CN113011322A - 监控视频特定异常行为的检测模型训练方法及检测方法 - Google Patents
监控视频特定异常行为的检测模型训练方法及检测方法 Download PDFInfo
- Publication number
- CN113011322A CN113011322A CN202110286753.3A CN202110286753A CN113011322A CN 113011322 A CN113011322 A CN 113011322A CN 202110286753 A CN202110286753 A CN 202110286753A CN 113011322 A CN113011322 A CN 113011322A
- Authority
- CN
- China
- Prior art keywords
- video
- layer
- graph
- abnormal
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000001514 detection method Methods 0.000 title claims abstract description 60
- 238000012549 training Methods 0.000 title claims abstract description 57
- 238000012544 monitoring process Methods 0.000 title claims abstract description 33
- 206010000117 Abnormal behaviour Diseases 0.000 title claims abstract description 30
- 230000002159 abnormal effect Effects 0.000 claims abstract description 48
- 238000013528 artificial neural network Methods 0.000 claims abstract description 29
- 238000000605 extraction Methods 0.000 claims abstract description 27
- 238000012163 sequencing technique Methods 0.000 claims abstract description 11
- 238000011176 pooling Methods 0.000 claims description 15
- 238000013527 convolutional neural network Methods 0.000 claims description 14
- 101000926525 Homo sapiens eIF-2-alpha kinase GCN2 Proteins 0.000 claims description 6
- 101000862627 Homo sapiens eIF-2-alpha kinase activator GCN1 Proteins 0.000 claims description 6
- 102100034175 eIF-2-alpha kinase GCN2 Human genes 0.000 claims description 6
- 102100030495 eIF-2-alpha kinase activator GCN1 Human genes 0.000 claims description 6
- 230000005856 abnormality Effects 0.000 claims description 4
- 230000014759 maintenance of location Effects 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 7
- 230000006870 function Effects 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 9
- 230000006399 behavior Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 101100064557 Caenorhabditis elegans gcn-2 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000547 structure data Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2155—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/46—Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/49—Segmenting video sequences, i.e. computational techniques such as parsing or cutting the sequence, low-level clustering or determining units such as shots or scenes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Multimedia (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110286753.3A CN113011322B (zh) | 2021-03-17 | 2021-03-17 | 监控视频特定异常行为的检测模型训练方法及检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110286753.3A CN113011322B (zh) | 2021-03-17 | 2021-03-17 | 监控视频特定异常行为的检测模型训练方法及检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113011322A true CN113011322A (zh) | 2021-06-22 |
CN113011322B CN113011322B (zh) | 2023-09-05 |
Family
ID=76409302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110286753.3A Active CN113011322B (zh) | 2021-03-17 | 2021-03-17 | 监控视频特定异常行为的检测模型训练方法及检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113011322B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114201475A (zh) * | 2022-02-16 | 2022-03-18 | 北京市农林科学院信息技术研究中心 | 危险行为监管方法、装置、电子设备及存储介质 |
CN114722937A (zh) * | 2022-04-06 | 2022-07-08 | 腾讯科技(深圳)有限公司 | 一种异常数据检测方法、装置、电子设备和存储介质 |
CN114841312A (zh) * | 2022-03-30 | 2022-08-02 | 西北工业大学 | 一种基于自适应图卷积网络的弱监督视频异常检测方法 |
KR20230060751A (ko) * | 2021-10-28 | 2023-05-08 | 전남대학교산학협력단 | 행동 인식을 위한 영상 내 2차원 방향성 정보 및 기울기 정보 기반의 학습 모델 생성 방법 및 생성된 학습 모델을 이용한 행동 인식 방법. |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106980826A (zh) * | 2017-03-16 | 2017-07-25 | 天津大学 | 一种基于神经网络的动作识别方法 |
CN110084151A (zh) * | 2019-04-10 | 2019-08-02 | 东南大学 | 基于非局部网络深度学习的视频异常行为判别方法 |
US20200057935A1 (en) * | 2017-03-23 | 2020-02-20 | Peking University Shenzhen Graduate School | Video action detection method based on convolutional neural network |
CN110909673A (zh) * | 2019-11-21 | 2020-03-24 | 河北工业大学 | 一种基于自然语言描述的行人再识别方法 |
CN111160117A (zh) * | 2019-12-11 | 2020-05-15 | 青岛联合创智科技有限公司 | 一种基于多示例学习建模的异常行为检测方法 |
CN111488815A (zh) * | 2020-04-07 | 2020-08-04 | 中山大学 | 基于图卷积网络和长短时记忆网络的篮球比赛进球事件预测方法 |
CN111582095A (zh) * | 2020-04-27 | 2020-08-25 | 西安交通大学 | 一种轻量级行人异常行为快速检测方法 |
CN112364939A (zh) * | 2020-12-04 | 2021-02-12 | 中信银行股份有限公司 | 异常值检测方法、装置、设备及存储介质 |
-
2021
- 2021-03-17 CN CN202110286753.3A patent/CN113011322B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106980826A (zh) * | 2017-03-16 | 2017-07-25 | 天津大学 | 一种基于神经网络的动作识别方法 |
US20200057935A1 (en) * | 2017-03-23 | 2020-02-20 | Peking University Shenzhen Graduate School | Video action detection method based on convolutional neural network |
CN110084151A (zh) * | 2019-04-10 | 2019-08-02 | 东南大学 | 基于非局部网络深度学习的视频异常行为判别方法 |
CN110909673A (zh) * | 2019-11-21 | 2020-03-24 | 河北工业大学 | 一种基于自然语言描述的行人再识别方法 |
CN111160117A (zh) * | 2019-12-11 | 2020-05-15 | 青岛联合创智科技有限公司 | 一种基于多示例学习建模的异常行为检测方法 |
CN111488815A (zh) * | 2020-04-07 | 2020-08-04 | 中山大学 | 基于图卷积网络和长短时记忆网络的篮球比赛进球事件预测方法 |
CN111582095A (zh) * | 2020-04-27 | 2020-08-25 | 西安交通大学 | 一种轻量级行人异常行为快速检测方法 |
CN112364939A (zh) * | 2020-12-04 | 2021-02-12 | 中信银行股份有限公司 | 异常值检测方法、装置、设备及存储介质 |
Non-Patent Citations (3)
Title |
---|
JIA-XING ZHONG ET AL.: "Graph Convolutional Label Noise Cleaner: Train a Plug-and-play Action Classifier for Anomaly Detection", 《CVPR 2019》, pages 1237 - 1246 * |
吉训生,滕彬: "基于深度神经网络的扶梯异常行为检测", 《激光与光电子学进展》, vol. 57, no. 6, pages 1 - 3 * |
周航 等: "基于时空融合图网络学习的视频异常事件检测", 《计算机研究与应用》, vol. 58, no. 1, pages 1 - 2 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230060751A (ko) * | 2021-10-28 | 2023-05-08 | 전남대학교산학협력단 | 행동 인식을 위한 영상 내 2차원 방향성 정보 및 기울기 정보 기반의 학습 모델 생성 방법 및 생성된 학습 모델을 이용한 행동 인식 방법. |
KR102555031B1 (ko) * | 2021-10-28 | 2023-07-12 | 전남대학교산학협력단 | 행동 인식을 위한 영상 내 2차원 방향성 정보 및 기울기 정보 기반의 학습 모델 생성 방법 및 생성된 학습 모델을 이용한 행동 인식 방법. |
CN114201475A (zh) * | 2022-02-16 | 2022-03-18 | 北京市农林科学院信息技术研究中心 | 危险行为监管方法、装置、电子设备及存储介质 |
CN114841312A (zh) * | 2022-03-30 | 2022-08-02 | 西北工业大学 | 一种基于自适应图卷积网络的弱监督视频异常检测方法 |
CN114841312B (zh) * | 2022-03-30 | 2024-02-27 | 西北工业大学 | 一种基于自适应图卷积网络的弱监督视频异常检测方法 |
CN114722937A (zh) * | 2022-04-06 | 2022-07-08 | 腾讯科技(深圳)有限公司 | 一种异常数据检测方法、装置、电子设备和存储介质 |
CN114722937B (zh) * | 2022-04-06 | 2024-07-16 | 腾讯科技(深圳)有限公司 | 一种异常数据检测方法、装置、电子设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113011322B (zh) | 2023-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113011322B (zh) | 监控视频特定异常行为的检测模型训练方法及检测方法 | |
CN110084151B (zh) | 基于非局部网络深度学习的视频异常行为判别方法 | |
CN104915655A (zh) | 一种多路监控视频的管理方法与设备 | |
CN111368672A (zh) | 一种用于遗传病面部识别模型的构建方法及装置 | |
JP7136500B2 (ja) | ノイズチャネルに基づくランダム遮蔽回復の歩行者再識別方法 | |
CN111738054B (zh) | 一种基于时空自编码器网络和时空cnn的行为异常检测方法 | |
CN111738218B (zh) | 人体异常行为识别系统及方法 | |
CN110826702A (zh) | 一种多任务深度网络的异常事件检测方法 | |
CN111738044A (zh) | 一种基于深度学习行为识别的校园暴力评估方法 | |
CN117061322A (zh) | 物联网流量池管理方法及系统 | |
CN115761599A (zh) | 一种视频异常检测方法及系统 | |
CN110795599B (zh) | 基于多尺度图的视频突发事件监测方法及系统 | |
CN115761881A (zh) | 一种基于改进yolov5-SFF的检测方法及系统 | |
Ragab et al. | Arithmetic optimization with deep learning enabled anomaly detection in smart city | |
CN113486754A (zh) | 基于视频的事件演化预测方法、系统 | |
Anees et al. | Deep learning framework for density estimation of crowd videos | |
Sridhar et al. | Anomaly Detection using CNN with SVM | |
CN113312968B (zh) | 一种监控视频中的真实异常检测方法 | |
Wang et al. | Self-trained video anomaly detection based on teacher-student model | |
CN114581769A (zh) | 一种基于无监督聚类的在建房屋识别方法 | |
CN109670470B (zh) | 行人关系识别方法、装置、系统及电子设备 | |
Lian et al. | An improved fire and smoke detection method based on YOLOv7 | |
CN113657169A (zh) | 一种步态识别方法、装置、系统和计算机可读存储介质 | |
Anandhi | Edge Computing-Based Crime Scene Object Detection from Surveillance Video Using Deep Learning Algorithms | |
Lin et al. | Dual-mode iterative denoiser: tackling the weak label for anomaly detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 550081 12th floor, building 5, Science City, No. 3491, Baijin Avenue, shawen Science Park, Guiyang National High tech Industrial Development Zone, Guiyang City, Guizhou Province Applicant after: GUIZHOU SECURITY ENGINEERING TECHNOLOGY RESEARCH CENTER Co.,Ltd. Applicant after: Nanjing Tech University Address before: 211816 Puzhu South Road, Pukou District, Nanjing, Jiangsu Province, No. 30 Applicant before: Nanjing Tech University Applicant before: GUIZHOU SECURITY ENGINEERING TECHNOLOGY RESEARCH CENTER Co.,Ltd. |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |