CN113015169B - 充电无线传感器网络恶意程序传播最优控制方法、设备及介质 - Google Patents

充电无线传感器网络恶意程序传播最优控制方法、设备及介质 Download PDF

Info

Publication number
CN113015169B
CN113015169B CN202110204056.9A CN202110204056A CN113015169B CN 113015169 B CN113015169 B CN 113015169B CN 202110204056 A CN202110204056 A CN 202110204056A CN 113015169 B CN113015169 B CN 113015169B
Authority
CN
China
Prior art keywords
nodes
node
energy
low
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110204056.9A
Other languages
English (en)
Other versions
CN113015169A (zh
Inventor
刘贵云
孟繁星
罗朝龙
冯凯力
彭智敏
李君强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202110204056.9A priority Critical patent/CN113015169B/zh
Publication of CN113015169A publication Critical patent/CN113015169A/zh
Application granted granted Critical
Publication of CN113015169B publication Critical patent/CN113015169B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/009Security arrangements; Authentication; Protecting privacy or anonymity specially adapted for networks, e.g. wireless sensor networks, ad-hoc networks, RFID networks or cloud networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种充电无线传感器网络恶意程序传播建模及最优控制方法,最优控制方法包括先构建网络节点状态转换图,节点状态包括易感、感染、携带者、低能量、恢复、死亡;然后根据网络节点状态转换图列出节点状态转换方程;以易感节点的免疫率、感染和携带者节点的查杀率、低能量节点的充电概率作为控制变量,构建最优控制的成本代价目标函数;再根据成本代价目标函数和节点状态转换方程确立哈密尔顿函数;最后,以控制变量作为约束条件,利用哈密尔顿函数求解出最优控制对,使得网络中感染节点最少,抑制恶意程序传播和充电的成本最小。本发明可准确模拟现实可充电无线传感器网络中恶意程序传播的情况,可有效抑制恶意程序传播。

Description

充电无线传感器网络恶意程序传播最优控制方法、设备及 介质
技术领域
本发明涉及可充电无线传感器网络技术领域,特别涉及一种充电无线传感器网络恶意程序传播建模及最优控制方法。
背景技术
无线传感器网络(Wireless Sensor Network,WSN)是一种多跳的、自组织的分布式网络形式,同时将大量的传感器通过无线网络连接到一起进行相互通信以实现对其网络所覆盖区域信息的实时感知、检测、处理。随着无线传感器网络的发展,可充电的无线传感器网络应运而生,由于其具有移动性和可充电特性,可灵活设置,因此受到越来越多人的青睐。
恶意程序指的是对带有攻击意图所编写的一段程序,能把代码在不被察觉的情况下嵌入到传感器节点内,从而在运行时能够破坏被感染数据的安全性和完整性。现在,越来越多的恶意程序将攻击对象选择为可充电无线传感器网络,导致网络面临巨大的信息安全威胁。抑制可充电无线传感器网络中恶意程序的传播,首先从对恶意程序传播模型研究开始,而如何构建准确合适的恶意程序传播模型,从而制定对应的最优控制策略,是目前亟待解决的技术问题。
发明内容
本发明的第一目的在于克服现有技术的缺点与不足,提供一种充电无线传感器网络恶意程序传播建模方法,该方法可以准确模拟现实可充电无线传感器网络中恶意程序传播的情况。
本发明的第二目的在于提供一种充电无线传感器网络恶意程序传播最优控制方法,可以在无线传感器网络中有效抑制恶意程序传播。
本发明的第三目的在于提供一种计算机可读存储介质。
本发明的第四目的在于提供一种计算设备。
本发明的第一目的通过下述技术方案实现:
一种充电无线传感器网络恶意程序传播建模方法,步骤如下:
S1、针对可充电无线传感网络,构建对应的网络节点状态转换图,其中,节点状态包括易感、感染、携带者、低能量、恢复、死亡;
S2、根据网络节点状态转换图列出节点状态转换方程,该方程即为充电无线传感器网络恶意程序传播模型。
优选的,节点状态转换方程具体如下:
Figure GDA0003687987980000021
Figure GDA0003687987980000022
Figure GDA0003687987980000023
Figure GDA0003687987980000024
Figure GDA0003687987980000025
Figure GDA0003687987980000026
Figure GDA0003687987980000027
Figure GDA0003687987980000028
L(t)=LI(t)+LR(t)+LS(t)+LC(t)
Figure GDA0003687987980000029
式中,S(t)、I(t)、C(t)、R(t)、L(t)、D(t)分别是在t时刻下易感、感染、携带者、恢复、低能量和死亡节点占可充电无线传感网络所有节点数量N的比例,这五个比率的总和等于1:S(t)+I(t)+C(t)+R(t)+L(t)+D(t)=1;
低能量L进一步分为低能易感LS、低能感染LI、低能携带LC、低能恢复LR四种子状态,LS(t)、LI(t)、LC(t)、LR(t)分别是在t时刻下低能易感、低能感染、低能携带者、低能恢复占可充电无线传感网络所有节点数量N的比例;
αβS(t)I(t)表示在t时刻下易感节点转换为感染节点的速度,α为传播系数,β为恶意程序所攻击的易感节点的比例;α(1-β)S(t)I(t)表示在t时刻下易感节点转换为携带者节点的速度;
bI为感染节点的查杀率,bC为携带者节点的查杀率;由于网络采取了预防措施,小部分易受感染的节点可以进行速率为ν的免疫,故νS(t)表示在t时刻下的接种速度;
PLD为所有低能量节点在未得到充电的情况下因失去所有能量而转变为死亡节点的概率;PSL、PIL、PCL、PRL分别为易感、感染、携带者以及恢复节点在未及时充电的情况下因能量消耗而转变为低能量节点的转变概率;PLS、PLI、PLC、PLR分别为易感、感染、携带者以及恢复节点在低能量状态下进行充电重新变回正常能量状态的转变概率;其中,PSL=PIL=PCL=PRL=PN,PLR>PN,PLS=PLI=PLC=PLR=PNC,PN统一表示除感染节点外其他所有工作节点(即易感、携带者以及恢复节点)在未及时充电的情况下因能量消耗而转变为低能量节点的转变概率,PNC统一表示所有低能节点(即低能易感、低能感染、低能携带者以及低能恢复节点)在低能量状态下进行充电重新变回正常能量状态的转变概率。
本发明的第二目的通过下述技术方案实现:
一种充电无线传感器网络恶意程序传播最优控制方法,步骤如下:
S1、针对可充电无线传感网络,构建对应的网络节点状态转换图,其中,节点状态包括易感、感染、携带者、低能量、恢复、死亡;
S2、根据网络节点状态转换图列出节点状态转换方程;
S3、以易感节点的免疫率、感染和携带者节点的查杀率、低能量节点的充电概率作为控制变量,构建最优控制的成本代价目标函数;
S4、根据成本代价目标函数和节点状态转换方程确立哈密尔顿函数;
S5、以控制变量作为约束条件,利用哈密尔顿函数求解出最优控制对,使得网络中感染节点最少,抑制恶意程序传播和充电的成本最小。
优选的,步骤S1中,构建网络节点状态转换图的过程如下:
S11、确定可充电无线传感器网络的模型:确定节点数量,假设节点均匀分布在一定面积的二维区域内,并假设其移动方式符合随机方向移动模型;
S12、确定节点状态包括易感、感染、携带者、低能量、恢复、死亡,并得出不同状态之间的转换关系,根据转换关系列出状态转换图。
优选的,在步骤S2中,根据节点各个状态的转换关系,构建节点状态转换方程,具体如下:
Figure GDA0003687987980000041
Figure GDA0003687987980000042
Figure GDA0003687987980000043
Figure GDA0003687987980000044
Figure GDA0003687987980000045
Figure GDA0003687987980000046
Figure GDA0003687987980000047
Figure GDA0003687987980000048
L(t)=LI(t)+LR(t)+LS(t)+LC(t)
Figure GDA0003687987980000051
式中,S(t)、I(t)、C(t)、R(t)、t(t)、D(t)分别是在t时刻下易感、感染、携带者、恢复、低能量和死亡节点占可充电无线传感网络所有节点数量N的比例,这五个比率的总和等于1:S(t)+I(t)+C(t)+R(t)+L(t)+D(t)=1;
低能量L进一步分为低能易感LS、低能感染LI、低能携带LC、低能恢复LR四种子状态,LS(t)、LI(t)、LC(t)、LR(t)分别是在t时刻下低能易感、低能感染、低能携带者、低能恢复占可充电无线传感网络所有节点数量N的比例;
αβS(t)I(t)表示在t时刻下易感节点转换为感染节点的速度,α为传播系数,β为恶意程序所攻击的易感节点的比例;α(1-β)S(t)I(t)表示在t时刻下易感节点转换为携带者节点的速度;
bI为感染节点的查杀率,bC为携带者节点的查杀率;由于网络采取了预防措施,小部分易受感染的节点可以进行速率为v的免疫,故vS(t)表示在t时刻下的接种速度;
PLD为所有低能量节点在未得到充电的情况下因失去所有能量而转变为死亡节点的概率;PSL、PIL、PCL、PRL分别为易感、感染、携带者以及恢复节点在未及时充电的情况下因能量消耗而转变为低能量节点的转变概率;PLS、PLI、PLC、PLR分别为易感、感染、携带者以及恢复节点在低能量状态下进行充电重新变回正常能量状态的转变概率;其中,PSL=PIL=PCL=PRL=PN,PLR>PN,PLS=PLI=PLC=PLR=PNC,PN统一表示除感染节点外其他所有工作节点(即易感、携带者以及恢复节点)在未及时充电的情况下因能量消耗而转变为低能量节点的转变概率,PNC表示低能量节点的充电概率。
优选的,在步骤S3中,构建成本代价目标函数的过程如下:
S31、将低能量节点的充电概率PNC、感染节点的查杀率bI、携带者节点的查杀率bC、易感节点的免疫率v作为控制变量,得到控制集:
u={PNC,bI,bC,v}
S32、定义c1为无线充电器对低能量节点充电的成本参数,c2为查杀感染节点和携带者节点中恶意程序的成本参数,c3为易感节点完成免疫处理的成本参数,c1、c2、c3均为常数;
为实现优化目标,利用Pontryagin极大值原理,选择低能量节点的充电概率PNC、感染节点的查杀率bI、携带者节点的查杀率bC以及易感节点的免疫率v作为优化控制变量,优化控制变量的可行域为U={u=(PNC,bI,bC,v)|0≤PNC(t)≤1,0≤bI≤1,0≤bc≤1,0≤v≤1,t∈[0,tf]},积分项c1PNC 2(t)L2(t)、c2(bI 2(t)I2(t)+(bC 2(t)C2(t))、c3v2(t)S2(t)分别描述了低能量节点充电成本、感染节点及携带者节点查杀成本和易感节点免疫成本;
构建的成本代价目标函数如下:
Figure GDA0003687987980000061
优选的,步骤S4中,根据庞德里亚金极大值原理得到哈密尔顿函数:
H=c1PNC 2(t)L2(t)+c2(bI 2(t)I2(t)+bC 2(t)C2(t))+c3ν2(t)S2(t)+λ1(t)(PILI+PNR+PNC+PSLS-PNCL-PLRL)+λ2(t)(αβSI-PNC(t)LI-bI(t)I-PILI)+λ3(t)(α(1-β)SI-PLCLC(t)-bC(t)C-PCLC)+λ4(t)(αSI-PSLS-v(t)S)
其中,λ1(t)、λ2(t)、λ3(t)、λ4(t)为协态变量。
优选的,步骤S5中,利用哈密尔顿函数求解出最优控制对的过程如下:
在哈密尔顿函数中,协态变量λ1(t)、λ2(t)、λ3(t)、λ4(t)需满足以下条件:
Figure GDA0003687987980000062
Figure GDA0003687987980000063
Figure GDA0003687987980000071
Figure GDA0003687987980000072
Figure GDA0003687987980000073
对于以上协态变量,还需满足横截条件:
Figure GDA0003687987980000074
λ2(tf)=1
λ3(tf)=0
λ4(tf)=0
再由庞德里亚金极大值原理,得到优化条件:
Figure GDA0003687987980000075
Figure GDA0003687987980000076
Figure GDA0003687987980000077
Figure GDA0003687987980000078
由此解得:
Figure GDA0003687987980000079
Figure GDA00036879879800000710
Figure GDA00036879879800000711
Figure GDA0003687987980000081
最终求得优化控制对如下:
Figure GDA0003687987980000082
Figure GDA0003687987980000083
Figure GDA0003687987980000084
Figure GDA0003687987980000085
本发明的第三目的通过下述技术方案实现:
一种计算机可读存储介质,存储有程序,所述程序被处理器执行时,实现本发明第一目的所述的充电无线传感器网络恶意程序传播建模方法,和/或本发明第二目的所述的充电无线传感器网络恶意程序传播最优控制方法。
本发明的第四目的通过下述技术方案实现:
一种计算设备,包括处理器以及用于存储处理器可执行程序的存储器,所述处理器执行存储器存储的程序时,实现本发明第一目的所述的充电无线传感器网络恶意程序传播建模方法,和/或本发明第二目的所述的充电无线传感器网络恶意程序传播最优控制方法。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明在传统恶意程序传播模型的基础上,考虑了充放电对可充电无线传感器网络的影响,考虑了被感染节点中存在携带者的情况,构建了一种新的恶意程序传播模型,能够更贴近现实,更准确地模拟现实可充电无线传感器网络中恶意程序传播的情况。
(2)本发明提供了一种在可充电无线传感器网络中抑制恶意程序传播的控制方法,考虑到了易感、感染、携带者、低能量、恢复、死亡这多种节点状态,并以充电率、被感染节点的查杀率和网络的免疫率作为优化控制变量,构建最优控制模型,可实现将感染节点的数量以及免疫、充电、查杀的成本控制到最小的程度,同时也抑制了恶意程序在可充电无线传感器网络中的传染及变异,提高了网络的可用性和安全性。
附图说明
图1是本发明充电无线传感器网络恶意程序传播最优控制方法的流程图。
图2是可充电无线传感器网络的状态转化图。
图3是节点间的转化关系示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实施例公开了一种充电无线传感器网络恶意程序传播建模方法,步骤如下:
S1、针对可充电无线传感网络,构建对应的网络节点状态转换图,可参见图2。
传统恶意程序传播模型均采用以流行病传播模型(例如SIR模型)作为基础。因此,本实施例基于传统的流行病传播模型(例如SIR模型),另外还考虑了携带者的情况和不同的能量级别,将节点分为了以下状态:
易感(S):正常工作状态的节点,所有节点的初始状态,由于缺乏防御而极易受到恶意程序的攻击。
感染(I):被恶意程序感染且被恶意程序选择为攻击对象的节点,会对其他易感染节点进行恶意程序的传播。
携带者(C):被恶意程序感染但并未被选择为攻击对象的节点,不会对其他易感染节点进行恶意程序的传播。当恶意程序开始传播时,部分易感节点转变为感染节点或携带者节点,感染后被选择为攻击对象的节点为感染节点,未被选择为攻击对象的节点为携带者节点。
低能量(L):能量低于可工作程度的节点,节点无法进行正常的无线通讯,仅能保证可以正常进行无线充电。所有高能量节点都有可能因为工作带来的能量消耗而转变为低能量节点。
恢复(R):可以抵御来自恶意程序的进攻,无法被传播恶意程序的节点。
死亡(D):无法进行任何工作的节点,也无法通过充电得到修复。
除此之外,为了区分从低能量充电后应该恢复为何种状态,还根据被转变为低能量(L)状态之前的原状态的不同,将低能量(L)分为低能易感(LS)、低能感染(LI)、低能携带(LC)、低能恢复(LR)四种子状态,可参见图3。
S2、根据网络节点状态转换图列出节点状态转换方程,该方程即为充电无线传感器网络恶意程序传播模型,具体如下:
Figure GDA0003687987980000101
Figure GDA0003687987980000102
Figure GDA0003687987980000103
Figure GDA0003687987980000104
Figure GDA0003687987980000105
Figure GDA0003687987980000106
Figure GDA0003687987980000107
Figure GDA0003687987980000108
L(t)=LI(t)+LR(t)+LS(t)+LC(t)
Figure GDA0003687987980000111
式中,S(t)、I(t)、C(t)、R(t)、t(t)、D(t)分别是在t时刻下易感、感染、携带者、恢复、低能量和死亡节点占可充电无线传感网络所有节点数量N的比例,这五个比率的总和等于1:S(t)+I(t)+C(t)+R(t)+L(t)+D(t)=1;
LS(t)、LI(t)、LC(t)、LR(t)分别是在t时刻下低能易感、低能感染、低能携带者、低能恢复占可充电无线传感网络所有节点数量N的比例;
αβS(t)I(t)表示在t时刻下易感节点转换为感染节点的速度,α为传播系数,β为恶意程序所攻击的易感节点的比例;α(1-β)S(t)I(t)表示在t时刻下易感节点转换为携带者节点的速度;
bI为感染节点的查杀率,bC为携带者节点的查杀率;
由于网络采取了预防措施,小部分易受感染的节点可以进行速率为V的免疫,故vS(t)表示在t时刻下的接种速度;在模型中,免疫速率的概念等同于免疫率,指的是每个瞬间都有一定比例的节点转换为免疫状态;
PLD为所有低能量节点在未得到充电的情况下因失去所有能量而转变为死亡节点的概率;
PSL、PIL、PCL、PRL分别为易感、感染、携带者以及恢复节点在未及时充电的情况下因能量消耗而转变为低能量节点的转变概率;
PLS、PLI、PLC、PLR分别为易感、感染、携带者以及恢复节点在低能量状态下进行充电重新变回正常能量状态的转变概率;
其中,PSL=PIL=PCL=PRL=PN,PLR>PN,PLS=PLI=PLC=PLR=PNC,PN统一表示除感染节点外其他所有工作节点(即易感、携带者以及恢复节点)在未及时充电的情况下因能量消耗而转变为低能量节点的转变概率,PNC统一表示所有低能节点(即低能易感、低能感染、低能携带者以及低能恢复节点)在低能量状态下进行充电重新变回正常能量状态的转变概率。
实施例2
本实施例公开了一种充电无线传感器网络恶意程序传播最优控制方法,如图1所示,步骤如下:
S1、针对可充电无线传感网络,构建对应的网络节点状态转换图:
S11、确定可充电无线传感器网络的模型:确定节点数量,假设节点均匀分布在一定面积的二维区域内,并假设其移动方式符合随机方向移动模型;
S12、确定节点状态包括易感S、感染I、携带者C、低能量L、恢复R、死亡D,并得出不同状态之间的转换关系,根据转换关系列出状态转换图,可参见图2。其中,低能量L进一步分为低能易感LS、低能感染LI、低能携带LC、低能恢复LR四种子状态,可参见图3。
S2、根据节点各个状态的转换关系,构建节点状态转换方程,这里,节点状态转换方程为微分方程组,具体如下:
Figure GDA0003687987980000121
Figure GDA0003687987980000122
Figure GDA0003687987980000123
Figure GDA0003687987980000124
Figure GDA0003687987980000125
Figure GDA0003687987980000126
Figure GDA0003687987980000127
Figure GDA0003687987980000128
L(t)=LI(t)+LR(t)+LS(t)+LC(t)
Figure GDA0003687987980000129
式中,S(t)、I(t)、C(t)、R(t)、L(t)、D(t)分别是在t时刻下易感、感染、携带者、恢复、低能量和死亡节点占可充电无线传感网络所有节点数量N的比例,这五个比率的总和等于1:S(t)+I(t)+C(t)+R(t)+L(t)+D(t)=1;
LS(t)、LI(t)、LC(t)、LR(t)分别是在t时刻下低能易感、低能感染、低能携带者、低能恢复占可充电无线传感网络所有节点数量N的比例;
αβS(t)I(t)表示在t时刻下易感节点转换为感染节点的速度,α为传播系数,β为恶意程序所攻击的易感节点的比例;α(1-β)S(t)I(t)表示在t时刻下易感节点转换为携带者节点的速度;
bI为感染节点的查杀率,bC为携带者节点的查杀率;
由于网络采取了预防措施,小部分易受感染的节点可以进行速率为v的免疫,故vS(t)表示在t时刻下的接种速度;
在本模型中,不考虑由于硬件损坏或环境因素而导致的节点死亡,仅针对因能量完全损失导致的死亡进行讨论分析,PLD为所有低能量节点在未得到充电的情况下因失去所有能量而转变为死亡节点的概率;
PSL、PIL、PCL、PRL分别为易感、感染、携带者以及恢复节点在未及时充电的情况下因能量消耗而转变为低能量节点的转变概率;其中,易感、携带者及恢复节点能耗由于只进行正常的无线通讯工作,所以能耗属于正常水准且都几乎相同,而感染节点会不断进行扫描网络内其他节点并传播恶意程序,因此能耗会高于正常水准,即:PSL=PIL=PCL=PRL=PN,PLR>PN
PLS、PLI、PLC、PLR分别为易感、感染、携带者以及恢复节点在低能量状态下进行充电重新变回正常能量状态的转变概率;由于低能量节点的各种子状态得到充电的概率相同,因此PLS=PLI=PLC=PLR=PNC,PN统一表示除感染节点外其他所有工作节点(即易感、携带者以及恢复节点)在未及时充电的情况下因能量消耗而转变为低能量节点的转变概率,PNC表示低能量节点的充电概率。
S3、以易感节点的免疫率、感染和携带者节点的查杀率、低能量节点的充电概率作为控制变量,构建最优控制的成本代价目标函数:
S31、将低能量节点的充电概率PNC、感染节点的查杀率bI、携带者节点的查杀率bC、易感节点的免疫率ν作为控制变量,得到控制集:
u={PNC,bI,bC,v}
S32、定义c1为无线充电器对低能量节点充电的成本参数,c2为查杀感染节点和携带者节点中恶意程序的成本参数,c3为易感节点完成免疫处理的成本参数,c1、c2、c3均为常数;
为实现优化目标,利用Pontryagin极大值原理,选择低能量节点的充电概率PNC、感染节点的查杀率bI、携带者节点的查杀率bC以及易感节点的免疫率v作为优化控制变量,优化控制变量的可行域为U={u=(PNC,bI,bC,ν)|0≤PNC(t)≤1,0≤bI≤1,0≤bC≤1,0≤v≤1,t∈[0,tf]},积分项c1PNC 2(t)L2(t)、c2(bI 2(t)I2(t)+(bC 2(t)C2(t))、c3v2(t)S2(t)分别描述了低能量节点充电成本、感染节点及携带者节点查杀成本和易感节点免疫成本;
构建的成本代价目标函数如下:
Figure GDA0003687987980000141
其中L()表示成本函数,t0表示初始时刻。
S4、根据成本代价目标函数和节点状态转换方程,由庞德里亚金极大值原理来得到哈密尔顿函数:
H=c1PNC 2(t)L2(t)+c2(bI 2(t)I2(t)+bC 2(t)C2(t))+c3v2(t)S2(t)+λ1(t)(PILI+PNR+PNC+PSLS-PNCL-PLRL)+λ2(t)(αβSI-PNC(t)LI-bI(t)I-PILI)+λ3(t)(α(1-β)SI-PLCLC(t)-bC(t)C-PCLC)+λ4(t)(αSI-PSLS-v(t)S)
其中,λ1(t)、λ2(t)、λ3(t)、λ4(t)为协态变量。同时为方便描述,将所有节点函数简写为其代号(例:S(t)→S)。
S5、以控制变量作为约束条件,利用哈密尔顿函数求解出最优控制对,使得网络中感染节点最少,抑制恶意程序传播和充电的成本最小。
求解过程如下:
在哈密尔顿函数中,协态变量λ1(t)、λ2(t)、λ3(t)、λ4(t)需满足以下条件:
Figure GDA0003687987980000151
Figure GDA0003687987980000152
Figure GDA0003687987980000153
Figure GDA0003687987980000154
对于以上协态变量,还需满足横截条件:
Figure GDA0003687987980000155
λ2(tf)=1
λ3(tf)=0
λ4(tf)=0
再由庞德里亚金极大值原理,得到优化条件:
Figure GDA0003687987980000156
Figure GDA0003687987980000157
Figure GDA0003687987980000158
Figure GDA0003687987980000161
由此解得:
Figure GDA0003687987980000162
Figure GDA0003687987980000163
Figure GDA0003687987980000164
Figure GDA0003687987980000165
最终求得优化控制对如下:
Figure GDA0003687987980000166
Figure GDA0003687987980000167
Figure GDA0003687987980000168
Figure GDA0003687987980000169
实施例3
本实施例公开了一种计算机可读存储介质,存储有程序,所述程序被处理器执行时,可实现实施例1中的充电无线传感器网络恶意程序传播建模方法,具体如下:
S1、针对可充电无线传感网络,构建对应的网络节点状态转换图,其中,节点状态包括易感、感染、携带者、低能量、恢复、死亡;
S2、根据网络节点状态转换图列出节点状态转换方程,该方程即为充电无线传感器网络恶意程序传播模型。
另外,所述程序被处理器执行时,还可实现实施例2中的充电无线传感器网络恶意程序传播最优控制方法,具体如下:
S1、针对可充电无线传感网络,构建对应的网络节点状态转换图,其中,节点状态包括易感、感染、携带者、低能量、恢复、死亡;
S2、根据网络节点状态转换图列出节点状态转换方程;
S3、以易感节点的免疫率、感染和携带者节点的查杀率、低能量节点的充电概率作为控制变量,构建最优控制的成本代价目标函数;
S4、根据成本代价目标函数和节点状态转换方程确立哈密尔顿函数;
S5、以控制变量作为约束条件,利用哈密尔顿函数求解出最优控制对,使得网络中感染节点最少,抑制恶意程序传播和充电的成本最小。
本实施例中的计算机可读存储介质可以是磁盘、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、U盘、移动硬盘等介质。
实施例4
本实施例公开了一种计算设备,包括处理器以及用于存储处理器可执行程序的存储器,所述处理器执行存储器存储的程序时,可实现实施例1中的充电无线传感器网络恶意程序传播建模方法,具体如下:
S1、针对可充电无线传感网络,构建对应的网络节点状态转换图,其中,节点状态包括易感、感染、携带者、低能量、恢复、死亡;
S2、根据网络节点状态转换图列出节点状态转换方程,该方程即为充电无线传感器网络恶意程序传播模型。
另外,所述程序被处理器执行时,还可实现实施例2中的充电无线传感器网络恶意程序传播最优控制方法,具体如下:
S1、针对可充电无线传感网络,构建对应的网络节点状态转换图,其中,节点状态包括易感、感染、携带者、低能量、恢复、死亡;
S2、根据网络节点状态转换图列出节点状态转换方程;
S3、以易感节点的免疫率、感染和携带者节点的查杀率、低能量节点的充电概率作为控制变量,构建最优控制的成本代价目标函数;
S4、根据成本代价目标函数和节点状态转换方程确立哈密尔顿函数;
S5、以控制变量作为约束条件,利用哈密尔顿函数求解出最优控制对,使得网络中感染节点最少,抑制恶意程序传播和充电的成本最小。
本实施例中所述的计算设备可以是台式电脑、笔记本电脑、智能手机、PDA手持终端、平板电脑或其他具有处理器功能的终端设备。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种充电无线传感器网络恶意程序传播最优控制方法,其特征在于,步骤如下:
S1、针对可充电无线传感网络,构建对应的网络节点状态转换图,其中,节点状态包括易感S、感染I、携带者C、低能量L、恢复R、死亡D;
S2、根据网络节点状态转换图列出节点状态转换方程;
S3、以易感节点的免疫速率、感染和携带者节点的查杀率、低能量节点的充电概率作为控制变量,构建最优控制的成本代价目标函数;
S4、根据成本代价目标函数和节点状态转换方程确立哈密尔顿函数;
S5、以控制变量作为约束条件,利用哈密尔顿函数求解出最优控制对,使得网络中感染节点最少,抑制恶意程序传播和充电的成本最小;
其中,步骤S3包括:
S31、将低能量节点的充电概率PNC、感染节点的查杀率bI、携带者节点的查杀率bC、易感节点的免疫速率v作为控制变量,得到控制集:
u={PNC,bI,bC,v}
S32、定义c1为无线充电器对低能量节点充电的成本参数,c2为查杀感染节点和携带者节点中恶意程序的成本参数,c3为易感节点完成免疫处理的成本参数,c1、c2、c3均为常数;
为实现优化目标,利用Pontryagin极大值原理,选择低能量节点的充电概率PNC、感染节点的查杀率bI、携带者节点的查杀率bC以及易感节点的免疫速率v作为优化控制变量,优化控制变量的可行域为U={u=(PNC,bI,bC,v)|0≤PNC(t)≤1,0≤bI≤1,0≤bC≤1,0≤v≤1,t∈[0,tf]},积分项c1PNC 2(t)L2(t)、c2(bI 2(t)I2(t)+bC 2(t)C2(t))、c3v2(t)S2(t)分别描述了低能量节点充电成本、感染节点及携带者节点查杀成本和易感节点免疫成本;
构建的成本代价目标函数如下:
Figure FDA0003716999040000021
式中,S(t)、I(t)、C(t)分别是在t时刻下易感、感染、携带者占可充电无线传感网络所有节点数量N的比例。
2.根据权利要求1所述的充电无线传感器网络恶意程序传播最优控制方法,其特征在于,步骤S1中,构建网络节点状态转换图的过程如下:
S11、确定可充电无线传感器网络的模型:确定节点数量,节点均匀分布在一定面积的二维区域内,其移动方式符合随机方向移动模型;
S12、确定节点状态包括易感、感染、携带者、低能量、恢复、死亡,并得出不同状态之间的转换关系,根据转换关系列出状态转换图。
3.根据权利要求1所述的充电无线传感器网络恶意程序传播最优控制方法,其特征在于,在步骤S2中,根据节点各个状态的转换关系,构建节点状态转换方程,具体如下:
Figure FDA0003716999040000022
Figure FDA0003716999040000023
Figure FDA0003716999040000024
Figure FDA0003716999040000025
Figure FDA0003716999040000026
Figure FDA0003716999040000027
Figure FDA0003716999040000031
Figure FDA0003716999040000032
L(t)=LI(t)+LR(t)+LS(t)+LC(t)
Figure FDA0003716999040000033
式中,R(t)、L(t)、D(t)分别是在t时刻下恢复、低能量和死亡节点占可充电无线传感网络所有节点数量N的比例,这五个比率的总和等于1:S(t)+I(t)+C(t)+R(t)+L(t)+D(t)=1;
低能量L进一步分为低能易感LS、低能感染LI、低能携带LC、低能恢复LR四种子状态,LS(t)、LI(t)、LC(t)、LR(t)分别是在t时刻下低能易感、低能感染、低能携带者、低能恢复占可充电无线传感网络所有节点数量N的比例;
αβS(t)I(t)表示在t时刻下易感节点转换为感染节点的速度,α为传播系数,β为恶意程序所攻击的易感节点的比例;α(1-β)S(t)I(t)表示在t时刻下易感节点转换为携带者节点的速度;
bI为感染节点的查杀率,bC为携带者节点的查杀率;由于网络采取了预防措施,小部分易受感染的节点进行速率为v的免疫,故vS(t)表示在t时刻下的接种速度;
PLD为所有低能量节点在未得到充电的情况下因失去所有能量而转变为死亡节点的概率;PSL、PIL、PCL、PRL分别为易感、感染、携带者以及恢复节点在未及时充电的情况下因能量消耗而转变为低能量节点的转变概率;PLS、PLI、PLC、PLR分别为易感、感染、携带者以及恢复节点在低能量状态下进行充电重新变回正常能量状态的转变概率;其中,PSL=PIL=PCL=PRL=PN,PLR>PN,PLS=PLI=PLC=PLR=PNC,PN统一表示除感染节点外其他所有工作节点在未及时充电的情况下因能量消耗而转变为低能量节点的转变概率,PNC表示低能量节点的充电概率。
4.根据权利要求3所述的充电无线传感器网络恶意程序传播最优控制方法,其特征在于,步骤S4中,根据庞德里亚金极大值原理得到哈密尔顿函数:
H=c1PNC 2(t)L2(t)+c2(bI 2(t)I2(t)+bC 2(t)C2(t))+c3v2(t)S2(t)+λ1(t)(PILI+PNR+PNC+PSLS-PNCL-PLRL)+λ2(t)(αβSI-PNC(t)LI-bI(t)I-PILI)+λ3(t)(α(1-β)SI-PLCLC(t)-bC(t)C-PCLC)+λ4(t)(αSI-PSLS-v(t)S)
其中,λ1(t)、λ2(t)、λ3(t)、λ4(t)为协态变量。
5.根据权利要求4所述的充电无线传感器网络恶意程序传播最优控制方法,其特征在于,步骤S5中,利用哈密尔顿函数求解出最优控制对的过程如下:
在哈密尔顿函数中,协态变量λ1(t)、λ2(t)、λ3(t)、λ4(t)需满足以下条件:
Figure FDA0003716999040000041
Figure FDA0003716999040000042
Figure FDA0003716999040000043
Figure FDA0003716999040000044
对于以上协态变量,还需满足横截条件:
Figure FDA0003716999040000045
λ2(tf)=1
λ3(tf)=0
λ4(tf)=0
再由庞德里亚金极大值原理,得到优化条件:
Figure FDA0003716999040000051
Figure FDA0003716999040000052
Figure FDA0003716999040000053
Figure FDA0003716999040000054
由此解得:
Figure FDA0003716999040000055
Figure FDA0003716999040000056
Figure FDA0003716999040000057
Figure FDA0003716999040000058
最终求得优化控制对如下:
Figure FDA0003716999040000059
Figure FDA00037169990400000510
Figure FDA00037169990400000511
Figure FDA00037169990400000512
6.一种计算机可读存储介质,存储有程序,其特征在于,所述程序被处理器执行时,实现权利要求1至5中任一项所述的充电无线传感器网络恶意程序传播最优控制方法。
7.一种计算设备,包括处理器以及用于存储处理器可执行程序的存储器,其特征在于,所述处理器执行存储器存储的程序时,实现权利要求1至5中任一项所述的充电无线传感器网络恶意程序传播最优控制方法。
CN202110204056.9A 2021-02-24 2021-02-24 充电无线传感器网络恶意程序传播最优控制方法、设备及介质 Active CN113015169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110204056.9A CN113015169B (zh) 2021-02-24 2021-02-24 充电无线传感器网络恶意程序传播最优控制方法、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110204056.9A CN113015169B (zh) 2021-02-24 2021-02-24 充电无线传感器网络恶意程序传播最优控制方法、设备及介质

Publications (2)

Publication Number Publication Date
CN113015169A CN113015169A (zh) 2021-06-22
CN113015169B true CN113015169B (zh) 2022-08-09

Family

ID=76408684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110204056.9A Active CN113015169B (zh) 2021-02-24 2021-02-24 充电无线传感器网络恶意程序传播最优控制方法、设备及介质

Country Status (1)

Country Link
CN (1) CN113015169B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785131A (zh) * 2016-11-23 2017-05-31 南京邮电大学 一种无线传感网络节点的充电控制方法
CN109362086A (zh) * 2018-10-26 2019-02-19 合肥工业大学 基于串行干扰消除的无线传感器网络充电策略的跨层优化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105959262B (zh) * 2016-04-22 2019-02-01 电子科技大学 一种无线传感器网络中抑制恶意程序传播的控制方法
CN107528360B (zh) * 2017-07-19 2019-07-19 北京邮电大学 无线传感器网络的充电方法及装置
CN111343178B (zh) * 2020-02-25 2022-05-06 广州大学 多阶段的无线可充电传感器网络对恶意程序的攻防方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785131A (zh) * 2016-11-23 2017-05-31 南京邮电大学 一种无线传感网络节点的充电控制方法
CN109362086A (zh) * 2018-10-26 2019-02-19 合肥工业大学 基于串行干扰消除的无线传感器网络充电策略的跨层优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANovelEpidemicModelforWirelessRechargeableSensor;刘贵云;《sensors》;20201227;第1-19页 *

Also Published As

Publication number Publication date
CN113015169A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN108718310B (zh) 基于深度学习的多层次攻击特征提取及恶意行为识别方法
Livne et al. Pops: Policy pruning and shrinking for deep reinforcement learning
Wu et al. STSIR: An individual-group game-based model for disclosing virus spread in Social Internet of Things
CN114491541B (zh) 基于知识图谱路径分析的安全运营剧本自动化编排方法
CN112446634B (zh) 一种社交网络中影响力最大化节点的探测方法及系统
Piplai et al. Using knowledge graphs and reinforcement learning for malware analysis
CN110855478A (zh) 一种面向不可靠信息的单传感器拓扑感知方法及装置
CN113312621B (zh) 基于增强深度学习的拟态的安卓恶意软件动态检测方法
CN116582349A (zh) 基于网络攻击图的攻击路径预测模型生成方法及装置
Wang et al. Intelligent Security Detection and Defense in Operating Systems Based on Deep Learning
CN113467481B (zh) 一种基于改进Sarsa算法的路径规划方法
CN113015169B (zh) 充电无线传感器网络恶意程序传播最优控制方法、设备及介质
Zhan et al. AMGmal: Adaptive mask-guided adversarial attack against malware detection with minimal perturbation
Akhther et al. Least Square Support Vector Machine based Intrusion Detection System in IoT
CN116186581A (zh) 一种基于图脉冲神经网络的楼层识别方法及系统
CN112969180B (zh) 模糊环境下无线传感器网络攻击防御方法及系统
Dabney et al. Utile Distinctions for Relational Reinforcement Learning.
Wang et al. Optimal network defense strategy selection based on Bayesian game
CN103440263B (zh) 一种对匿名图数据进行演化分析的方法
CN110232641B (zh) 基于电力信息系统网络调控机制的隐私保护方法
Mesadieu et al. Leveraging Deep Reinforcement Learning Technique for Intrusion Detection in SCADA Infrastructure
CN114124564B (zh) 一种仿冒网站检测方法、装置、电子设备及存储介质
Wang et al. Simulation of Cloud Computing Network Security Intrusion Detection Model Based on Neural Network Algorithm Driven by Big Data
ÇAM et al. Privacy Threats Unveiled: A Comprehensive Analysis of Membership Inference Attacks on Machine Learning Models and Defense Strategies
CN116739073B (zh) 一种基于进化偏差的在线后门样本检测方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant