CN113009620A - 一种基于石墨烯的混杂等离子波导 - Google Patents

一种基于石墨烯的混杂等离子波导 Download PDF

Info

Publication number
CN113009620A
CN113009620A CN201911309163.7A CN201911309163A CN113009620A CN 113009620 A CN113009620 A CN 113009620A CN 201911309163 A CN201911309163 A CN 201911309163A CN 113009620 A CN113009620 A CN 113009620A
Authority
CN
China
Prior art keywords
index dielectric
graphene
low
waveguide structure
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911309163.7A
Other languages
English (en)
Inventor
贺雪晴
周夏飞
宁提纲
裴丽
郑晶晶
李晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201911309163.7A priority Critical patent/CN113009620A/zh
Publication of CN113009620A publication Critical patent/CN113009620A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12078Gallium arsenide or alloys (GaAs, GaAlAs, GaAsP, GaInAs)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明实施例提供一种基于石墨烯的混杂波导结构,包括:上半波导结构和下半波导结构;所述下半波导结构包括位于下层的低折射率电介质110和平铺在所述下层低折射率电介质的石墨烯120;所述上半波导结构包括位于石墨烯之上的低折射率电介质110和位于所述低折射率电介质110之上的高折射率电介质130;所述低折射率电介质110的宽度和高折射率电介质130的宽度均小于30μm;所述低折射率电介质110和高折射率电介质130的交界面处设置有向下凹陷的凹槽,凹槽内为高折射率电介质130;所述低折射率电介质110为高密度聚乙烯(HDPE),所述高折射率材料130为砷化镓(GaAs)。

Description

一种基于石墨烯的混杂等离子波导
技术领域
本发明涉及波导结构,具体而言,涉及一种基于石墨烯的混杂波导结构。
背景技术
传统的混杂波导主要是基于金属产生等离子模式,但是基于金属产生的等离子体模式不可调。且基于金属的混杂波导的研究主要集中在通信波段,其在太赫兹波段的模式限制较差。
传统的电介质加载的石墨烯等离子波导【W.Xu,Z.H.Zhu,et al.,Dielectricloaded graphene plasmon waveguide[J],Optics Express 23(4),5147-5153(2015);W.Xu,Z.H.Zhu,et al.,Toward integrated electrically controllable directionalcoupling based on dielectric loaded graphene plasmonic waveguide[J],OpticsLetters 40(7),1603-1606(2015)】,石墨烯多层结构波导【M.Hajati,Y.Hajati,Dynamictuning of mid-infrared plasmons in graphene-buffer-SiO2-Si nanostructuresnanostructures[J],Journal of the Optical Society of America B 33(6),1303-1310(2016)】,石墨烯脊型等离子波导【X.Zhou,et al.,A Graphene-Based Hybrid PlasmonicWaveguide With Ultra-Deep Subwavelength Confinement[J],J.Lightwave Technol.32(21),3597-3601(2014)】,虽然利用了石墨烯的可调特性,能够实现模式的动态可调,但是其模式限制能力依然较差。
发明内容
为解决上述问题,本发明实施例提供一种基于石墨烯的混杂波导结构。
本发明实施例提供一种基于石墨烯的混杂波导结构,其特征在于,包括:上半波导结构和下半波导结构;所述下半波导结构包括位于下层的低折射率电介质110和平铺在所述下层低折射率电介质的石墨烯120;所述石墨烯120的层数少于6层;所述上半波导结构包括位于石墨烯之上的低折射率电介质110和位于所述低折射率电介质110之上的高折射率电介质130;所述低折射率电介质110的宽度和高折射率电介质130的宽度均小于30μm;所述低折射率电介质110和高折射率电介质130的交界面处设置有向下凹陷的凹槽,凹槽内为高折射率电介质130;所述高折射率电介质130的高度小于35μm所述低折射率电介质110为高密度聚乙烯(HDPE),所述高折射率材料130为砷化镓(GaAs)。
与现有技术相比,本发明实施例提供的基于石墨烯的混杂波导结构,能够在太赫兹波段进行模式限制,且模式可调。
本发明的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定。
图1为根据本申请的一些实施例所示的基于石墨烯的混杂波导结构示意图。
具体实施方式
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和展示的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本发明的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
实施例一,见图1,为一种基于石墨烯的混杂波导结构示意图。如图1所示,包括:上半波导结构和下半波导结构;所述下半波导结构包括位于下层的低折射率电介质110和平铺在所述下层低折射率电介质的石墨烯120;所述上半波导结构包括位于石墨烯之上的低折射率电介质110和位于所述低折射率电介质110之上的高折射率电介质130;所述低折射率电介质110的宽度和高折射率电介质130的宽度均小于30μm;所述低折射率电介质110和高折射率电介质130的交界面处设置有向下凹陷的凹槽,凹槽内为高折射率电介质130;所述低折射率电介质110为高密度聚乙烯(HDPE),所述高折射率材料130为砷化镓(GaAs)。
实施例二,见图1,为一种基于石墨烯的混杂波导结构示意图。如图1所示,包括:上半波导结构和下半波导结构;所述下半波导结构包括位于下层的低折射率电介质110和平铺在所述下层低折射率电介质的石墨烯120;所述上半波导结构包括位于石墨烯之上的低折射率电介质110和位于所述低折射率电介质110之上的高折射率电介质130;所述低折射率电介质110的宽度和高折射率电介质130的宽度28μm;所述低折射率电介质110和高折射率电介质130的交界面处设置有向下凹陷的凹槽,凹槽内为高折射率电介质130;所述高折射率电介质130的高度小于35μm;所述低折射率电介质110为高密度聚乙烯(HDPE),所述高折射率材料130为砷化镓(GaAs)。
实施例三,见图1,为一种基于石墨烯的混杂波导结构示意图。如图1所示,包括:上半波导结构和下半波导结构;所述下半波导结构包括位于下层的低折射率电介质110和平铺在所述下层低折射率电介质的石墨烯120;所述石墨烯120的层数为5层;所述上半波导结构包括位于石墨烯之上的低折射率电介质110和位于所述低折射率电介质110之上的高折射率电介质130;所述低折射率电介质110的宽度和高折射率电介质130的宽度15μm;所述低折射率电介质110和高折射率电介质130的交界面处设置有向下凹陷的凹槽,凹槽内为高折射率电介质130;所述高折射率电介质130的高度30μm;所述低折射率电介质110为高密度聚乙烯(HDPE),所述高折射率材料130为砷化镓(GaAs)。
相比于现有技术,本方案具体如下有益效果:
一、能够在太赫兹波段进行模式限制;
二、利用石墨烯产生石墨烯等离激元,使得混杂模式可调。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种基于石墨烯的混杂波导结构,其特征在于,包括:
上半波导结构和下半波导结构;
所述下半波导结构包括位于下层的低折射率电介质110和平铺在所述下层低折射率电介质的石墨烯120;
所述上半波导结构包括位于石墨烯之上的低折射率电介质110和位于所述低折射率电介质110之上的高折射率电介质130;
所述低折射率电介质110的宽度和高折射率电介质130的宽度均小于30μm;
所述低折射率电介质110和高折射率电介质130的交界面处设置有向下凹陷的凹槽,凹槽内为高折射率电介质130;
所述低折射率电介质110为高密度聚乙烯(HDPE),所述高折射率材料130为砷化镓(GaAs)。
CN201911309163.7A 2019-12-18 2019-12-18 一种基于石墨烯的混杂等离子波导 Pending CN113009620A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911309163.7A CN113009620A (zh) 2019-12-18 2019-12-18 一种基于石墨烯的混杂等离子波导

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911309163.7A CN113009620A (zh) 2019-12-18 2019-12-18 一种基于石墨烯的混杂等离子波导

Publications (1)

Publication Number Publication Date
CN113009620A true CN113009620A (zh) 2021-06-22

Family

ID=76381077

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911309163.7A Pending CN113009620A (zh) 2019-12-18 2019-12-18 一种基于石墨烯的混杂等离子波导

Country Status (1)

Country Link
CN (1) CN113009620A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565934A (zh) * 2012-01-16 2012-07-11 北京航空航天大学 一种槽型混合表面等离子激元光波导
CN102662210A (zh) * 2012-03-09 2012-09-12 中国科学院苏州纳米技术与纳米仿生研究所 一种等离子激元增益波导
US20120281957A1 (en) * 2011-05-08 2012-11-08 Georgia Tech Research Corporation Plasmonic and photonic resonator structures and methods for large electromagnetic field enhancements
CN102790355A (zh) * 2011-05-17 2012-11-21 佳能株式会社 波导、包括该波导的装置及制造该波导的方法
CN104283093A (zh) * 2013-07-01 2015-01-14 Imec公司 混合波导激光器和用于制造混合波导激光器的方法
CN105022178A (zh) * 2015-08-18 2015-11-04 电子科技大学 基于平面波导的石墨烯相位型光调制器
CN107908020A (zh) * 2017-12-27 2018-04-13 厦门大学 基于石墨烯的中红外等离激元波导调制器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120281957A1 (en) * 2011-05-08 2012-11-08 Georgia Tech Research Corporation Plasmonic and photonic resonator structures and methods for large electromagnetic field enhancements
CN102790355A (zh) * 2011-05-17 2012-11-21 佳能株式会社 波导、包括该波导的装置及制造该波导的方法
CN102565934A (zh) * 2012-01-16 2012-07-11 北京航空航天大学 一种槽型混合表面等离子激元光波导
CN102662210A (zh) * 2012-03-09 2012-09-12 中国科学院苏州纳米技术与纳米仿生研究所 一种等离子激元增益波导
CN104283093A (zh) * 2013-07-01 2015-01-14 Imec公司 混合波导激光器和用于制造混合波导激光器的方法
CN105022178A (zh) * 2015-08-18 2015-11-04 电子科技大学 基于平面波导的石墨烯相位型光调制器
CN107908020A (zh) * 2017-12-27 2018-04-13 厦门大学 基于石墨烯的中红外等离激元波导调制器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUETONG ZHOU, TIAN ZHANG, LIN CHEN,WEI HONG, AND XUN LI: "A Graphene-Based Hybrid Plasmonic WaveguideWith Ultra-Deep Subwavelength Confinement", 《JOURNAL OF LIGHTWAVE TECHNOLOGY》 *

Similar Documents

Publication Publication Date Title
Wang et al. Nanophotonic lithium niobate electro-optic modulators
Amin et al. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance
Krasavin et al. Silicon-based plasmonic waveguides
US11042073B2 (en) Tunable graphene metamaterials for beam steering and tunable flat lenses
Volpe et al. Fractal plasmonics: subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet
Ooi et al. Ultrafast, broadband, and configurable midinfrared all-optical switching in nonlinear graphene plasmonic waveguides
Ye et al. Switchable broadband terahertz spatial modulators based on patterned graphene and vanadium dioxide
Sun et al. An all-optical modulator based on a graphene–plasmonic slot waveguide at 1550 nm
Hou et al. Wideband slow light in chirped slot photonic-crystal coupled waveguides
Gai et al. Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (> 750,000)
Safian et al. Foundry-compatible thin film lithium niobate modulator with RF electrodes buried inside the silicon oxide layer of the SOI wafer
Yang et al. Surface plasmon polariton waveguides with subwavelength confinement
Zhao et al. Ultra-short and broadband polarization splitter based on PCF and metal surface plasmons resonance
CN102570303B (zh) 一种亚波长表面等离子体激光器
Ma et al. Study on the properties of unidirectional absorption and polarization splitting in one-dimensional plasma photonic crystals with ultra-wideband
Zhang et al. Dynamically selective control of dual-mode electromagnetically induced transparency in terahertz metal-graphene metamaterial
CN113009620A (zh) 一种基于石墨烯的混杂等离子波导
Tsilipakos et al. Optical bistability with hybrid silicon-plasmonic disk resonators
Islam et al. Lattice Mie resonances and emissivity enhancement in mid-infrared iron pyrite metasurfaces
Yu et al. Theoretical investigation of a controlled unidirectional reflectionlessness by applying external voltage in an electro-optical plasmonic waveguide system
Liu et al. Highly-dispersive unidirectional reflectionless phenomenon based on high-order plasmon resonance in metamaterials
Peng et al. Graphene-supported tunable bidirectional terahertz metamaterials absorbers
CN205752974U (zh) 基于非线性光学材料二硫化钼调q脉冲激光器
Mirzaiee et al. All-optical memory based on slow light and Kerr effect in photonic crystal platform with independent write/read/hold control
Gladstone et al. Topological edge states of a long-range surface plasmon polariton at the telecommunication wavelength

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210622

RJ01 Rejection of invention patent application after publication