利用由powerControlOffsetSS提供的值缩放相应CSI-RS接收功率之后,UE 101将Qin,LR阈值应用于针对CSI-RS资源获得的L1-RSRP测量。
在非不连续接收(DRX)模式操作中,当UE 101用来评估RLQ的该集合
Figure BDA0003053536960000125
中的所有对应资源配置的RLQ差于阈值Qout,LR时,UE 101中的PHY向高层提供指示。当RLQ差于阈值Qout,LR时,物理层通知高层,其中由集合
Figure BDA0003053536960000126
中UE 101用来评估RLQ的周期性CSI-RS配置和/或SSB中的最短周期性和2毫秒(ms)之间的最大值来确定周期性。在DRX模式操作中,当RLQ差于阈值Qout,LR时,物理层向高层提供指示,其中如TS38.133中所述来确定周期性。
在高层请求时,UE 101向高层提供来自集合
Figure BDA0003053536960000127
的周期性CSI-RS配置索引和/或SSB索引以及大于或等于Qin,LR阈值的对应L1-RSRP测量。UE101将来自如TS 38.213中指定的集合
Figure BDA0003053536960000128
的配置索引传送到高层,并且对应的L1-RSRP测量前提条件是所测量的L1-RSRP等于或优于阈值Qin_LR,该阈值由高层参数rsrp-ThresholdSSB指示。UE 101将Qin,LR阈值应用于从SSB获得的L1-RSRP测量。在利用由高层参数powerControlOffsetSS提供的值缩放相应CSI-RS接收功率之后,UE 101将Qin_LR阈值应用于针对CSI-RS资源获得的L1-RSRP测量。集合
Figure BDA0003053536960000131
中的RS资源配置可以是周期性CSI-RS资源、SSB或SSB和CSI-RS资源两者。
UE 101可通过链路向由recoverySearchSpaceId提供的搜索空间集提供CORESET,如TS 38.213的子条款10.1中所述,以用于监测CORESET中的PDCCH。如果UE 101被提供recoverySearchSpaceId,则UE 101不期望被提供另一搜索空间集以用于监测与由recoverySearchSpaceId提供的搜索空间集相关联的CORESET中的PDCCH。
UE 101可通过PRACH-ResourceDedicatedBFR接收用于PRACH传输的配置,如TS38.213的子条款8.1中所述。对于时隙n中的PRACH传输并且根据与周期性CSI-RS资源配置相关联或与具有由高层提供的索引qnew(参见例如TS 38.321)所关联的SS/PBCH块相关联的天线端口QCL参数,UE101监测由recoverySearchSpaceId提供的搜索空间集中的PDCCH,以检测具有由小区无线网络临时标识符(C-RNTI)或调制和编码方案(MCS)-C-RNTI加扰的的DCI格式,在由BeamFailureRecoveryConfig配置的窗口中从时隙n+4开始。对于在由recoverySearchSpaceId提供的搜索空间集中的PDCCH监测和对应的PDSCH接收,UE 101假定天线端口准共址参数与跟索引qnew相关联的天线端口准共址参数相同,直到UE 101通过高层接收到对TCI状态或参数tci-StatesPDCCH-ToAddList和/或tci-StatesPDCCH-ToReleaseList中的任一者的激活。在UE 101在由recoverySearchSpaceId提供的搜索空间集中检测到具有由C-RNTI或MCS-C-RNTI加扰的CRC的DCI格式之后,UE 101继续监测由recoverySearchSpaceId提供的搜索空间集中的PDCCH候选,直到UE 101接收到针对TCI状态的MAC CE激活命令或tci-StatesPDCCH-ToAddList和/或TCI-StatesPDCCH-ToReleaseList。
在从由recoverySearchSpaceId提供的搜索空间集中的第一PDCCH接收的最后一个符号起的28个符号之后(UE 101为该搜索空间集检测到具有由C-RNTI或MCS-C-RNTI加扰CRC的DCI格式),并且直到UE 101接收到用于PUCCH-SpatialRelationInfo的激活命令(参见例如TS 38.321)或被提供用于PUCCH资源的PUCCH-SpatialRelationInfo,UE 101使用与上一次PRACH传输相同的空间滤波器以及如TS 38.213的子条款7.2.1中所述确定的功率在与PRACH传输相同的小区上传输PUCCH,其中qu=0,qd=qnew,并且l=0。在从由recoverySearchSpaceId提供的搜索空间集中的第一PDCCH接收的最后一个符号起的28个符号(在该搜索空间集中,UE101检测到具有由C-RNTI或MCS-C-RNTI加扰的CRC的DCI格式)之后,UE 101假定天线端口准共址参数与跟索引qnew相关联的天线端口准共址参数相同,该索引qnew用于具有索引0的CORESET中的PDCCH监测。
对于BFD,RAN节点111(例如,gNB)为UE 101配置BFD参考信号(例如,SSB、CSI-RS等),并且在配置的定时器到期之前,当来自物理层(PHY)的多个波束故障实例指示达到配置的阈值时,UE 101宣布波束故障。基于SSB的BFD基于与初始DL BWP相关联的SSB,并且只可能被配置用于初始DL BWP和包含与初始DL BWP相关联的SSB的DL BWP。对于其他DL BWP,基于CSI-RS执行BFD。
在检测到波束故障之后,UE 101通过在PCell上发起RA过程来触发BFR过程;并且选择合适的波束以执行BFR(例如,如果gNB 111已为特定波束提供专用RA资源,则UE 101将对这些资源进行优先级排序)。在完成RA过程时,认为BFR完成。
除其他功能之外,处于RRC_INACTIVE和RRC_IDLE的UE 101还执行相邻小区测量和小区(重新)选择。小区选择涉及“预占小区”,其中UE 101搜索合适的小区,选择合适的小区以提供可用服务,并且监测合适小区的控制信道。小区选择过程如3GPP TS 38.304v15.1.0(2018-10)(下文称为“TS 38.304”)中所述进行。小区重选涉及UE 101根据小区重选标准来找到更合适的小区,并且重选和预占更合适的小区。当UE 101在小区上处于正常预占状态或预占任何小区状态时,UE 101尝试检测、同步和监测由服务小区指示的频率内小区、频率间小区和RAT间小区。UE 101测量活动也由TS 38.304中定义的测量规则控制,从而允许UE101限制其测量活动。
RAN 110被示出为通信地耦接到核心网(CN)120,该核心网包括一个或多个网络元件122,这些网络元件被配置为向经由RAN 110连接到CN120的客户/用户(例如,UE 101的用户)提供各种数据和电信服务。如本文所用的术语“网络元件”是指用于提供有线或无线通信网络服务的物理或虚拟化设备和/或基础结构,并且可被认为与以下各项同义和/或被称为以下各项:网络化计算机、联网硬件、网络设备、网络节点、路由器、交换机、集线器、网桥、无线电网络控制器(RNC)、RAN设备、RAN节点、网关、服务器、云节点、虚拟化网络功能(VNF)、NFV基础结构(NFVI)等。网络元件122可以是一个或多个服务器计算机系统,其可以实现各种CN元件(例如,网络功能(NF)和/或应用功能(AF)),诸如本文所讨论的那些。CN 120的部件可以在一个物理节点或单独的物理节点中实现,包括用于从机器可读或计算机可读介质(例如,非暂态机器可读存储介质)读取和执行指令的部件。在一些实施方案中,网络功能虚拟化(NFV)可用于经由存储在一个或多个计算机可读存储介质中的可执行指令来虚拟化任一个或全部网络节点功能(以下将进一步详细描述)。CN120的逻辑实例可被称为网络切片,并且CN 120的一部分的逻辑实例可被称为网络子切片。如本文所用,术语“实例化”等指实例的创建,并且“实例”指对象的具体出现,其可例如在程序代码的执行期间发生。NFV架构和基础设施可用于将一个或多个NF虚拟化到包含行业标准服务器硬件、存储硬件或交换机的组合的物理资源上(另选地由专有硬件执行)。换句话讲,NFV系统可用于执行一个或多个NF/AF的虚拟或可重新配置的具体实施。
在CN 120是LTE系统中的演进分组核心网(EPC)的实施方案中,一个或多个网络元件122可包括或操作一个或多个移动性管理实体(MME)、服务网关(S-GW)、PDN网关(P-GW)、归属用户服务器(HSS)、策略控制和收费规则功能(PCRF)和/或其他类似的LTE CN元件。在这些实施方案中,E-UTRAN 110可经由S1接口113与EPC 120连接。在这些实施方案中,S1接口113可分成两部分:S1-U接口114,该接口在RAN节点111和S-GW之间承载流量数据;和S1-MME接口115,该接口是RAN节点111和MME之间的信令接口。另外,EPC 120内的P-GW可经由互联网协议(IP)接口125在EPC 120与外部网络诸如包括分组数据网(PDN)130的网络之间路由数据包。PDN 130可以是运营商外部公共、私有PDN(例如,企业网络、云计算服务等)或运营商内PDN(例如,用于提供IMS和/或IP-CAN服务)。
在CN 120为5GC 120的实施方案中,网络元件122可实施验证服务器功能(AUSF)、访问和移动性管理功能(AMF)、会话管理功能(SMF)、网络开放功能(NEF)、策略控制功能(PCF)、NF存储库功能(NRF)、统一数据管理(UDM)实体、AF、用户平面功能(UPF)、短消息服务功能(SMSF)、非3GPP互通功能(N3IWF)、网络切片选择功能(NSSF)和/或其他类似的NR NF的一个或多个实例。在此类实施方案中,NG-RAN 110可经由NG接口113与5GC 120连接。在这些实施方案中,NG接口113可分成两部分:NG-U接口114,该接口在RAN节点111和UPF之间承载流量数据;和NG-C接口115,该接口是RAN节点111和AMF之间的信令接口。另外,5GC 120内的UPF可经由IP接口125在5GC120与外部网络诸如数据网络(DN)130之间执行分组路由、过滤、检查、转发等。DN 130可表示包括一个或多个局域DN(LADN)的一个或多个DN,并且可为运营商外部公共、私有PDN、运营商内PDN,如前所述。
示出CN 120经由IP通信接口125通信耦接到PDN/DN 130。PDN/DN130可包括一个或多个应用程序服务器(AS)。应用程序服务器(和网络元件122)包括用于通过网络向一个或多个客户端(例如,UE 101)提供功能(或服务)的一个或多个物理和/或虚拟化系统。此类服务器可包括具有机架计算架构部件、塔计算架构部件、刀片计算架构部件等的各种计算机设备。服务器可表示可位于一个或多个数据中心中的服务器群集、服务器群、云计算服务或服务器的其他分组或池。服务器还可连接到一个或多个数据存储设备(未示出)或以其他方式与一个或多个数据存储设备相关联。一般来讲,AS 130提供使用IP/网络资源的应用程序或服务。作为示例,服务器可经由CN 120为UE 101提供流量管理服务、云计算服务、内容流传输服务、沉浸式游戏体验、社交网络和/或微博服务、一个或多个通信服务(例如VoIP会话、PTT会话、群组通信会话、社交网络服务等)和/或其他类似服务。
如前所述,UE 101可被配置用于BFD和BFR过程。
对基于SSB的BFD的要求如TS 38.133的表8.5.2.1-1所示,适用于针对服务小区配置的集合
Figure BDA0003053536960000161
中的每个SSB资源,前提条件是配置用于BFD的SSB实际上在TS 38.133的条款8.5.2.2中指定并在下文讨论的整个评估周期期间在UE活动DL BWP内传输。
UE 101能够评估在最后一个TEvaluate_BFD_SSB ms周期内估计的集合
Figure BDA0003053536960000177
中的经配置的SSB资源上的DL RLQ是否变得比TEvaluate_BFD_SSB ms评估周期内的阈值Qout,LR_SSB差。表1中针对FR1定义了TEvaluate_BFD_SSB的值,并且表2中针对FR2定义了TEvaluate_BFD_SSB的值,其中缩放系数N=8。
对于FR1,
Figure BDA0003053536960000171
此时在所监测的小区中,存在被配置用于频内测量、频间测量或RAT间测量的测量间隙,这些测量间隙与SSB的一些而非所有时机重叠;并且P=1,此时在所监测的小区中,不存在与SSB的任何时机重叠的测量间隙。
对于FR2,
Figure BDA0003053536960000172
此时BFD-RS不与测量间隙重叠并且BFD资源与SMTC时机部分地重叠(TSSB<TSMTCperiod)。P=Psharing factor,此时BFD资源不与测量间隙重叠并且BFD资源与SMTC周期完全重叠(TSSB=TSMTCperiod);
Figure BDA0003053536960000173
此时BFD资源与测量间隙部分重叠,并且BFD资源与SMTC时机部分重叠(TSSB<TSMTCperiod)并且SMTC时机不与测量间隙重叠,并且TSMTCperiod≠MGRP或者TSMTCperiod=MGRP且TSSB<0.5*TSMTCperiod
Figure BDA0003053536960000174
此时BFD资源与测量间隙部分重叠并且BFD资源与SMTC时机部分重叠(TSSB<TSMTCperiod)并且SMTC时机不与测量间隙重叠并且TSMTCperiod=MGRP并且TSSB=0.5*TSMTCperiod
Figure BDA0003053536960000175
此时BFD资源与测量间隙部分重叠(TSSB<MGRP)并且BFD资源与SMTC时机部分重叠(TSSB<TSMTCperiod)并且SMTC时机与测量间隙部分重叠或完全重叠;
Figure BDA0003053536960000176
此时BFD资源与测量间隙部分重叠并且BFD资源与SMTC时机完全重叠(TSSB=TSMTCperiod)并且SMTC时机与测量间隙部分重叠(TSMTCperiod<MGRP);并且,如果被配置用于测量间隙外的BFD的所有参考信号不完全与频率内SMTC时机重叠,或者如果被配置用于测量间隙外的BFD并且与频率内SMTC时机完全重叠的所有参考信号不与SSB-ToMeasure(假定配置了SSB-ToMeasure)所指示的SSB符号以及在SSB-ToMeasure所指示的每个连续SSB符号之前的1个符号和SSB-ToMeasure所指示的每个连续SSB符号之后的1个符号重叠,则Psharing factor=1;否则,Psharing factor=3。如果配置smtc2的高层信令(参见例如TS 38.331),则TSMTCperiod对应于高层参数smtc2的值;否则,TSMTCperiod对应于高层参数smtc1的值。如果BFD资源、SMTC时机和测量间隙配置的组合不满足先前条件,则可预期更长的评估周期。
表1:针对FR1的评估周期TEvaluate_BFD_SSB
Figure BDA0003053536960000181
表2:针对FR2的评估周期TEvaluate_BFD_SSB
Figure BDA0003053536960000182
基于SSB的BFD的测量限制,UE 101需要能够在没有测量间隙的情况下测量BFD的SSB。UE 101需要在以下测量限制的情况下执行SSB测量。
对于FR1,当用于BFD测量的SSB与用于RLM、BFD、CBD或L1-RSRP测量的CSI-RS处于相同OFDM符号中时,如果SSB和CSI-RS具有相同的SCS,则UE 101能够无任何限制地测量用于BFD测量的SSB。如果SSB和CSI-RS具有不同的SCS,并且如果UE 101支持simultaneousRxDataSSB-DiffNumerology,则UE 101能够无任何限制地测量用于BFD测量的SSB。如果SSB和CSI-RS具有不同的SCS,并且如果UE 101不支持simultaneousRxDataSSB-DiffNumerology,则UE 101需要测量用于BFD测量的SSB和CSI-RS中的一者而不是两者。基于SSB的BFD测量的较长测量周期是预期的,但未定义要求。
对于FR2,当用于BFD测量的SSB与用于RLM、BFD、CBD或L1-RSRP测量的CSI-RS处于相同OFDM符号中时,UE 101需要测量用于BFD测量的SSB和CSI-RS中的一者而不是两者。基于SSB的BFD测量的较长测量周期是预期的,但未定义要求。
对基于CSI-RS的BFD的要求如TS 38.133的表8.5.3.1-1所示,适用于服务小区的资源配置的集合
Figure BDA0003053536960000183
中的每个CSI-RS资源,前提条件是用于BFD的集合
Figure BDA0003053536960000191
中的CSI-RS资源实际上在TS 38.133的条款8.5.3.2中指定并在下文讨论的整个评估周期期间在UE活动DLBWP内传输。如果CSI-RS不与在UE活动BWP中配置的任何CORESET的活动TCI状态下的RS(当适用时与QCL-类型D)准共址,则不期望UE 101在针对BFD配置的CSI-RS上执行BFD测量。
UE 101能够评估在最后一个TEvaluate_BFD_CSI-RS ms周期内估计的集合
Figure BDA0003053536960000192
中(经配置)的CSI-RS资源上的DL RLQ是否变得比TEvaluate_BFD_CSI-RS ms评估周期内的阈值Qout_LR_CSI-RS差。表3中针对FR1定义了TEvaluate_BFD_CSI-RS的值,并且表4中针对FR2定义了TEvaluate_BFD_CSI-RS的值,其中N=1。对TEvaluate_BFD_CSI-RS的要求适用,前提条件是用于BFD的CSI-RS不在配置有重复ON的资源集中。当CORESET的活动TCI状态中的CSI-RS资源与用于BFD的CSI-RS资源相同并且未给出CSI-RS资源的TCI状态信息时,这些要求不适用,其中TCI状态信息意指QCL类型-D到用于L1-RSRP的SSB或具有重复ON的CSI-RS。
对于FR1,
Figure BDA0003053536960000193
此时在所监测的小区中,存在被配置用于频内测量、频间测量或RAT间测量的测量间隙,这些测量间隙与CSI-RS的一些而非所有时机重叠;以及P=1,此时在所监测的小区中,不存在与CSI-RS的任何时机重叠的测量间隙。
对于FR2,P=1,此时BFD资源不与测量间隙重叠,也不与SMTC时机重叠;
Figure BDA0003053536960000194
此时BFD资源与测量间隙部分重叠并且BFD资源不与SMTC时机重叠(TCSI-RS<MGRP);
Figure BDA0003053536960000195
此时BFD资源不与测量间隙重叠并且BFD资源与SMTC时机部分重叠(TCSI-RS<TSMTCperiod);P=Psharing factor,此时BFD资源不与测量间隙重叠并且BFD资源与SMTC时机完全重叠(TCSI-RS=TSMTCperiod);
Figure BDA0003053536960000196
此时BFD资源与测量间隙部分重叠,并且BFD资源与SMTC时机部分重叠(TCSI-RS<TSMTCperiod),并且SMTC时机不与测量间隙重叠,并且TSMTCperiod≠MGRP或者TSMTCperiod=MGRP且TCSI-RS<0.5*TSMTCperiod
Figure BDA0003053536960000197
此时BFD资源与测量间隙部分重叠并且BFD资源与SMTC时机部分重叠(TCSI-RS<TSMTCperiod)并且SMTC时机不与测量间隙重叠并且TSMTCperiod=MGRP并且TCSI-RS=0.5*TSMTCperiod
Figure BDA0003053536960000198
此时BFD资源与测量间隙部分重叠(TCSI-RS<MGRP)并且BFD资源与SMTC时机部分重叠(TCSI-RS<TSMTCperiod)并且SMTC时机与测量间隙部分重叠或完全重叠;
Figure BDA0003053536960000201
此时BFD资源与测量间隙部分重叠并且BFD资源与SMTC时机完全重叠(TCSI-RS=TSMTCperiod)并且SMTC时机与测量间隙部分重叠(TSMTCperiod<MGRP);以及Psharing factor=3。
如果配置了smtc2的高层信令(参见例如TS 38.331),则TSMTCperiod对应于高层参数smtc2的值,否则TSMTCperiod对应于高层参数smtc1的值。用于BFD的CSI-RS和SMTC之间的重叠意味着用于BFD的CSI-RS在SMTC窗口持续时间内。如果BFD资源、SMTC时机和测量间隙配置的组合不满足先前条件,则可预期更长的评估周期。如果用于BFD的集合
Figure BDA0003053536960000204
中的CSI-RS资源以密度=3传输,则表3和表4中使用的MBFD的值被定义为MBFD=10。
表3:针对FR1的评估周期TEvaluate_BFD_CSI-RS
Figure BDA0003053536960000202
表4:针对FR2的评估周期TEvaluate_BFD_CSI-RS
Figure BDA0003053536960000203
CSI-RS BFD的测量限制,UE 101需要能够在没有测量间隙的情况下测量BFD的CSI-RS。UE 101需要在以下测量限制的情况下执行CSI-RS测量。
对于FR1和FR2两者,当用于BFD测量的CSI-RS与用于RLM、BFD、CBD或L1-RSRP测量的SSB处于相同OFDM符号中时,UE 101不需要接收PRB中与SSB重叠的用于BFD的CSI-RS。
对于FR1,当用于RLM、BFD、CBD或L1-RSRP测量的SSB在活动BWP内并且具有与用于BFD测量的CSI-RS相同的SCS时,UE 101应能够无限制地执行CSI-RS测量。对于FR1,当用于RLM、BFD、CBD或L1-RSRP测量的SSB在活动BWP内并且具有与用于BFD测量的CSI-RS不同的SCS时,UE 101应能够根据其性能在有限制的情况下执行CSI-RS测量。如果UE 101支持simultaneousRxDataSSB-DiffNumelogy,则UE 101能够无限制地执行CSI-RS测量。如果UE101不支持simultaneousRxDataSSB-DiffNumerology,则UE 101需要测量用于BFD测量的CSI-RS和SSB中的一者而不是两者。基于CSI-RS的BFD测量的较长测量周期是预期的,但未定义要求。对于FR1,当用于BFD测量的CSI-RS与用于RLM、BFD、CBD或L1-RSRP测量的另一CSI-RS处于相同OFDM符号中时,UE 101能够无任何限制地测量用于BFD测量的CSI-RS。
对于FR2,当用于BFD测量的CSI-RS与用于RLM、BFD或L1-RSRP测量的SSB处于相同OFDM符号中,或者与检测到波束故障时的用于CBD的SSB处于相同符号中时,UE 101需要测量用于BFD测量的CSI-RS和SSB中的一者而不是两者。基于CSI-RS的BFD测量的较长测量周期是预期的,但未定义要求。对于FR2,当用于BFD测量的CSI-RS与用于RLM、BFD、CBD或L1-RSRP测量的另一CSI-RS处于相同OFDM符号中时,在以下情况下,UE 101需要测量用于BFD测量的CSI-RS和另一CSI-RS中的一者而不是两者:用于BFD测量的CSI-RS或资源集中的另一个CSI-RS以重复ON配置,另一个CSI-RS被配置在集合
Figure BDA0003053536960000211
中并且检测到波束故障,或者两个CSI-RS未关于以下类型准共址-QCL-类型D,或者QCL信息对于UE是未知的;否则,UE 101能够无任何限制地测量用于BFD测量的CSI-RS。对于这些情况中的每一种,预期基于CSI-RS的BFD测量的测量周期更长,但没有定义任何要求。
本文的实施方案提供了针对基于SSB的BFD的增强(包括针对BFD和PDCCH的SSB的QCL和使用案例限制)、基于MAC CE的TCI指示的过渡周期处理和基于SSB的BFD的RRC重新配置,以及用于BFD的SSB的隐式配置的机制。
对于针对BFD和PDCCH的SSB的QCL和使用案例限制,在第一实施方案中,由于CORESET 0之外的CORESET与在传输配置指示器(TCI)状态下定义的CSI-RS准共址,因此用于BFD的SSB仅可在配置CORESET 0的BWP中进行配置。对于CORESET 0,UE 101和RAN节点111(例如,gNB)应保持对SSB索引的相同理解。在第二实施方案中,UE 101应预期SSB将与在CORESET的TCI状态下配置的CSI-RS准共址。在该实施方案中,如果两个RS在TCI状态下配置,SSB应与CSI-RS准共址,CSI-RS与QCL-类型D中的PDCCH准共址。
在前述实施方案中任一者的一个示例中,网络(例如,RAN节点111)可通过发送非周期性CSI触发状态子选择MAC CE 201来在服务小区的配置的非周期性CSI触发状态中进行选择,如图2所示。图2中的MAC CE 201还可表示UE特定PDSCH MAC CE的TCI状态激活/去激活(下文讨论)。非周期性CSI触发状态子选择MAC CE由具有如TS 38.321的表6.2.1-1中指定的LCID的MAC子标头标识,并且具有可变大小字段,包括服务小区ID字段(5位)、BWP ID字段(2位)、一个或多个Ti字段(每个为1位);以及被设置为0的保留位。服务小区ID字段指示MAC CE适用的服务小区的身份。BWP ID字段指示MAC CE适用的作为DCI bandwidth partindicator字段的码点的DL BWP,例如如TS 38.212中所指定的。Ti位/字段中的每一个位/字段指示在CSI-aperiodicTriggerStateList内配置的非周期性触发状态的选择状态,如TS 38.331中所指定的。T0是指列表内的第一触发状态,T1是指第二触发状态,依此类推。如果列表不包含具有索引i的条目,则UE 101中的MAC实体忽略Ti字段。Ti字段设置为1,以指示非周期性触发状态i将映射到DCI CSI request字段的码点,如TS 38.214中所指定的。非周期性触发状态映射到的码点由其在Ti字段设置为1的所有非周期性触发状态之间的顺序位置确定,例如,Ti字段设置为1以映射到码点值1的第一非周期性触发状态、Ti字段设置为1以映射到码点值2的第二非周期性触发状态等。映射的非周期性触发状态的最大数量是63。当UE 101中的MAC实体在服务小区上接收到非周期性CSI触发状态子选择MAC CE 201时,UE101中的MAC实体向下层指示关于非周期性CSI触发状态子选择MAC CE 201的信息。
在另一个示例中,网络(例如,RAN节点111)可通过发送UE特定的PDSCH MAC CE201的TCI状态激活/去激活来激活和去激活服务小区的PDSCH的配置的TCI状态。PDSCH的配置的TCI状态在配置时和切换之后被初始地去激活。UE特定PDSCH MAC CE 201的TCI状态激活/去激活由具有如TS 38.321的表6.2.1-1中指定的LCID的MAC子标头标识,并且具有可变大小字段,包括服务小区ID字段(5位)、BWP ID字段(2位)、一个或多个Ti字段(每个为1位);以及被设置为0的保留位。服务小区ID字段指示MAC CE适用的服务小区的身份。BWP ID字段指示MAC CE适用的作为DCI bandwidth part indicator字段的码点的DL BWP,例如如TS38.212中所指定的。如果存在如TS 38.331中指定的具有TCI-StateId i的TCI状态,则Ti位/字段中的每个位/字段指示具有TCI-StateId i的TCI状态的激活/去激活状态;否则,UE101中的MAC实体忽略Ti字段。Ti字段设置为1,以指示具有TCI-StateId i的TCI状态将被激活并映射到DCI Transmission Configuration Indication字段的码点,如TS 38.214中所指定的。Ti字段设置为0,以指示具有TCI-StateId i的TCI状态将被去激活,并且不映射到DCI Transmission Configuration Indication字段的码点。TCI状态映射到的码点由其在Ti字段设置为1的所有TCI状态之间的顺序位置确定,例如,Ti字段设置为1以映射到码点值0的第一TCI状态,Ti字段设置为1的第二TCI状态被映射到码点值1等。激活的TCI状态的最大数量为8。
在另一个示例中,网络(例如,RAN节点111)可通过发送UE特定的PDCCH MAC CE202的TCI状态指示来指示服务小区的CORESET的PDCCH接收的TCI状态,如图2所示。用于UE特定的PDCCH MAC CE202的TCI状态指示由具有LCID的MAC子标头标识,如TS 38.321的表6.2.1-1中所指定的。用于UE特定的PDCCH MAC CE 202的TCI状态指示具有16位的固定大小,具有服务小区ID字段(5位)、CORESET ID字段(4位)和TCI状态ID字段(7位)。服务小区ID字段指示MAC CE适用的服务小区的身份。CORESET ID字段指示用如TS 38.331中指定的ControlResourceSetId标识的控制资源集,正针对该控制资源集指示TCI状态。在字段的值为0的情况下,该字段是指如TS 38.331中所指定的由controlResourceSetZero配置的控制资源集。TCI状态ID字段指示由适用于由CORESET ID字段标识的控制资源集的如TS38.331中指定TCI-StateId所标识的TCI状态。如果CORESET ID的字段被设置为0,则该字段指示由活动BWP中的PDSCH-Config中的tci-States-ToAddModList和tci-States-ToReleaseList配置的前64个TCI状态中的TCI状态的TCI-StateId。如果CORESET ID的字段被设置为除0之外的其他值,则该字段指示由所指示的CORESET ID所标识的controlResourceSet中的tci-StatesPDCCH-ToAddList和tci-StatesPDCCH-ToReleaseList所配置的TCI-StateId。当UE101中的MAC实体在服务小区上接收到针对UE特定的PDCCH MAC CE202的TCI状态指示时,UE 101中的MAC实体向下层指示关于针对UE特定的PDCCH MAC CE 202的TCI状态指示的信息。
为了处理基于MAC CE的TCI指示的过渡延迟失配以及用于BFD的SSB的RRC重新配置,在第一实施方案中,用于BFD的SSB由MAC CE配置或激活。在该实施方案中,MAC CE可包括分量载波(CC)索引、一个或多个SSB索引和/或其他类似信息。SSB索引的最大数量可与配置的CORESET的最大数量相同,SSB索引的最大数量可等于活动BWP中的配置的CORESET的数量。这些实施方案可应用于基于CSI-RS的BFD,其中SSB索引是支持用于BFD配置的基于MACCE的CSI-RS的CSI-RS资源索引。
在用于处理过渡延迟失配的第二实施方案中,当显式地配置的RS(例如,SSB和/或CSI-RS)不与服务小区中的活动BWP中的PDCCH的DMRS准共址时,UE 101应停止波束故障检测并且不应指示波束故障指示;否则,UE 101使用RRC配置的用于BFD的RS来执行BFD。另选地,当显式地配置的RS(例如,SSB和/或CSI-RS)不与服务小区中的活动BWP中的PDCCH的DMRS准共址时,UE 101将使用在用于BFD的PDCCH的DMRS的TCI状态中指示的对应CSI-RS。图3示出了根据该实施方案的用于BFD的RS选择的示例性过程300。过程300开始于操作305,其中UE 101确定RRC配置的用于BFD的RS是否与用于活动BWP中的PDCCH的任何DMRS非准共址。如果UE 101确定RRC配置的用于BFD的RS与用于活动BWP中的PDCCH的DMRS准共址,则UE 101前进至操作310以使用RRC配置的用于BFD的RS来执行BFD。如果UE 101确定RRC配置的用于BFD的RS未与用于活动BWP中的PDCCH的DMRS准共址,则UE 101前进至操作315以停止执行BFD并且不发送波束故障指示符,或者UE 101使用在配置的TCI状态下的对应CSI-RS来执行BFD。
对于基于SSB的BFD的隐式配置,在一个实施方案中,如果UE 101未通过高层信令配置有用于BFD的任何SSB或CSI-RS,则如果CSI-RS是单个端口周期性CSI-RS,则UE 101应使用在用于CORESET的TCI状态下配置的CSI-RS;否则,UE 101将使用与在用于CORESET的TCI状态下配置的CSI-RS准共址的SSB或单个端口周期性CSI-RS。在该实施方案中,如果在CORESET的TCI状态下指示存在两个RS,则PDCCH的SSB、CSI-RS和/或DMRS的QCL应当用QCL-类型D进行准共址。除此之外或另选地,UE 101应当预期在CORESET的TCI状态下配置的CSI-RS(其不是单个端口周期性CSI-RS)与周期性CSI-RS或SSB准共址。图4示出了根据各种实施方案的当未配置BFD的显式RS时用于BFD的RS选择的示例性QCL链。在第一QCL链401中,用于BFD的RS是SSB或单个端口周期性CSI-RS,其与单个端口非周期性CSI-RS准共址,并且单个端口非周期性CSI-RS与CORESET准共址。在这种情况下,UE 101可挑选用于BFD的SSB或挑选在用于BFD的TCI状态下配置的单端口非周期性CSI-RS。在第二QCL链中,用于BFD的RS是单个端口周期性CSI-RS,其与CORESET准共址。在这种情况下,UE 101使用在用于BFD的TCI状态下配置的特定单个端口非周期性CSI-RS。
图5示出了根据各种实施方案的示例性BFD过程500。为了进行示意性的说明,过程500的各种操作被描述为由UE 101或其元件执行。在一些实施方案中,过程500可以具体表现为包括程序代码、指令或其他类似计算机程序产品(或创建计算机程序产品的数据)的一个或多个计算机可读存储介质,这将使计算设备(例如UE 101)执行电子操作和/或执行相对于图5所述的动作的特定序列或流。虽然图5示出了特定示例和操作顺序,但是所描绘的操作顺序不应理解为以任何方式限制实施方案的范围。相反,所描绘的操作可被重新排序、分成附加操作、组合和/或完全省略,同时保持在本公开的实质和范围内。
FBFD过程500开始于操作505,其中UE 101(或UE 101的基带电路)基于RS相对于另一信号的QCL来确定将用于BFD的RS。在一些实施方案中,另一个信号可以是另一个RS。在操作510处,UE 101(或UE101的基带电路)使用所确定的RS执行BFD过程。在操作510之后,过程500根据需要结束或重复。
图5还示出了用于在过程500中的操作510处执行BFD的操作515至530。在操作515处,UE 101(或UE 101的基带电路)监测要在其中传输RS的所确定的RS资源。在操作520处,UE 101(或UE 101的基带电路)基于所监测的RS资源来估计DL RLQ。在操作525处,当来自由UE101的基带电路操作的PHY实体的波束故障实例指示的数量在配置的定时器到期之前达到配置的阈值时,宣布波束故障。在该示例中,波束故障实例指示的数量基于所估计的DL无线电链路质量。在操作530处,UE 101(或UE 101的基带电路)响应于对波束故障的宣布而触发BFR过程。在操作530之后,过程510返回到过程500。
示例性系统和具体实施
UE 101、RAN节点111、AP 106、网络元件122、应用服务器130和/或先前相对于图1至图7所讨论的任何其他设备或系统中的每一者可包括各种硬件和/或软件元件,诸如下文相对于图6至图8所讨论的那些。
图6示出了根据各种实施方案的基础设施装备600的示例。基础设施装备600(或“系统600”)可被实现为基站、无线电头端、RAN节点(诸如先前所示和所述的RAN节点111和/或AP 106)、应用服务器130和/或本文所讨论的任何其他元件/设备。在其他示例中,系统600可在UE中或由UE实现。
系统600包括应用电路605、基带电路610、一个或多个无线电前端模块(RFEM)615、存储器电路620、电源管理集成电路(PMIC)625、电源三通电路630、网络控制器电路635、网络接口连接器640、卫星定位电路645和用户接口650。在一些实施方案中,设备600可包括附加元件,诸如例如,存储器/存储装置、显示器、相机、传感器或输入/输出(I/O)接口。在其他实施方案中,这些部件可包括在多于一个设备中。例如,所述电路可单独地包括在用于CRAN、vBBU或其他类似具体实施的多于一个设备中。如本文所用的术语“电路”是指电路或被配置为在电子设备中执行特定功能的多个电路的系统。电路或电路的系统可以是被配置为提供所述功能的一个或多个硬件部件的一部分,或者包括该一个或多个硬件部件,诸如逻辑电路、处理器(共享、专用或组)和/或存储器(共享、专用或组)、集成电路(IC)、专用IC(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)等。此外,术语“电路”还可以指一个或多个硬件元件与用于执行程序代码的功能的程序代码的组合。一些类型的电路可执行一个或多个软件或固件程序以提供所述功能中的至少一些。硬件元件和程序代码的此类组合可被称为特定类型的电路。如本文所用,术语“处理器电路”是指能够顺序且自动地执行算术或逻辑运算的序列或记录、存储和/或传输数字数据的电路和/或能够执行或以其他方式操作计算机可执行指令诸如程序代码、软件模块和/或功能过程的任何其他设备,为其一部分或将其包括在内。如本文所用,术语“模块”是指封装到电路板、FPGA、ASIC、SoC、SiP等上的被配置为在计算机系统内提供基本功能的一个或多个独立电子电路。“模块”可包括执行一个或多个软件或固件程序的处理器电路(共享、专用或组)和/或存储器电路(共享、专用或组)等、组合逻辑电路和/或提供所述功能的其他合适部件。如本文所用,术语“接口电路”可指以下项、为以下项的一部分或包括以下项:提供两个或更多个部件或设备之间的信息交换的电路。术语“接口电路”是指一个或多个硬件接口,例如总线、输入/输出(I/O)接口、外围部件接口、网络接口卡等。
应用电路605包括以下电路诸如但不限于:一个或多个处理器(处理器核心)、高速缓存存储器和以下中的一者或多者:低压差稳压器(LDO)、中断控制器、串行接口诸如SPI、I2C或通用可编程串行接口模块、实时时钟(RTC)、包括间隔计时器和看门狗计时器的计时器-计数器、通用输入/输出(I/O或IO)、存储卡控制器诸如安全数字(SD)多媒体卡(MMC)或类似产品、通用串行总线(USB)接口、移动产业处理器接口(MIPI)接口和联合测试访问组(JTAG)测试访问端口。应用电路605的处理器(或核心)可与存储器/存储元件耦接或可包括存储器/存储元件,并且可被配置为执行存储在存储器/存储元件中的指令,以使各种应用程序或操作系统能够在系统600上运行。在一些具体实施中,存储器/存储元件可以为片上存储器电路,该存储器电路可包括任何合适的易失性和/或非易失性存储器,诸如DRAM、SRAM、EPROM、EEPROM、闪存存储器、固态存储器和/或任何其他类型的存储器设备技术,诸如本文所讨论的那些。
应用电路605的处理器可包括例如一个或多个处理器内核(CPU)、一个或多个应用处理器、一个或多个图形处理单元(GPU)、一个或多个精简指令集计算(RISC)处理器、一个或多个Acorn RISC机器(ARM)处理器、一个或多个复杂指令集计算(CISC)处理器、一个或多个数字信号处理器(DSP)、一个或多个FPGA、一个或多个PLD、一个或多个ASIC、一个或多个微处理器或控制器或它们的任何合适的组合。在一些实施方案中,该应用电路605可包括或可以是用于根据本文的各种实施方案进行操作的专用处理器/控制器。作为示例,应用电路605的处理器可包括一个或多个Intel
Figure BDA0003053536960000281
Figure BDA0003053536960000282
处理器;AdvancedMicro Devices(AMD)
Figure BDA0003053536960000283
处理器、加速处理单元(APU)或
Figure BDA0003053536960000284
处理器;ARMHoldings,Ltd.授权的基于ARM的处理器,诸如由CaviumTM,Inc.提供的ARM Cortex-A系列处理器和
Figure BDA0003053536960000285
来自MIPS Technologies,Inc.的基于MIPS的设计,诸如MIPSWarrior P级处理器;等等。在一些实施方案中,系统600可能不利用应用电路605,并且替代地可能包括专用处理器/控制器以处理例如从EPC或5GC接收的IP数据。
在一些具体实施中,应用电路605可包括一个或多个硬件加速器,这些硬件加速器可以是微处理器、可编程处理设备等。该一个或多个硬件加速器可包括例如计算机视觉(CV)和/或深度学习(DL)加速器。例如,可编程处理设备可以是一个或多个现场可编程设备(FPD),诸如现场可编程门阵列(FPGA)、可编程逻辑设备(PLD)、ASIC和/或结构化ASIC、SoC和/或可编程SoC(PSoC)等。在此类具体实施中,应用电路605的电路可包括逻辑块或逻辑构架,以及可被编程用于执行各种功能诸如本文所讨论的各种实施方案的过程、方法、功能等的其他互连资源。在此类实施方案中,应用程序电路605的电路可包括用于存储查找表(LUT)等中的逻辑块、逻辑构架、数据等的存储器单元(例如,可擦可编程只读存储器(EPROM)、可电擦可编程只读存储器(EEPROM)、闪存存储器、静态存储器(例如,静态随机存取存储器(SRAM)、防熔丝等))。
基带电路610可被实现为例如焊入式衬底,其包括一个或多个集成电路、焊接到主电路板的单个封装集成电路或包含两个或更多个集成电路的多芯片模块。基带电路610包括用于执行各种协议和无线电控制功能的一个或多个处理设备(例如,基带处理器)。基带电路610可与系统600的应用电路进行交互,以生成和处理基带信号并且控制RFEM 615的操作。基带电路610可处理实现经由RFEM 615与一个或多个无线电网络的通信的各种无线电控制功能。基带电路610可包括电路,诸如但不限于一个或多个单核或多核处理器(例如,一个或多个基带处理器)或控制逻辑,以处理从RFEM 615的接收信号路径接收的基带信号,并生成将经由发射信号路径提供给RFEM 615的基带信号。在各种实施方案中,基带电路610可以实现RTOS以管理基带电路610的资源、调度任务等。RTOS的示例可包括由
Figure BDA0003053536960000291
提供的Operating System Embedded(OSE)TM,由Mentor
Figure BDA0003053536960000292
提供的Nucleus RTOSTM,由Mentor
Figure BDA0003053536960000293
提供的Versatile Real-Time Executive(VRTX),由Express
Figure BDA0003053536960000294
提供的ThreadXTM,由
Figure BDA0003053536960000296
提供的FreeRTOS、REX OS,由Open Kernel(OK)
Figure BDA0003053536960000295
提供的OKL4,或任何其他合适的RTOS,诸如本文所讨论的那些。
用户接口电路650可包括被设计成使得用户能够与系统600或外围部件接口进行交互的一个或多个用户接口,该外围部件接口被设计成使得外围部件能够与系统600进行交互。用户接口可包括但不限于一个或多个物理或虚拟按钮(例如,复位按钮)、一个或多个指示器(例如,发光二极管(LED))、物理键盘或小键盘、鼠标、触摸板、触摸屏、扬声器或其他音频发射设备、麦克风、打印机、扫描仪、头戴式耳机、显示屏或显示设备等。外围部件接口可包括但不限于非易失性存储器端口、通用串行总线(USB))端口、音频插孔、电源接口等。
无线电前端模块(RFEM)615可包括毫米波(mmWave)RFEM和一个或多个子毫米波射频集成电路(RFIC)。在一些具体实施中,该一个或多个子毫米波RFIC可与毫米波RFEM物理地分离。RFIC可包括到一个或多个天线或天线阵列的连接件,并且RFEM可连接到多个天线。在另选的具体实施中,毫米波和子毫米波两者的无线电功能均可在结合毫米波天线和子毫米波两者的相同的物理RFEM 615中实现。
存储器电路620可包括以下中的一者或多者:包括动态随机存取存储器(DRAM)和/或同步动态随机存取存储器(SDRAM)的易失性存储器、包括高速电可擦存储器(通常称为“闪存存储器”)的非易失性存储器(NVM)、相变随机存取存储器(PRAM)、磁阻随机存取存储器(MRAM)等,并且可结合
Figure BDA0003053536960000301
Figure BDA0003053536960000302
的三维(3D)交叉点(XPOINT)存储器。存储器电路620可被实现为以下中的一者或多者:焊入式封装集成电路、套接存储器模块和插入式存储卡。
PMIC 625可包括稳压器、电涌保护器、电源警报检测电路以及一个或多个备用电源,诸如电池或电容器。电源警报检测电路可检测掉电(欠压)和电涌(过压)状况中的一者或多者。电源三通电路630可提供从网络电缆提取的电力,以使用单个电缆来为基础设施装备600提供电源和数据连接两者。
网络控制器电路635可使用标准网络接口协议诸如以太网、基于GRE隧道的以太网、基于多协议标签交换(MPLS)的以太网或一些其他合适的协议来提供到网络的连接。可使用物理连接经由网络接口连接器640向基础设施装备600提供网络连接/提供来自该基础设施装备的网络连接,该物理连接可以是电连接(通常称为“铜互连”)、光学连接或无线连接。网络控制器电路635可包括用于使用前述协议中的一者或多者来通信的一个或多个专用处理器和/或FPGA。在一些具体实施中,网络控制器电路635可包括用于使用相同或不同的协议来提供到其他网络的连接的多个控制器。
定位电路645包括用于接收和解码由全球卫星导航系统(GNSS)的定位网络发射/广播的信号的电路。导航卫星星座(或GNSS)的示例包括美国的全球定位系统(GPS)、俄罗斯的全球导航系统(GLONASS)、欧盟的伽利略系统、中国的北斗导航卫星系统、区域导航系统或GNSS增强系统(例如,利用印度星座(NAVIC)、日本的准天顶卫星系统(QZSS)、法国的多普勒轨道图和卫星集成的无线电定位(DORIS)等进行导航)等。定位电路645包括各种硬件元件(例如,包括用于促进OTA通信的硬件设备诸如开关、滤波器、放大器、天线元件等)以与定位网络的部件诸如导航卫星星座节点通信。在一些实施方案中,定位电路645可包括用于定位、导航和定时的微型技术(微型PNT)IC,其在没有GNSS辅助的情况下使用主定时时钟来执行位置跟踪/估计。定位电路645还可以是基带电路610和/或RFEM 615的一部分或与之交互以与定位网络的节点和部件通信。定位电路645还可向应用电路605提供位置数据和/或时间数据,该应用电路可使用该数据来使操作与各种基础设施(例如,RAN节点111等)等同步。
图6所示的部件可使用接口电路606或IX 606彼此通信,该接口电路可包括任何数量的总线和/或IX技术,诸如工业标准架构(ISA)、扩展ISA、内部集成电路(I2C)、串行外围接口(SPI)、点对点接口、电源管理总线(PMBus)、外围部件互连(PCI)、串行总线(PCIe)、PCI扩展(PCIx)、
Figure BDA0003053536960000311
超路径互连(UPI)、
Figure BDA0003053536960000312
加速器链路(IAL)、相干加速器处理器接口(CAPI)、OpenCAPITM
Figure BDA0003053536960000315
快速路径互连(QPI)、
Figure BDA0003053536960000313
全路径架构(OPA)IX、RapidIOTM系统IX、用于加速器的高速缓存相干互连(CCIX)、Gen-Z联合IX、超传输IX、由
Figure BDA0003053536960000314
提供的NVLink和/或任何数量的其他IX技术。附加地或另选地,IX技术可以为专有总线,例如,在基于SoC的系统中使用。
图7示出了根据各种实施方案的平台700(或“设备700”)的示例。在实施方案中,计算机平台700可适于用作UE 101、应用服务器130和/或本文所讨论的任何其他元件/设备。平台700可包括示例中所示的部件的任何组合。平台700的部件可实现为集成电路(IC)、其部分、分立电子设备,或适于计算机平台700中的其他模块、逻辑、硬件、软件、固件或它们的组合,或被实现为以其他方式结合在较大系统的底盘内的部件。可省略所示的部件中的一些,可存在附加部件,并且所示部件的不同布置可在其他具体实施中发生。
应用电路705包括电路,诸如但不限于一个或多个处理器(或处理器内核)、高速缓存存储器,以及LDO、中断控制器、串行接口(诸如SPI)、I2C或通用可编程串行接口模块、RTC、计时器(包括间隔计时器和看门狗计时器)、通用I/O、存储卡控制器(诸如SD MMC或类似控制器)、USB接口、MIPI接口和JTAG测试接入端口中的一者或多者。应用电路705的处理器(或核心)可与存储器/存储元件耦接或可包括存储器/存储元件,并且可被配置为执行存储在存储器/存储元件中的指令,以使各种应用程序或操作系统能够在系统700上运行。在一些实施方式中,存储器/存储元件可以是片上存储器电路,该电路可包括任何合适的易失性和/或非易失性存储器,诸如DRAM、SRAM、EPROM、EEPROM、闪存存储器、固态存储器和/或任何其他类型的存储器设备技术,诸如本文讨论的那些。
应用电路605的处理器可包括例如一个或多个处理器内核、一个或多个应用处理器、一个或多个GPU、一个或多个RISC处理器、一个或多个ARM处理器、一个或多个CISC处理器、一个或多个DSP、一个或多个FPGA、一个或多个PLD、一个或多个ASIC、一个或多个微处理器或控制器、多线程处理器、超低电压处理器、嵌入式处理器、一些其他已知的处理元件或它们的任何合适的组合。在一些实施方案中,该应用电路605可包括或可以是用于根据本文的各种实施方案进行操作的专用处理器/控制器。
作为示例,应用电路705的处理器可包括基于
Figure BDA0003053536960000321
Architecture CoreTM的处理器,例如QuarkTM、AtomTM、i3、i5、i7或MCU级处理器,或可购自加利福尼亚州圣克拉拉市
Figure BDA0003053536960000322
公司的另一个此类处理器。应用电路705的处理器还可以是以下中的一者或多者:Advanced Micro Devices(AMD)
Figure BDA0003053536960000323
处理器或加速处理单元(APU);来自
Figure BDA0003053536960000326
Inc.的A5-A9处理器、来自
Figure BDA0003053536960000324
Technologies,Inc.的SnapdragonTM处理器、TexasInstruments,
Figure BDA0003053536960000325
Open Multimedia Applications Platform(OMAP)TM处理器;来自MIPSTechnologies,Inc.的基于MIPS的设计,诸如MIPS Warrior M级、Warrior I级和Warrior P级处理器;获得ARM Holdings,Ltd.许可的基于ARM的设计,诸如ARM Cortex-A、Cortex-R和Cortex-M系列处理器;等。在一些具体实施中,应用电路705可以是片上系统(SoC)的一部分,其中应用电路705和其他部件形成为单个集成电路或单个封装,诸如
Figure BDA0003053536960000328
公司(
Figure BDA0003053536960000327
Corporation)的EdisonTM或GalileoTMSoC板。
除此之外或另选地,应用电路705可包括电路,诸如但不限于一个或多个现场可编程设备(FPD)诸如FPGA等;可编程逻辑设备(PLD),诸如复杂PLD(CPLD)、大容量PLD(HCPLD)等;ASIC,诸如结构化ASIC等;可编程SoC(PSoC);等等。在此类实施方案中,应用电路705的电路可包括逻辑块或逻辑构架,以及可被编程用于执行各种功能诸如本文所讨论的各种实施方案的过程、方法、功能等的其他互连资源。在此类实施方案中,应用电路705的电路可包括用于存储查找表(LUT)等中的逻辑块、逻辑构架、数据等的存储器单元(例如,可擦可编程只读存储器(EPROM)、电可擦可编程只读存储器(EEPROM)、闪存存储器、静态存储器(例如,静态随机存取存储器(SRAM)、防熔丝等))。
基带电路710可被实现为例如焊入式衬底,其包括一个或多个集成电路、焊接到主电路板的单个封装集成电路或包含两个或更多个集成电路的多芯片模块。在下文中参照图XT讨论基带电路710的各种硬件电子元件。
RFEM 715可包括毫米波(mmWave)RFEM和一个或多个子毫米波射频集成电路(RFIC)。在一些具体实施中,该一个或多个子毫米波RFIC可与毫米波RFEM物理地分离。RFIC可包括到一个或多个天线或天线阵列的连接件(参见例如下文图XT的天线阵列XT111),并且RFEM可连接到多个天线。在另选的具体实施中,毫米波和子毫米波两者的无线电功能均可在结合毫米波天线和子毫米波两者的相同的物理RFEM 715中实现。
存储器电路720可包括用于提供给定量的系统存储器的任何数量和类型的存储器设备。例如,存储器电路720可包括以下中的一者或多者:易失性存储器,其包括随机存取存储器(RAM)、动态RAM(DRAM)和/或同步动态RAM(SDRAM);和非易失性存储器,其包括高速电可擦存储器(通常称为闪存存储器)、相变随机存取存储器(PRAM)、磁阻随机存取存储器(MRAM)等。存储器电路720可根据联合电子设备工程委员会(JEDEC)基于低功率双倍数据速率(LPDDR)的设计诸如LPDDR2、LPDDR3、LPDDR4等进行开发。存储器电路720可被实现为以下中的一者或多者:焊入式封装集成电路、单管芯封装(SDP)、双管芯封装(DDP)或四管芯封装(Q17P)、套接存储器模块、包括微DIMM或迷你DIMM的双列直插存储器模块(DIMM),并且/或者经由球栅阵列(BGA)焊接到母板上。在低功率具体实施中,存储器电路720可以是与应用电路705相关联的片上存储器或寄存器。为了提供对信息诸如数据、应用程序、操作系统等的持久存储,存储器电路720可包括一个或多个海量存储设备,其可尤其包括固态磁盘驱动器(SSDD)、硬盘驱动器(HDD)、微型HDD、电阻变化存储器、相变存储器、全息存储器或化学存储器等等。例如,计算机平台700可结合
Figure BDA0003053536960000341
Figure BDA0003053536960000342
的三维(3D)交叉点(XPOINT)存储器。
可移动存储器电路723可包括用于将便携式数据存储设备与平台700耦接的设备、电路、外壳/壳体、端口或插座等。这些便携式数据存储设备可用于大容量存储,并且可包括例如闪存存储器卡(例如,安全数字(SD)卡、微型SD卡、xD图片卡等),以及USB闪存驱动器、光盘、外部HDD等。
平台700还可包括用于将外部设备与平台700连接的接口电路(未示出)。经由该接口电路连接到平台700的外部设备包括传感器电路721和机电式部件(EMC)722,以及耦接到可移除存储器电路723的可移除存储器设备。
传感器电路721包括目的在于检测其环境中的事件或变化的设备、模块或子系统,并且将关于所检测的事件的信息(传感器数据)发送到一些其他设备、模块、子系统等。此类传感器的示例尤其包括:包括加速度计、陀螺仪和/或磁力仪的惯性测量单元(IMU);包括三轴加速度计、三轴陀螺仪和/或磁力仪的微机电系统(MEMS)或纳机电系统(NEMS);液位传感器;流量传感器;温度传感器(例如,热敏电阻器);压力传感器;气压传感器;重力仪;测高仪;图像捕获设备(例如,相机或无透镜孔径);光检测和测距(LiDAR)传感器;接近传感器(例如,红外辐射检测器等)、深度传感器、环境光传感器、超声收发器;麦克风或其他类似的音频捕获设备;等。
致动器722允许平台700改变其状态、位置和/或取向,或者移动或控制机构或系统。致动器722包括用于移动或控制机构或系统的电气和/或机械设备,并且将能量(例如,电流或移动的空气和/或液体)转换成某种运动。致动器722可包括一个或多个电子(或电化学)设备,诸如压电生物形态、固态致动器、固态继电器(SSR)、基于形状记忆合金的致动器、基于电活性聚合物的致动器、继电器驱动集成电路(IC)等。致动器722可包括一个或多个机电设备,诸如气动致动器、液压致动器、机电开关包括机电继电器(EMR)、电机(例如,DC电机、步进电机、伺服机构等)、车轮、推进器、螺旋桨、爪、夹钳、钩、可闻声音发生器等机电部件。平台700可被配置为基于从服务提供方和/或各种客户端系统接收到的一个或多个捕获事件和/或指令或控制信号来操作一个或多个致动器722。
在一些具体实施中,接口电路可将平台700与定位电路745连接。定位电路745包括用于接收和解码由GNSS的定位网络发射/广播的信号的电路。导航卫星星座(或GNSS)的示例可包括美国的GPS、俄罗斯的GLONASS、欧盟的伽利略系统、中国的北斗导航卫星系统、区域导航系统或GNSS增强系统(例如,NAVIC、日本的QZSS、法国的DORIS等)等。定位电路745包括各种硬件元件(例如,包括用于促进OTA通信的硬件设备诸如开关、滤波器、放大器、天线元件等)以与定位网络的部件诸如导航卫星星座节点通信。在一些实施方案中,定位电路745可包括微型PNT IC,其在没有GNSS辅助的情况下使用主定时时钟来执行位置跟踪/估计。定位电路745还可以是基带电路610和/或RFEM 715的一部分或与之交互以与定位网络的节点和部件通信。定位电路745还可向应用电路705提供位置数据和/或时间数据,该应用电路可使用该数据来使操作与各种基础设施(例如,无线电基站)同步,以用于逐向导航应用程序等。
在一些具体实施中,接口电路可将平台700与近场通信(NFC)电路740连接。NFC电路740被配置为基于射频识别(RFID)标准提供非接触式近程通信,其中磁场感应用于实现NFC电路740与平台700外部的支持NFC的设备(例如,“NFC接触点”)之间的通信。NFC电路740包括与天线元件耦接的NFC控制器和与NFC控制器耦接的处理器。NFC控制器可以是通过执行NFC控制器固件和NFC堆栈向NFC电路740提供NFC功能的芯片/IC。NFC堆栈可由处理器执行以控制NFC控制器,并且NFC控制器固件可由NFC控制器执行以控制天线元件发射近程RF信号。RF信号可为无源NFC标签(例如,嵌入贴纸或腕带中的微芯片)供电以将存储的数据传输到NFC电路740,或者发起在NFC电路740和靠近平台700的另一个有源NFC设备(例如,智能电话或支持NFC的POS终端)之间的数据传输。
驱动电路746可包括用于控制嵌入在平台700中、附接到平台700或以其他方式与平台700通信耦接的特定设备的软件元件和硬件元件。驱动电路746可包括各个驱动器,从而允许平台700的其他部件与可存在于平台700内或连接到该平台的各种输入/输出(I/O)设备交互或控制这些I/O设备。例如,驱动电路746可包括:用于控制并允许接入显示设备的显示驱动器、用于控制并允许接入平台700的触摸屏接口的触摸屏驱动器、用于获取传感器电路721的传感器读数并控制且允许接入传感器电路721的传感器驱动器、用于获取EMC722的致动器位置并且/或者控制并允许接入EMC 722的EMC驱动器、用于控制并允许接入嵌入式图像捕获设备的相机驱动器、用于控制并允许接入一个或多个音频设备的音频驱动器。
电源管理集成电路(PMIC)725(也称为“电源管理电路725”)可管理提供给平台700的各种部件的电力。具体地讲,相对于基带电路710,PMIC 725可控制电源选择、电压缩放、电池充电或DC-DC转换。当平台700能够由电池730供电时,例如,当设备包括在UE 101中时,通常可包括PMIC 725。
在一些实施方案中,PMIC 725可控制或以其他方式成为平台700的各种省电机制的一部分。例如,如果平台700处于RRC_Connected状态,其中该设备仍连接到RAN节点,因为它期望立即接收流量,则在一段时间不活动之后,该设备可进入被称为不连续接收模式(DRX)的状态。在该状态期间,平台700可断电达短时间间隔内,从而节省功率。如果不存在数据流量活动达延长的时间段,则平台700可以转换到RRC_Idle状态,其中该设备与网络断开连接,并且不执行操作诸如信道质量反馈、切换等。平台700进入非常低的功率状态,并且执行寻呼,其中该设备再次周期性地唤醒以收听网络,然后再次断电。平台700可不接收处于该状态的数据;为了接收数据,其必须转变回RRC连接状态。附加的省电模式可以使设备无法使用网络的时间超过寻呼间隔(从几秒到几小时不等)。在此期间,该设备完全无法连接到网络,并且可以完全断电。在此期间发送的任何数据都会造成很大的延迟,并且假定延迟是可接受的。
电池730可为平台700供电,但在一些示例中,平台700可被安装在固定位置,并且可具有耦接到电网的电源。电池730可以是锂离子电池、金属-空气电池诸如锌-空气电池、铝-空气电池、锂-空气电池等。在一些具体实施中,例如在V2X应用中,电池730可以是典型的铅酸汽车电池。
在一些具体实施中,电池730可以是“智能电池”,其包括电池管理系统(BMS)或电池监测集成电路或与其耦接。BMS可包括在平台700中以跟踪电池730的充电状态(SoCh)。BMS可用于监测电池730的其他参数,诸如电池730的健康状态(SoH)和功能状态(SoF)以提供故障预测。BMS可将电池730的信息传送到应用电路705或平台700的其他部件。BMS还可包括模数(ADC)转换器,该模数转换器允许应用电路705直接监测电池730的电压或来自电池730的电流。电池参数可用于确定平台700可执行的动作,诸如传输频率、网络操作、感测频率等。
耦接到电网的电源块或其他电源可与BMS耦接以对电池730进行充电。在一些示例中,可用无线功率接收器替换功率块80,以例如通过计算机平台700中的环形天线来无线地获取电力。在这些示例中,无线电池充电电路可包括在BMS中。所选择的具体充电电路可取决于电池730的大小,并因此取决于所需的电流。充电可使用航空燃料联盟公布的航空燃料标准、无线电力联盟公布的Qi无线充电标准,或无线电力联盟公布的Rezence充电标准来执行。
用户接口电路750包括存在于平台700内或连接到该平台的各种输入/输出(I/O)设备,并且包括被设计为实现用户与平台700的交互的一个或多个用户接口和/或被设计为实现外围部件与平台700的交互的外围部件接口。用户接口电路750包括输入设备电路和输出设备电路。输入设备电路包括用于接受输入的任何物理或虚拟装置,尤其包括一个或多个物理或虚拟按钮(例如,复位按钮)、物理键盘、小键盘、鼠标、触控板、触摸屏、麦克风、扫描仪、头戴式耳机等。输出设备电路包括用于显示信息或以其他方式传达信息(诸如传感器读数、致动器位置或其他类似信息)的任何物理或虚拟装置。输出设备电路可包括任何数量和/或组合的音频或视觉显示,尤其包括一个或多个简单的视觉输出/指示器(例如,二进制状态指示器(例如,发光二极管(LED))和多字符视觉输出,或更复杂的输出,诸如显示设备或触摸屏(例如,液晶显示器(LCD)、LED显示器、量子点显示器、投影仪等),其中字符、图形、多媒体对象等的输出由平台700的操作生成或产生。输出设备电路还可包括扬声器或其他音频发射设备、打印机等。在一些实施方案中,传感器电路721可用作输入设备电路(例如,图像捕获设备、运动捕获设备等)并且一个或多个EMC可用作输出设备电路(例如,用于提供触觉反馈的致动器等)。在另一个示例中,可包括NFC电路以读取电子标签和/或与另一个支持NFC的设备连接,该NFC电路包括与天线元件耦接的NFC控制器和处理设备。外围部件接口可包括但不限于非易失性存储器端口、USB端口、音频插孔、电源接口等。
图7所示的部件可使用接口电路706或IX 706彼此通信,该接口电路可包括任何数量的总线和/或IX技术,诸如ISA、扩展ISA、I2C、SPI、点对点接口、PMBus、PCI、PCIe、PCIx、
Figure BDA0003053536960000381
UPI、
Figure BDA0003053536960000382
IAL、
Figure BDA0003053536960000383
CXL、CAPI、OpenCAPI、
Figure BDA0003053536960000387
QPI、
Figure BDA0003053536960000386
UPI、
Figure BDA0003053536960000384
OPA IX、RapidIOTM系统IXs、CCIX、Gen-Z联合IX、超传输互连、由
Figure BDA0003053536960000385
提供的NVLink、定时触发协议(TTP)系统、FlexRay系统和/或任何数量的其他IX技术。附加地或另选地,IX技术可以为专有总线,例如,在基于SoC的系统中使用。
图8示出了可用于实践本文所讨论的实施方案的通信电路800的示例。图8所示的部件是为了进行示意性的说明而示出的,并且可包括图8未示出的其他部件,或者图8所示的元件可另选地根据功能分组。
通信电路800包括协议处理电路805,该协议处理电路操作或实现一个或多个无线通信协议的各种协议层/实体。在一个示例中,当通信电路800是蜂窝射频通信系统诸如毫米波(mmWave)通信电路或一些其他合适的蜂窝通信电路时,协议处理电路805可操作长期演进(LTE)协议实体和/或第五代(5G)/新无线电(NR)协议实体。在该示例中,协议处理电路805可操作介质访问控制(MAC)、无线链路控制(RLC)、分组数据汇聚协议(PDCP)、业务数据适配协议(SDAP)、无线电资源控制(RRC)和非接入层(NAS)功能。在另一个示例中,当通信电路800是WiFi通信系统时,协议处理电路805可操作一个或多个基于IEEE的协议。在该示例中,协议处理电路805将操作MAC和逻辑链路控制(LLC)功能。
协议处理电路805可包括存储程序代码和用于操作协议功能的数据信息的一个或多个存储器结构(未示出),以及执行程序代码和使用数据信息执行各种操作的一个或多个处理内核(未示出)。协议处理电路805可包括控制电路(未示出)的一个或多个示例,以提供用于数字基带电路810、发射电路815、接收电路820和/或射频(RF)电路825的控制功能。在一些实施方案中,协议处理电路805和/或基带电路810分别对应于图6和图7的基带电路610和710。
通信电路800还包括数字基带电路810,该数字基带电路实现物理层(PHY)功能,包括:混合自动重传请求(HARQ)功能;加扰和/或解扰;编码和/或解码;层映射和/或解映射;调制符号映射;接收符号和/或位度量确定;多天线端口预编码和/或解码,该多天线端口预编码和/或解码可包括空时、空频或空间编码中的一者或多者;参考信号生成和/或检测;前导序列生成和/或解码;同步序列生成和/或检测;控制信道信号盲解码、无线电频移以及其他相关功能。调制/解调功能可以包括快速傅里叶变换(FFT)、预编码或星座映射/解映射功能。编码/解码功能可包括卷积、咬尾卷积、turbo编码、维特比编码、低密度奇偶校验(LDPC)编码、极性编码等。调制/解调和编码器/解码器功能的实施方案不限于这些示例,并且在其他实施方案中可包括其他合适的功能。
基带处理电路810和/或协议处理电路805可与应用平台(例如,分别为图6的应用电路605或图7的应用电路705)进行交互,以用于基带信号的生成和处理以及用于控制RF电路825的操作。数字基带电路810可处理能够经由RF电路825与一个或多个无线电网络通信的各种无线电控制功能。数字基带电路810可包括电路诸如但不限于:一个或多个单核或多核处理器(例如,一个或多个基带处理器)或控制逻辑部件,以处理从RF电路825的接收信号路径(例如,经由Rx电路820)接收的基带信号,并生成基带信号以用于RF电路825的传输信号路径(例如,经由Tx电路815)。数字基带电路810可包括多协议基带处理器等。
如前所述,数字基带电路810可包括或实现编码器电路,该编码器电路接受输入数据,基于输入数据生成编码数据,并将编码数据输出到调制映射器。该编码器还可执行错误检测、纠错、速率匹配和交错中的一者或多者。该编码器还可包括基于扰码序列(诸如本文所讨论的那些扰码序列)的扰码。数字基带电路810可包括或实现序列生成器以生成例如低峰值平均功率比(低PAPR)序列(参见例如3GPP TS 38.211v15.3.0(2018-09)的5.2.2节)(之后称为“TS 38.211)、伪随机噪声(PN)序列(参见例如TS 38.211的5.2.1节)和/或参考信号序列。在一些实施方案中,序列生成器可以为编码器电路的一部分。
数字基带电路810可包括或实现将二进制数字作为输入(例如,来自编码器的编码数据)并产生复值调制符号作为输出的调制映射器。调制映射器可操作一个或多个合适的调制方案,诸如TS 38.211的5.1节所讨论的那些。调制映射器可根据一个或多个映射表将包含选自编码数据的一个或多个二进制数位的组映射到复值调制符号。可以将复值调制符号输入到层映射器以映射到一个或多个层映射的调制符号流(参见例如TS 38.211的6.3.1.3节和7.3.1.3节)。可将该一个或多个层映射符号流输入到生成一个或多个预编码符号流的预编码器,该预编码符号流可被表示为矢量块。预编码器可被配置为执行使用单个天线端口的直接映射、使用空时分组编码或空间多路复用的传输分集。每个预编码符号流可被输入到生成资源映射符号流(例如,RE)的资源映射器。资源映射器可根据映射将预编码符号映射到频域子载波和时域符号,该映射可包括根据映射代码的邻接块映射、随机映射和/或稀疏映射。
数字基带电路810还可以包括或实现基带信号发生器(也称为“多载波发生器”)以生成OFDM基带信号和/或其他基带信号。在这些实施方案中,来自资源映射器的资源映射符号被输入到生成时域基带符号的基带信号发生器。基带信号发生器可生成使用例如逆离散傅里叶变换(通常被实现为逆快速傅里叶变换(IFFT))或包括一个或多个滤波器的滤波器组来生成时域符号(例如时域符号集)。由IFFT产生的时域信号通过无线电信道传输。在接收器处,FFT块用于处理所接收的信号并将其带到用于恢复原始数据位的频域中。TS38.211讨论了数字基带电路810的操作的其他/附加方面。
通信电路800还包括发射(Tx)电路815和接收(Rx)电路820。Tx电路815被配置为将数字基带信号转换成模拟信号以供RF电路825传输。为此,在一个实施方案中,Tx电路815包括各种部件,诸如数模转换器(DAC)、模拟基带电路、上变频电路以及滤波和放大电路。附加地或另选地,Tx电路815可包括数字传输电路和输出电路。
Rx电路820被配置为将由RF电路825接收的模拟信号转换成数字基带信号以提供给数字基带电路810。为此,在一个实施方案中,Rx电路820包括并行接收电路和/或组合接收电路的一个或多个实例。并行接收电路和组合接收电路的实例可包括中频(IF)下转换电路、IF处理电路、基带下转换电路、基带处理电路和模数转换器(ADC)电路。
通信电路800可包括射频(RF)电路825以使得能够使用调制的电磁辐射通过非固体介质与无线网络进行通信。RF电路825包括接收信号路径,该接收信号路径可包括用于将模拟RF信号(例如,现有或所接收的调制波形)转换成数字基带信号以经由Rx电路820提供给数字基带电路810的电路。RF电路825还包括传输信号路径,该传输信号路径可包括被配置为将由数字基带电路810经由Tx电路815提供的数字基带信号转换成将经由天线阵列830放大和传输的模拟RF信号(例如,调制波形)的电路。
RF电路825可包括射频链路电路的一个或多个实例,其可包括一个或多个滤波器、功率放大器、低噪声放大器、可编程移相器和电源(未示出)。RF电路825还可包括功率合成和分配电路。功率组合和分配电路可双向工作,使得相同的物理电路可被配置为当设备正在发射时作为功率分配器工作,并且当设备正在接收时作为功率组合器工作。在一些实施方案中,功率合成和分配电路可包括完全或部分独立的电路以在设备正在传输时执行功率分配,并且在设备正在接收时执行功率合成。功率合成和分配电路可包括无源电路,该无源电路包括布置成树型的一个或多个双向功率分配器/合成器。在一些实施方案中,功率合成和分配电路可包括含有放大器电路的有源电路。
通信电路800还包括天线阵列830。天线阵列830包括一个或多个天线元件。天线阵列830可以是多个制造在一个或多个印刷电路板的表面上的微带天线或印刷天线。天线阵列830可形成为各种形状的金属箔的贴片(例如,贴片天线),并且可使用金属传输线等与RF电路825耦接。
下文是一些非限制性实施例。以下实施例涉及另外的实施方案,并且实施例中的细节可用于先前讨论的一个或多个实施方案中的任何地方。以下实施例中的任一个可与本文所讨论的任何其它实施例或任何实施方案组合。
实施例A01包括一种操作要在用户装备(UE)中实现的片上系统(SoC)的方法,所述方法包括:由所述SoC基于所述参考信号(RS)相对于另一信号的准共址(QCL)来确定要用于波束故障检测(BFD)的至少一个RS;以及由所述SoC使用所确定的RS执行BFD。
实施例A02包括根据实施例A01和/或本文的一些其他实施例所述的方法,其中所述RS是同步信号块(SSB),所述SSB只能在配置控制资源集(CORESET)0的带宽部分(BWP)中配置,并且所述方法还包括:使用与所述CORESET 0相关联的SSB索引来确定所述SSB。
实施例A03包括根据实施例A01和/或本文的一些其他实施例所述的方法,其中所述RS是SSB,并且所述SSB与在CORESET的传输配置指示(TCI)状态下配置的信道状态信息RS(CSI-RS)准共址。
实施例A04包括根据实施例A03和/或本文的一些其他实施例所述的方法,其中当两个RS在所述TCI状态下配置时,在所述CORESET的TCI状态下配置的所述CSI-RS根据QCL类型D与物理下行链路控制信道(PDCCH)准共址。
实施例A05包括根据实施例A01和/或本文的一些其他实施例所述的方法,其中所述RS是SSB,并且为了确定用于BFD的所述RS,所述方法还包括:基于由所接收的媒体访问控制(MAC)控制元素(CE)指示的SSB索引来确定所述SSB。
实施例A06包括根据实施例A01和/或本文的一些其他实施例所述的方法,其中所述RS是CSI-RS,并且为了确定用于BFD的所述RS,所述方法还包括:基于由所接收的MAC CE指示的CSI-RS索引确定所述CSI-RS。
实施例A07包括根据实施例A01和/或本文的一些其他实施例所述的方法,其中当用于BFD的所述RS由高层显式地配置,并且用于BFD的所述RS不与服务小区中的活动BWP中的PDCCH的解调RS(DMRS)准共址时,所述方法还包括:终止或停止所述BFD的执行;和/或阻止波束故障指示的传输。
实施例A08包括根据实施例A01和/或本文的一些其他实施例所述的方法,其中当用于BFD的所述RS由高层显式地配置,并且用于BFD的所述RS不与服务小区中的活动BWP中的PDCCH的解调RS(DMRS)准共址时,所述方法还包括:确定用于BFD的所述RS为CSI-RS;以及基于CSI-RS资源配置索引确定要针对所述CSI-RS监测的CSI-RS资源,所述CSI-RS资源配置索引具有与由相应CORESET的TCI状态指示的RS索引相同的值,所述相应CORESET将被用于监测所述PDCCH的所述DMRS的。
实施例A09包括根据实施例A01和/或本文的一些其他实施例所述的方法,其中当用于BFD的所述RS未由高层显式地配置时,所述方法还包括:将用于BFD的所述RS确定为单个端口周期性CSI-RS;以及基于CSI-RS资源配置索引确定要针对所述单个端口周期性CSI-RS监测的CSI-RS资源,所述CSI-RS资源配置索引具有与由相应CORESET的TCI状态指示的RS索引相同的值。
实施例A10包括根据实施例A01和/或本文的一些其他实施例所述的方法,其中当用于BFD的所述RS未由高层显式地配置时,所述方法还包括:当在所述TCI状态下配置的其他CSI-RS不是单个端口周期性CSI-RS时,确定用于BFD的所述RS是与在CORESET的TCI状态下配置的另一个CSI-RS准共址的SSB或CSI-RS。
实施例A11包括根据实施例A10和/或本文的一些其他实施例所述的方法,其中所述另一个CSI-RS与周期性CSI-RS或SSB准共址。
实施例A12包括根据实施例A01至A11和/或本文的一些其他实施例所述的方法,其中执行所述BFD包括:监测要在其中传输所述RS的一个或多个资源;在评估周期内在所监测的一个或多个资源上估计下行链路(DL)无线电链路质量;当来自物理层实体的波束故障实例指示的数量在配置的定时器到期之前达到配置的阈值时宣布波束故障,其中所述波束故障实例指示的数量基于所估计的DL无线电链路质量;以及响应于宣布所述波束故障而触发波束故障恢复过程。
实施例B01包括一种由用户装备(UE)执行的方法,所述方法包括:由所述UE基于所述参考信号(RS)相对于另一信号的准共址(QCL)来确定要用于波束故障检测(BFD)的至少一个RS;以及由所述UE使用所确定的RS执行BFD,其中执行所述BFD包括:监视要在其中传输所述RS的一个或多个资源;在评估周期内在所监测的一个或多个资源上估计下行链路(DL)无线电链路质量;当来自物理层实体的波束故障实例指示的数量在配置的定时器到期之前达到配置的阈值时宣布波束故障,其中所述波束故障实例指示的数量基于所估计的DL无线电链路质量;以及响应于宣布所述波束故障而触发波束故障恢复过程。
实施例B02包括根据实施例B01和/或本文的一些其他实施例所述的方法,其中确定用于BFD的所述RS包括:由所述UE接收媒体访问控制(MAC)控制元素(CE);以及由所述UE基于由所述MAC CE指示的RS索引确定所述RS。
实施例B03包括根据实施例B02和/或本文的一些其他实施例所述的方法,其中所述RS是同步信号块(SSB),并且由所述MAC CE指示的所述RS索引是SSB索引。
实施例B04包括根据实施例B03和/或本文的一些其他实施例所述的方法,其中当所述SSB仅在配置控制资源集(CORESET)0的带宽部分(BWP)中配置时,所述SSB索引与所述CORESET 0相关联。
实施例B05包括根据实施例B03和/或本文的一些其他实施例所述的方法,其中所述SSB与在CORESET的传输配置指示(TCI)状态下配置的信道状态信息RS(CSI-RS)准共址,并且当两个RS在所述TCI状态下配置时所述CORESET根据QCL类型D与物理下行链路控制信道(PDCCH)准共址。
实施例B06包括根据实施例B02和/或本文的一些其他实施例所述的方法,其中所述RS是CSI-RS,并且由所述MAC CE指示的所述RS索引是CSI-RS索引。
实施例B07包括根据实施例B06和/或本文的一些其他实施例所述的方法,其中当用于BFD的所述RS由高层显式地配置,并且用于BFD的所述RS不与服务小区中的活动BWP中的PDCCH的解调RS(DMRS)准共址时,所述方法包括:由所述UE基于CSI-RS资源配置索引确定要针对所述CSI-RS监测的CSI-RS资源,所述CSI-RS资源配置索引具有与由相应CORESET的TCI状态指示的RS索引相同的值,所述相应CORESET将被用于监测所述PDCCH的所述DMRS。
实施例B08包括根据实施例B06和/或本文的一些其他实施例所述的方法,其中当用于BFD的所述RS未由高层显式地配置并且所述CSI-RS是单个端口周期性CSI-RS时,所述方法包括:由所述UE基于CSI-RS资源配置索引确定要针对所述单个端口周期性CSI-RS监测的CSI-RS资源,所述CSI-RS资源配置索引具有与由相应CORESET的TCI状态指示的RS索引相同的值。
实施例B09包括根据实施例B03、B06和/或本文的一些其他实施例所述的方法,其中当用于BFD的所述RS未由高层显式地配置时,所述方法包括:当在所述TCI状态下配置的其它CSI-RS不是单个端口周期性CSI-RS时,由所述UE确定用于BFD的所述RS是与在CORESET的TCI状态下配置的另一个CSI-RS准共址的SSB或CSI-RS,其中所述其他CSI-RS与周期性CSI-RS或SSB准共址。
实施例B10包括根据实施例B03或B06和/或本文的一些其他实施例所述的方法,其中当用于BFD的所述RS由高层显式地配置,并且用于BFD的所述RS不与服务小区中的活动BWP中的PDCCH的DMRS准共址时,所述方法包括:由所述UE终止或停止所述BFD的执行;和/或由所述UE阻止波束故障指示的传输。
实施例C01包括一种由用户装备(UE)执行的方法,所述方法包括:基于RS与物理下行链路控制信道(PDDCH)的至少一个信道状态信息RS(CSI-RS)或解调RS(DMRS)之间的准共址(QCL)关系来确定将用于波束故障检测(BFD)的参考信号(RS);以及使用所确定的RS执行所述BFD。
实施例C02包括根据实施例C01和/或本文的一些其他实施例所述的方法,其中所述RS是同步信号块(SSB),并且所述SSB与所述CSI-RS准共址,并且所述CSI-RS在核心资源集(CORESET)的传输配置指示(TCI)状态下配置。
实施例C03包括根据实施例C01和/或本文的一些其他实施例所述的方法,其中当用于BFD的所述RS未通过高层信令显式地配置时,并且确定用于BFD的所述RS包括:确定所述RS是在CORESET的TCI状态下配置的单个端口周期性CSI-RS;或确定所述RS是与在CORESET的TCI状态下配置的CSI-RS准共址的SSB或单个端口周期性CSI-RS。
实施例Z01可包括一种装置,所述装置包括用于执行根据实施例A01至A12、B01至B10、C01至C03中任一项所述或与之相关的方法或本文所述的任何其他方法或过程的一个或多个元素的部件。
实施例Z02可包括一个或多个非暂态计算机可读介质,所述一个或多个非暂态计算机可读介质包括指令,所述指令在电子设备的一个或多个处理器执行所述指令时使得所述电子设备执行实施例A01至A12、B01至B10、C01至C03中任一项所述或与之相关的方法或本文所述的任何其他方法或过程的一个或多个元素。
实施例Z03可包括一种装置,所述装置包括用于执行根据实施例A01至A12、B01至B10、C01至C03中任一项所述或与之相关的方法或本文所述的任何其他方法或过程的一个或多个元素的逻辑、模块或电路。
实施例Z04可包括根据实施例A01至A12、B01至B10、C01至C03中任一项所述或与之相关的方法、技术或过程或其部分或一些。
实施例Z05可包括一种装置,所述装置包括:一个或多个处理器以及一个或多个计算机可读介质,所述一个或多个计算机可读介质包括指令,所述指令在由一个或多个处理器执行时使得所述一个或多个处理器执行根据实施例A01至A12、B01至B10、C01至C03中任一项所述或与之相关的方法、技术或过程或其部分。
实施例Z06可包括根据实施例A01至A12、B01至B10、C01至C03中任一项所述或与之相关的信号或其部分或一些。
实施例Z07可包括根据实施例A01至A12、B01至B10、C01至C03中任一项所述或与之相关的数据报、分组、帧、段、协议数据单元(PDU)或消息,或其部分或一些,或者在本公开中以其他方式描述的。
实施例Z08可包括根据实施例A01至A12、B01至B10、C01至C03中任一项所述或与之相关的编码有数据的信号,或其部分或一些,或者在本公开中以其他方式描述的。
实施例Z09可包括根据实施例A01至A12、B01至B10、C01至C03中任一项所述或与之相关的编码有数据报、分组、帧、段、协议数据单元(PDU)或消息的信号,或其部分或一些,或者在本公开中以其他方式描述的。
实施例Z10可包括承载计算机可读指令的电磁信号,其中由一个或多个处理器执行所述计算机可读指令将使得所述一个或多个处理器执行根据实施例A01至A12、B01至B10、C01至C03中任一项所述或与之相关的方法、技术或过程,或其部分。
实施例Z11可包括一种计算机程序,所述计算机程序包括指令,其中由处理元件执行所述程序将使得处理元件执行根据实施例A01至A12、B01至B10、C01至C03中任一项所述或与之相关的方法、技术或过程,或其部分。
实施例Z12可包括如本文所示和所述的无线网络中的信号。实施例Z13可包括如本文所示和所述的在无线网络中进行通信的方法。实施例Z14可包括如本文所示和所述的用于提供无线通信的系统。实施例Z15可包括如本文所示和所述的用于提供无线通信的设备。
除非另有明确说明,否则上述实施例中的任一者可与任何其他实施例(或实施例的组合)组合。本文中所使用的术语仅仅是为了描述特定实施方案并非旨在对本公开进行限制。如本文所用,单数形式“一个”(a/an)和“该”旨在同样包括复数形式,除非上下文另外清楚地指出。还将理解的是,术语“包括”和/或“包含”在本说明书中使用时是指定存在所陈述的特征、整数、步骤、操作、元件和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、部件,和/或其分组。出于本公开的目的,短语“A和/或B”表示(A)、(B)或(A和B)。出于本公开的目的,短语“A、B和/或C”是指(A)、(B)、(C)、(A和B)、(A和C)、(B和C)或(A、B和C)。描述可使用短语“在一个实施方案中”或“在一些实施方案中”,其可各自指相同或不同实施方案中的一者或多者。此外,与本公开的实施方案一起使用的术语“包含”、“包括”、“具有”等是同义的。术语“耦接”(或其变型)可意指两个或更多个元件彼此直接物理接触或电接触,可意指两个或更多个元件彼此间接接触但仍然彼此配合或相互作用,和/或可意指一个或多个其他元件耦接或连接在据说彼此耦接的元件之间。术语“可通信地耦接”可意指两个或更多个元件可借助于通信彼此接触,包括通过导线或其他互连连接、通过无线通信信道或链路等。
前述描述提供了对各种示例性实施方案的说明和描述,但是并不旨在穷举或将实施方案的范围限制为所公开的精确形式。鉴于上面的教导内容,修改和变型是可能的,或者可从各种实施方案的实践中获取修改和变型。在为了描述本公开的示例性实施方案而阐述具体细节的情况下,对于本领域的技术人员应当显而易见的是,本公开可以在没有这些具体细节或在通过这些具体细节的变型的情况下实践。然而,应当理解,无意将本公开的概念限制于所公开的特定形式,而是相反,其目的在于涵盖与本公开和所附权利要求书一致的所有修改形式、等同形式和替代形式。

Claims (25)

1.一种将在用户装备(UE)中实现的片上系统(SoC),所述SoC包括:
接口电路;和
基带电路,所述基带电路与所述接口电路耦接,所述基带电路用于:
基于参考信号(RS)相对于另一个信号的准共址(QCL)来确定要用于波束故障检测(BFD)的至少一个RS;以及
使用所确定的RS执行BFD。
2.根据权利要求1所述的SoC,其中所述RS是同步信号块(SSB),所述SSB只能在配置控制资源集(CORESET)0的带宽部分(BWP)中配置,并且所述基带电路还用于:使用与所述CORESET 0相关联的SSB索引来确定所述SSB。
3.根据权利要求1所述的SoC,其中所述RS是SSB,并且所述SSB与在CORESET的传输配置指示(TCI)状态下配置的信道状态信息RS(CSI-RS)准共址。
4.根据权利要求3所述的SoC,其中当两个RS在所述TCI状态下配置时,在所述CORESET的TCI状态下配置的所述CSI-RS根据QCL类型D与物理下行链路控制信道(PDCCH)准共址。
5.根据权利要求1所述的SoC,其中所述RS是SSB,并且为了确定用于BFD的所述RS,所述基带电路还用于:基于由所接收的媒体访问控制(MAC)控制元素(CE)指示的SSB索引来确定所述SSB。
6.根据权利要求1所述的SoC,其中所述RS是CSI-RS,并且为了确定用于BFD的所述RS,所述基带电路还用于:
基于由所接收的MAC CE指示的CSI-RS索引来确定所述CSI-RS。
7.根据权利要求1所述的SoC,其中当用于BFD的所述RS由高层显式地配置并且用于BFD的所述RS不与服务小区中的活动BWP中的PDCCH的解调RS(DMRS)准共址时,所述基带电路还用于:
终止所述BFD的执行;以及
阻止波束故障指示的传输。
8.根据权利要求1所述的SoC,其中当用于BFD的所述RS由高层显式地配置并且用于BFD的所述RS不与服务小区中的活动BWP中的PDCCH的解调RS(DMRS)准共址时,所述基带电路还用于:
确定用于BFD的所述RS为CSI-RS;以及
基于CSI-RS资源配置索引确定要针对所述CSI-RS监测的CSI-RS资源,所述CSI-RS资源配置索引具有与由相应CORESET的TCI状态指示的RS索引相同的值,所述相应CORESET将被用于监测所述PDCCH的所述DMRS。
9.根据权利要求1所述的SoC,其中当用于BFD的所述RS未由高层显式地配置时,所述基带电路还用于:
将用于BFD的所述RS确定为单个端口周期性CSI-RS;以及
基于CSI-RS资源配置索引确定要针对所述单个端口周期性CSI-RS监测的CSI-RS资源,所述CSI-RS资源配置索引具有与由相应CORESET的TCI状态指示的RS索引相同的值。
10.根据权利要求1所述的SoC,其中当用于BFD的所述RS未由高层显式地配置时,所述基带电路还用于:
当在所述TCI状态下配置的其他CSI-RS不是单个端口周期性CSI-RS时,确定用于BFD的所述RS是与在CORESET的TCI状态下配置的另一个CSI-RS准共址的SSB或CSI-RS。
11.根据权利要求10所述的SoC,其中所述其他CSI-RS与周期性CSI-RS或SSB准共址。
12.根据权利要求1至11中任一项所述的SoC,其中为了执行所述BFD,所述基带电路用于:
监测要在其中传输所述RS的一个或多个资源;
在评估周期内在所监测的一个或多个资源上估计下行链路(DL)无线电链路质量;
当来自物理层实体的波束故障实例指示的数量在配置的定时器到期之前达到配置的阈值时宣布波束故障,其中所述波束故障实例指示的数量基于所估计的DL无线电链路质量;以及
响应于宣布所述波束故障而触发波束故障恢复过程。
13.一个或多个计算机可读存储介质(CRSM),所述CRSM包括指令,其中所述指令在由一个或多个处理器执行时,将使得用户装备(UE):
基于参考信号(RS)相对于另一个信号的准共址(QCL)来确定要用于波束故障检测(BFD)的至少一个RS;以及
使用所确定的RS执行BFD,其中为了执行所述BFD,所述指令的执行将使得所述UE:
监测要在其中传输所述RS的一个或多个资源;
在评估周期内在所监测的一个或多个资源上估计下行链路(DL)无线电链路质量;
当来自物理层实体的波束故障实例指示的数量在配置的定时器到期之前达到配置的阈值时宣布波束故障,其中所述波束故障实例指示的数量基于所估计的DL无线电链路质量;以及
响应于宣布所述波束故障而触发波束故障恢复过程。
14.根据权利要求13所述的一个或多个CRSM,其中为了确定用于BFD的所述RS,所述指令的执行将使得所述UE:
接收媒体访问控制(MAC)控制元素(CE);以及
基于由所述MAC CE指示的RS索引确定所述RS。
15.根据权利要求14所述的一个或多个CRSM,其中所述RS是同步信号块(SSB),并且由所述MAC CE指示的所述RS索引是SSB索引。
16.根据权利要求15所述的一个或多个CRSM,其中当所述SSB仅在配置控制资源集(CORESET)0的带宽部分(BWP)中配置时,所述SSB索引与所述CORESET 0相关联。
17.根据权利要求15所述的一个或多个CRSM,其中所述SSB与在CORESET的传输配置指示(TCI)状态下配置的信道状态信息RS(CSI-RS)准共址,并且当两个RS在所述TCI状态下配置时所述CORESET根据QCL类型D与物理下行链路控制信道(PDCCH)准共址。
18.根据权利要求14所述的一个或多个CRSM,其中所述RS是CSI-RS,并且由所述MAC CE指示的所述RS索引是CSI-RS索引。
19.根据权利要求18所述的一个或多个CRSM,其中当用于BFD的所述RS由高层显式地配置并且用于BFD的所述RS不与服务小区中的活动BWP中的PDCCH的解调RS(DMRS)准共址时,所述指令的执行将使得所述UE:基于CSI-RS资源配置索引确定要针对所述CSI-RS监测的CSI-RS资源,所述CSI-RS资源配置索引具有与由相应CORESET的TCI状态指示的RS索引相同的值,所述相应CORESET将被用于监测所述PDCCH的所述DMRS。
20.根据权利要求18所述的一个或多个CRSM,其中当用于BFD的所述RS未由高层显式地配置并且所述CSI-RS是单个端口周期性CSI-RS时,所述指令的执行将使得所述UE:基于CSI-RS资源配置索引确定要针对所述单个端口周期性CSI-RS监测的CSI-RS资源,所述CSI-RS资源配置索引具有与由相应CORESET的TCI状态指示的RS索引相同的值。
21.根据权利要求15或18所述的一个或多个CRSM,其中当用于BFD的所述RS未由高层显式地配置时,所述指令的执行将使得所述UE:
当在所述TCI状态下配置的其他CSI-RS不是单个端口周期性CSI-RS时,确定用于BFD的所述RS是与在CORESET的TCI状态下配置的另一个CSI-RS准共址的SSB或CSI-RS,其中所述其他CSI-RS与周期性CSI-RS或SSB准共址。
22.根据权利要求15或18所述的一个或多个CRSM,其中当用于BFD的所述RS由高层显式地配置并且用于BFD的所述RS不与服务小区中的活动BWP中的PDCCH的DMRS准共址时,所述指令的执行将使得所述UE:
终止所述BFD的执行;以及
阻止波束故障指示的传输。
23.一种用户装备(UE),所述UE包括:
用于基于参考信号(RS)与物理下行链路控制信道(PDDCH)的至少一个信道状态信息RS(CSI-RS)或解调RS(DMRS)之间的准共址(QCL)关系来确定将用于波束故障检测(BFD)的RS的装置;和
用于使用所确定的RS执行所述BFD的装置。
24.根据权利要求23所述的UE,其中所述RS是同步信号块(SSB),所述SSB与所述CSI-RS准共址,并且所述CSI-RS是在核心资源集(CORESET)的传输配置指示(TCI)状态下配置的。
25.根据权利要求23所述的UE,其中当用于BFD的所述RS未由高层信令显式地配置时,并且用于确定用于BFD的所述RS的所述装置用于:
确定所述RS是在CORESET的TCI状态下配置的单个端口周期性CSI-RS;或者
确定所述RS是与在CORESET的TCI状态下配置的CSI-RS准共址的SSB或单个端口周期性CSI-RS。
CN201980073272.5A 2018-11-13 2019-11-11 基于同步信号块的波束故障检测系统、用户装备及存储介质 Active CN113016156B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862760276P 2018-11-13 2018-11-13
US62/760,276 2018-11-13
PCT/US2019/060711 WO2020102072A1 (en) 2018-11-13 2019-11-11 Synchronization signal block based beam failure detection

Publications (2)

Publication Number Publication Date
CN113016156A true CN113016156A (zh) 2021-06-22
CN113016156B CN113016156B (zh) 2024-05-03

Family

ID=70732136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980073272.5A Active CN113016156B (zh) 2018-11-13 2019-11-11 基于同步信号块的波束故障检测系统、用户装备及存储介质

Country Status (3)

Country Link
US (1) US20220022065A1 (zh)
CN (1) CN113016156B (zh)
WO (1) WO2020102072A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273935A1 (zh) * 2021-06-29 2023-01-05 展讯通信(上海)有限公司 下行控制信息的接收方法、信息的发送方法及相关装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11678337B2 (en) * 2019-07-18 2023-06-13 Qualcomm Incorporated Quasi co-location related priority rules for multi-downlink control information based multi-transmission/reception point
KR20210022461A (ko) * 2019-08-20 2021-03-03 삼성전자주식회사 무선 통신 시스템에서 단말의 빔 실패 회복 동작을 지시하는 방법 및 장치
US11758465B2 (en) * 2019-12-17 2023-09-12 Qualcomm Incorporated Repeater beacon signal for enabling inter-cell interference coordination
US11743112B2 (en) * 2020-05-12 2023-08-29 Qualcomm Incorporated UE requested BFD/BFR reference signal
US11690073B2 (en) * 2020-07-01 2023-06-27 Qualcomm Incorporated Physical downlink control channel and synchronization signal block collision
US20220132517A1 (en) * 2020-10-23 2022-04-28 Samsung Electronics Co., Ltd. Method and apparatus for partial beam failure recovery in a wireless communications system
EP4214853A2 (en) 2021-01-13 2023-07-26 Ofinno, LLC Restrictions in beam failure detection
US20230017004A1 (en) * 2021-07-09 2023-01-19 Qualcomm Incorporated Antenna panel pair reporting and configuration for full-duplex communication
US11757600B2 (en) * 2021-09-15 2023-09-12 Qualcomm Incorporated Measurement without gaps for narrow bandwidth part (BWP) hopping
US20230088966A1 (en) * 2021-09-22 2023-03-23 Apple Inc. Power Efficient Beam Recovery Procedures
WO2024098186A1 (en) * 2022-11-07 2024-05-16 Apple Inc. Unified transmission configuration indicator (tci) switching delays

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901468A (zh) * 2006-07-19 2007-01-24 华为技术有限公司 网际协议多跳情况下进行特定路径故障检测的方法和网络
CN101848114A (zh) * 2010-04-15 2010-09-29 华为技术有限公司 故障检测方法和装置
CN103138957A (zh) * 2011-11-22 2013-06-05 中国移动通信集团上海有限公司 一种业务路径回切的方法、设备及系统
WO2018174806A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Rlm and beam failure detection based on a mix of different reference signals
WO2018174667A1 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery of single/multi-beam pair link (bpl) in multi-beam based system
CA3058218A1 (en) * 2017-03-31 2018-10-04 Huawei Technologies Co., Ltd. System and method for communications beam recovery
WO2018190617A1 (en) * 2017-04-12 2018-10-18 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in wireless communication system
CN108702767A (zh) * 2017-02-06 2018-10-23 联发科技股份有限公司 用于多波束操作的波束故障恢复机制
WO2018203785A1 (en) * 2017-05-05 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, base station and methods in a radio communications network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10805148B2 (en) * 2018-02-05 2020-10-13 Ofinno, Llc Beam failure recovery request procedure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901468A (zh) * 2006-07-19 2007-01-24 华为技术有限公司 网际协议多跳情况下进行特定路径故障检测的方法和网络
CN101848114A (zh) * 2010-04-15 2010-09-29 华为技术有限公司 故障检测方法和装置
CN103138957A (zh) * 2011-11-22 2013-06-05 中国移动通信集团上海有限公司 一种业务路径回切的方法、设备及系统
CN108702767A (zh) * 2017-02-06 2018-10-23 联发科技股份有限公司 用于多波束操作的波束故障恢复机制
WO2018174667A1 (en) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery of single/multi-beam pair link (bpl) in multi-beam based system
WO2018174806A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Rlm and beam failure detection based on a mix of different reference signals
CA3058218A1 (en) * 2017-03-31 2018-10-04 Huawei Technologies Co., Ltd. System and method for communications beam recovery
WO2018190617A1 (en) * 2017-04-12 2018-10-18 Samsung Electronics Co., Ltd. Method and apparatus for beam recovery in wireless communication system
WO2018203785A1 (en) * 2017-05-05 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, base station and methods in a radio communications network

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "R1-1710236 "Discussion on beam failure recovery procedure"", 3GPP TSG_RAN\\WG1_RL1, no. 1 *
HUAWEI, HISILICON: "R1-1708135 "Beam failure recovery"", 3GPP TSG_RAN\\WG1_RL1, no. 1, 6 May 2017 (2017-05-06) *
HUAWEI等: ""R1-1721673 WF on partial beam failure_v2"", 3GPP TSG_RAN\\WG1_RL1 *
MEDIATEK INC: ""R1-1811867_Summary_BFR_CR_v06"", 3GPP TSG_RAN\\WG1_RL1, pages 2 *
SAMSUNG, HUAWEI, HISILICON: "R1-1707981 "Remaining issues on NR CSI-RS"", 3GPP TSG_RAN\\WG1_RL1, no. 1, 4 May 2017 (2017-05-04) *
TECHNICAL SPECIFICATION GROUP RADIO ACCESS NETWORK: ""38300-f31"", 3GPP SPECS\\38_SERIES, pages 9 *
张韬;王俊;: "用BFD技术检测网络故障", 网络安全和信息化, no. 10, 5 October 2017 (2017-10-05) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023273935A1 (zh) * 2021-06-29 2023-01-05 展讯通信(上海)有限公司 下行控制信息的接收方法、信息的发送方法及相关装置

Also Published As

Publication number Publication date
CN113016156B (zh) 2024-05-03
WO2020102072A1 (en) 2020-05-22
US20220022065A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
CN113016156B (zh) 基于同步信号块的波束故障检测系统、用户装备及存储介质
KR102617900B1 (ko) 서비스 흐름 및 서비스 요청의 품질에 관련된 성능 측정치들
CN112956143B (zh) 用于功率节省的无线电链路监测增强
US20220159415A1 (en) Measurement and procedures for nr positioning
US20220159574A1 (en) Control channel signaling for user equipment (ue) power saving
KR102620627B1 (ko) 매우 신뢰성있는 통신을 위한 데이터 반복 송신 방법들
US20210136806A1 (en) Resource allocation mechanism for single carrier waveform
US11895680B2 (en) Physical uplink shared channel based small data transmission
US20200374735A1 (en) Signaling enhancements of smtc configuration for an iab mt
US11589358B2 (en) Physical downlink shared channel (PDSH) repetition transmission for reliable communications
US11831381B2 (en) Beam failure recovery for uplink
KR102551165B1 (ko) 웨이크-업 신호 설계
US20210084669A1 (en) Setting default physical downlink shared channel (pdsch) beams
KR20240008412A (ko) 뉴 라디오(nr)에서의 2차 셀 빔 실패 복구 동작
US20210045149A1 (en) Default transmission configuration indicator (tci) state determination for cross-carrier scheduling
US11736218B2 (en) Obtaining neighbor cell control channel resources in unlicensed bands
US20220166538A1 (en) Methods for fast secondary cell activation and deactivation
CN113366806A (zh) 传输用于ofdm的相位跟踪参考信号的系统和方法
US20240023125A1 (en) Control resource set configuration and physical downlink control channel design for above 52.6ghz
KR20230048378A (ko) 상이한 서브캐리어 간격 능력 보고를 갖는 크로스 캐리어 스케줄링
CN114175557A (zh) 通过短信道状态信息报告进行快速服务小区激活的方法
US20210135816A1 (en) Aperiodic sounding reference signal (srs) triggering and low overhead srs transmission with antenna switching
CN112713977A (zh) 用于探测参考信号传输的方法
CN113785661A (zh) 基于用户装备的分组数据汇聚协议(pdcp)重复激活和去激活
US11863487B2 (en) Requirements for evaluating channel state information (CSI)-reference signal (RS) based layer 3 (L3)-reference signal received power (RSRP) measurement accuracy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant