CN112997421B - 用户终端以及无线通信方法 - Google Patents

用户终端以及无线通信方法 Download PDF

Info

Publication number
CN112997421B
CN112997421B CN201880099194.1A CN201880099194A CN112997421B CN 112997421 B CN112997421 B CN 112997421B CN 201880099194 A CN201880099194 A CN 201880099194A CN 112997421 B CN112997421 B CN 112997421B
Authority
CN
China
Prior art keywords
reception
reference signal
qcl
transmission
qrs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880099194.1A
Other languages
English (en)
Other versions
CN112997421A (zh
Inventor
松村祐辉
永田聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to CN202311038733.XA priority Critical patent/CN117202270A/zh
Publication of CN112997421A publication Critical patent/CN112997421A/zh
Application granted granted Critical
Publication of CN112997421B publication Critical patent/CN112997421B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Abstract

为了高速地切换信道的TCI状态、QCL设想或者波束,本公开的一个方式所涉及的用户终端具有:接收单元,遍及特定的时域,利用不同的接收空域滤波器,反复接收与发送设定指示(TCI:Transmission Configuration Indicator)状态进行了关联的特定的参考信号;以及控制单元,应用基于所述特定的参考信号的反复接收而决定的特定的接收空域滤波器,来控制下行物理信道的接收。

Description

用户终端以及无线通信方法
技术领域
本公开涉及下一代移动通信系统中的用户终端以及无线通信方法。
背景技术
在UMTS(通用移动通讯系统(Universal Mobile Telecommunications System))网络中,以进一步的高速数据速率、低延迟等为目的,LTE(长期演进(Long TermEvolution))被规范化(非专利文献1)。此外,以LTE(3GPP(第三代合作伙伴计划(ThirdGeneration Partnership Project))Rel.(版本(Release))8、9)的进一步大容量、高度化等为目的,LTE-Advanced(3GPP Rel.10-14)被规范化。
还正在研究LTE的后续系统(例如,也称为5G(第五代移动通信系统(5thgeneration mobile communication system))、5G+(plus)、NR(新无线(New Radio))、3GPPRel.15以后等)。
现有技术文献
非专利文献
非专利文献1:3GPP TS 36.300V8.12.0“Evolved Universal Terrestrial RadioAccess(E-UTRA)and Evolved Universal Terrestrial Radio Access Network(E-UTRAN);Overall description;Stage 2(Release 8)”,2010年4月
发明内容
发明要解决的课题
在将来的无线通信系统(以下,也简称为NR)中,正在研究,基于发送设定指示(发送设定指示符(TCI:Transmission Configuration Indicator))状态,判断信道或者信号的准共址(QCL:Quasi-Co-Location)关系,来控制发送接收处理。
然而,关于Rel-15 NR,到目前为止研究了的TCI状态的控制方法在TCI状态的变更上需要比较长的时间,或者需要通信开销。因此,在需要频繁地变更TCI状态的情形等中,存在通信吞吐量下降的担忧。
因此,本公开的目的之一在于,提供能够高速地切换信道的TCI状态、QCL设想或者波束的用户终端以及无线通信方法。
用于解决课题的手段
本公开的一个方式所涉及的用户终端的特征在于,具有:接收单元,遍及特定的时域,利用不同的接收空域滤波器,反复接收将与发送设定指示(发送设定指示符(TCI:Transmission Configuration Indicator))状态进行了关联的特定的参考信号;以及控制单元,应用基于所述特定的参考信号的反复接收而决定的特定的接收空域滤波器,来控制下行物理信道的接收。
发明的效果
根据本公开的一个方式,能够高速地切换信道的TCI状态、QCL设想或者波束。
附图说明
图1是表示Rel-15 NR中的PDCCH用波束管理的一例的图。
图2是表示作为TCI状态而被设定的参考信号的一例的图。
图3是表示作为TCI状态而被设定的参考信号的另一例的图。
图4是表示作为TCI状态而被设定的参考信号的另一例的图。
图5是表示作为TCI状态而被设定的参考信号的另一例的图。
图6是表示TCI状态(QCL设想)的变更操作的一例的图。
图7是表示作为TCI状态而被设定的参考信号的另一例的图。
图8是表示TCI状态(QCL设想)的变更操作的另一例的图。
图9是表示TCI状态(QCL设想)的变更操作的另一例的图。
图10是表示TCI状态(QCL设想)的变更操作的另一例的图。
图11是表示TCI状态(QCL设想)的变更操作的另一例的图。
图12是表示TCI状态(QCL设想)的变更操作的另一例的图。
图13是表示一实施方式所涉及的无线通信系统的概略结构的一例的图。
图14是表示一实施方式所涉及的基站的结构的一例的图。
图15是表示一实施方式所涉及的用户终端的结构的一例的图。
图16是表示一实施方式所涉及的基站以及用户终端的硬件结构的一例的图。
具体实施方式
(CORESET)
在NR中,为了将物理层控制信号(例如,下行控制信息(下行链路控制信息(DCI:Downlink Control Information)))从基站发送给用户终端(用户设备(UE:UserEquipment)),利用控制资源集(CORESET:COntrol REsource SET)。
CORESET是控制信道(例如,PDCCH(物理下行链路控制信道(Physical DownlinkControl Channel)))的分配候选区域。CORESET也可以包含特定的频域资源和时域资源(例如1个或者2个OFDM码元等)而构成。
UE也可以从基站接收CORESET的设定信息(也可以称为CORESET设定(CORESETconfiguration)、coreset-Config)。UE如果监视对本终端设定的CORESET,则能够检测物理层控制信号。
CORESET设定例如可以通过高层信令而被通知,也可以由特定的RRC信息元素(也可以称为“ControlResourceSet”)来表示。
这里,高层信令例如也可以是RRC(无线资源控制(Radio Resource Control))信令、MAC(媒体访问控制(Medium Access Control))信令、广播信息等的其中一个或者这些的组合。
MAC信令例如也可以使用MAC控制元素(MAC CE(Control Element))、MAC PDU(协议数据单元(Protocol Data Unit))等。广播信息例如也可以是主信息块(MIB:MasterInformation Block)、系统信息块(SIB:System Information Block)、最低限度的系统信息(剩余的最低系统信息(RMSI:Remaining Minimum System Information))等。
也可以针对在服务小区中被设定给UE的每个带宽部分(BWP:Bandwidth Part),设定特定数量(例如,3个以下)的CORESET。
PDCCH候选(PDCCH candidates)的搜索区域以及搜索方法被定义为搜索空间(SS:Search Space)。UE也可以从基站接收搜索空间的设定信息(也可以被称为搜索空间设定(search space configuration))。搜索空间设定例如也可以通过高层信令(RRC信令等)而被通知。
UE基于搜索空间设定,对CORESET进行监视。UE能够基于在上述搜索空间设定中包含的CORESET-ID,判断CORESET与搜索空间的对应关系。1个CORESET也可以与1个或者多个搜索空间进行关联。
(QCL/TCI)
在NR中,正在研究,基于发送设定指示状态(TCI状态(TransmissionConfiguration Indication state)),控制信号以及信道的至少一者(表述为信号/信道)的接收处理(例如,接收、解映射、解调、解码的至少一个)。
这里,所谓TCI状态,是指与信道或者信号的准共址(QCL:Quasi-Co-Location)相关的信息,也可以称为空间接收参数、空间关系信息(spatial relation info)等。TCI状态也可以按每个信道或者按每个信号而被设定给UE。UE也可以基于信道的TCI状态,决定该信道的发送波束(Tx波束)以及接收波束(Rx波束)的至少一个。
所谓QCL,是指表示信号/信道的统计上的性质的指示符。例如,在某个信号/信道与其他信号/信道是QCL的关系的情况下,也可以意味着能够假定为,在这些不同的多个信号/信道间,多普勒偏移(doppler shift)、多普勒扩展(doppler spread)、平均延迟(average delay)、延迟扩展(delay spread)、空间参数(Spatial parameter)(例如,空间接收参数(Spatial Rx Parameter))的至少一个是相同的(关于这些的至少一个,成为QCL)。
另外,空间接收参数也可以对应于UE的接收波束(例如,接收模拟波束),也可以基于空间的QCL来确定波束。本公开中的QCL(或者QCL的至少一个元素)也可以解读为sQCL(空间QCL(spatial QCL))。
关于QCL,也可以规定多个类型(QCL类型(QCL type))。例如,也可以设置如下的4个QCL类型A-D,在该4个QCL类型A-D中,能够假定为相同的参数(或者参数集合(parameterset))是不同的,以下,关于该参数,示出:
·QCL类型A:多普勒偏移、多普勒扩展、平均延迟以及延迟扩展,
·QCL类型B:多普勒偏移以及多普勒扩展,
·QCL类型C:多普勒偏移以及平均延迟,
·QCL类型D:空间接收参数。
TCI状态例如也可以是成为对象的信道(或者该信道用的参考信号(RS:ReferenceSignal))与其他信号(例如,其他的下行参考信号(下行链路参考信号(DL-RS:DownlinkReference Signal)))的QCL所相关的信息。TCI状态也可以通过高层信令、物理层信令或者这些的组合而被设定(指示)。
在本公开中,高层信令例如也可以是RRC(无线资源控制(Radio ResourceControl))信令、MAC(媒体访问控制(Medium Access Control))信令、广播信息等的其中一个或者这些的组合。
MAC信令例如也可以使用MAC控制元素(MAC CE(Control Element))、MAC PDU(协议数据单元(Protocol Data Unit))等。广播信息例如也可以是主信息块(MIB:MasterInformation Block)、系统信息块(SIB:System Information Block)、最低限度的系统信息(剩余的最低系统信息(RMSI:Remaining Minimum System Information))、其他系统信息(OSI:Other System Information)等。
物理层信令例如也可以是下行控制信息(下行链路控制信息(DCI:DownlinkControl Information))。
被设定(指定)了TCI状态的信道例如也可以是下行共享信道(物理下行链路共享信道(PDSCH:Physical Downlink Shared Channel))、下行控制信道(物理下行链路控制信道(PDCCH:Physical Downlink Control Channel))、上行共享信道(物理上行链路共享信道(PUSCH:Physical Uplink Shared Channel))、上行控制信道(物理上行链路控制信道(PUCCH:Physical Uplink Control Channel))的至少一个。
此外,与该信道成为QCL关系的RS(DL-RS)例如也可以是同步信号块(SSB:Synchronization Signal Block)、信道状态信息参考信号(CSI-RS:Channel StateInformation Reference Signal)、测量用参考信号(探测参考信号(SRS:SoundingReference Signal))的至少一个。或者,DL-RS也可以是为了跟踪而被利用的CSI-RS(也称为TRS)、或者为了QCL检测而被利用的参考信号(也称为QRS)。
SSB是包含主同步信号(PSS:Primary Synchronization Signal)、副同步信号(SSS:Secondary Synchronization Signal)以及广播信道(物理广播信道(PBCH:PhysicalBroadcast Channel))的至少一个的信号块。SSB也可以称为SS/PBCH块。
通过高层信令而被设定的TCI状态的信息元素(RRC的“TCI-state IE”)也可以包含1个或者多个QCL信息(“QCL-Info”)。QCL信息也可以包含与成为QCL关系的DL-RS相关的信息(DL-RS关联信息)以及表示QCL类型的信息(QCL类型信息)的至少一个。DL-RS关联信息也可以包含DL-RS的索引(例如,SSB索引、非零功率CSI-RS资源ID)、RS所位于的小区的索引、RS所位于的BWP(带宽部分(Bandwidth Part))的索引等信息。
与PDCCH(或者与PDCCH关联的DMRS天线端口)以及特定的DL-RS的QCL所相关的信息也可以称为PDCCH用TCI状态等。
UE也可以基于RRC信令以及MAC CE,判断用于UE特定的PDCCH(CORESET)的TCI状态。
例如,也可以是,对于UE按每个CORESET通过高层信令(ControlResourceSet信息元素)来设定1个或者多个(K个)TCI状态。此外,UE也可以针对各CORESET,分别使用MAC CE而激活一个TCI状态。该MAC CE也可以称为UE特定PDCCH用TCI状态指示MAC CE(用于UE特定PDCCH的TCI状态指示的MAC CE(TCI State Indication for UE-specific PDCCH MACCE))。UE也可以基于与该CORESET对应的激活的TCI状态(例如,1个TCI状态),来实施CORESET的监视。
TCI状态也可以与波束对应。例如,UE也可以设想为,不同的TCI状态的PDCCH使用不同的波束而被发送。
与PDSCH(或者与PDSCH关联的DMRS天线端口)以及特定的DL-RS的QCL所相关的信息也可以称为用于PDSCH的TCI状态等。
UE也可以通过高层信令而被通知(设定)PDSCH用的M(M≥1)个TCI状态(M个PDSCH用的QCL信息)。另外,被设定给UE的TCI状态的数量M也可以受UE能力(UE capability)以及QCL类型的至少一个限制。
在PDSCH的调度中使用的DCI也可以包含表示TCI状态(PDSCH用的QCL信息)的特定的字段(例如,也可以称为TCI用的字段、TCI字段、TCI状态字段等)。该DCI也可以被用于1个小区的PDSCH的调度,例如,也可以称为DL DCI、DL分配、DCI格式1_0、DCI格式1_1等。
此外,在DCI包含x比特(例如,x=3)的TCI字段的情况下,基站也可以使用高层信令,将最大2x(例如,在x=3的情况下,为8)种类的TCI状态预先设定给UE。DCI内的TCI字段的值(TCI字段值)也可以表示通过高层信令而预先被设定的TCI状态的一个。
在超过8种的TCI状态被设定给UE的情况下,也可以使用MAC CE而激活(或者指定)8种以下的TCI状态。该MAC CE也可以称为UE特定PDSCH用TCI状态激活/去激活MAC CE(用于UE特定PDSCH的TCI状态激活/去激活的MAC CE(TCI States Activation/Deactivationfor UE-specific PDSCH MAC CE))。DCI内的TCI字段的值也可以表示通过MAC CE而被激活的TCI状态的一个。
UE也可以基于DCI内的TCI字段值所表示的TCI状态,决定PDSCH(或者PDSCH的DMRS端口)的QCL。例如,UE也可以设想为,服务小区的PDSCH的DMRS端口(或者,DMRS端口组)与利用DCI而被通知的TCI状态所对应的DL-RS是QCL,来控制PDSCH的接收处理(例如,解码、解调等)。
(波束管理)
到目前为止,在Rel-15 NR中,正在研究波束管理(BM:Beam Management)的方法。在该波束管理中,正在研究基于UE所报告的L1-RSRP,进行波束选择。对某个信号/信道的波束进行变更(切换),相当于对该信号/信道的TCL状态(QCL)进行变更。
另外,通过波束选择而被选择的波束可以是发送波束(Tx波束),也可以是接收波束(Rx波束)。此外,通过波束选择而被选择的波束可以是UE的波束,也可以是基站的波束。
UE也可以将L1-RSRP包含在CSI中,利用上行控制信道(物理上行链路控制信道(PUCCH:Physical Uplink Control Channel))或者上行共享信道(物理上行链路共享信道(PUSCH:Physical Uplink Shared Channel))来进行报告。
另外,CSI也可以包含信道质量标识符(信道质量指示符(CQI:Channel QualityIndicator))、预编码矩阵标识符(预编码矩阵指示符(PMI:Precoding MatrixIndicator))、CSI-RS资源标识符(CSI-RS资源指示符(CRI:CSI-RS ResourceIndicator))、SS/PBCH块资源标识符(SS/PBCH块指示符(SSBRI:SS/PBCH BlockIndicator))、层标识符(层指示符(LI:Layer Indicator))、秩标识符(秩指示符(RI:RankIndicator))、L1-RSRP等的至少一个。
为了波束管理而被报告的测量结果(例如,CSI)也可以称为波束测量(beammeasurement)、波束测量结果、波束测量报告(beam measurement report)、波束报告等。
UE也可以使用CSI测量用的资源来测量信道状态,并导出L1-RSRP。CSI测量用的资源例如也可以是SS/PBCH块的资源、CSI-RS的资源、其他的参考信号资源等的至少一个。CSI测量报告的设定信息也可以使用高层信令而被设定给UE。
该CSI测量报告的设定信息(CSI-MeasConfig或者CSI-ResourceConfig)也可以包含用于CSI测量的1个以上的非零功率(NZP:Non Zero Power)CSI-RS资源集(NZP-CSI-RS-ResourceSet)、1个以上的零功率(ZP)CSI-RS资源集(ZP-CSI-RS-ResourceSet)(或者CSI-IM(干扰管理(Interference Management))资源集(CSI-IM-ResourceSet))以及1个以上的SS/PBCH块资源集(CSI-SSB-ResourceSet)等信息。
各资源集的信息也可以包含与该资源集内的资源中的反复(重复(repetition))相关的信息。与该反复相关的信息例如也可以表示“开启”或者“关闭”。另外,“开启”也可以表示为“激活(启用(enabled)或者有效(valid))”,“关闭”也可以表示为“去激活(禁用(disabled)或者无效(invalid))”。
例如,针对反复被设定为“开启”的资源集,UE也可以设想为,该资源集内的资源利用相同的下行链路空域发送滤波器(same downlink spatial domain transmissionfilter)而被发送。该情况下,UE也可以设想为,该资源集内的资源利用相同的波束(例如,从相同的基站利用相同的波束)而被发送。
针对反复被设定为“关闭”的资源集,UE也可以进行如下控制,即不能设想为(或者也可以不设想为),该资源集内的资源利用相同的下行链路空间域发送滤波器而被发送。该情况下,UE也可以设想为,该资源集内的资源不利用相同波束而被发送(利用不同的波束而被发送)。也就是说,针对反复被设定为“关闭”的资源集,UE也可以设想为,基站正在进行波束扫描。
图1是表示Rel-15 NR中的PDCCH用波束管理的一例的图。NW(网络,例如基站)决定进行某个UE的PDCCH用TCI状态的切换(步骤S101)。NW利用按照旧的(切换前的)TCI状态的PDCCH,对该UE发送用于PDSCH的调度的DCI(步骤S102)。
此外,基站在该PDSCH中包含UE特定PDCCH用TCI状态指示MAC CE,来进行发送(步骤S103)。
UE当检测到上述DCI时,对上述PDSCH进行解码,取得上述MAC CE。UE当接收到上述MAC CE时,发送用于提供了该MAC CE的PDSCH的HARQ-ACK(混合自动重发请求确认(HybridAutomatic Repeat reQuest Acknowledgement))(步骤S104)。UE在从发送该HARQ-ACK的时隙起3毫秒后,应用基于上述MAC CE的TCI状态的激活命令(步骤S105)。
之后,基站发送按照新的(切换后的)TCI状态的PDCCH,UE能够对该PDCCH进行接收并解码(步骤S106)。
如以上说明的那样,关于Rel-15 NR,到目前为止研究了的PDCCH用的TCI状态的控制方法,在TCI状态的变更上需要比较长的时间。此外,针对其他信道(PDSCH、PUCCH等),在TCI状态的变更上也需要比较长的时间,或者需要通信开销。因此,在需要频繁地变更TCI状态的情形等中,存在该变更所涉及的延迟成为问题,通信吞吐量下降的担忧。
因此,本发明的发明人们想到了高速地切换信道的TCI状态、QCL设想或者波束的方法。
以下,针对本公开所涉及的实施方式,参照附图详细进行说明。在各方式中示出的结构可以各自单独地应用,也可以组合应用。
(第一方式)
第一方式中,设想多个TCI状态,来控制PDCCH以及PDSCH的至少一个(以下,也称为PDCCH/PDSCH)的接收。另外,多个TCI状态也可以解读为与不同的TCI状态分别对应的多个参考信号、或者与不同的QCL分别对应的多个参考信号。
网络(或者,基站)针对PDCCH/PDSCH的解调用参考信号(DMRS),将多个TCI状态(或者,QCL设想)设定给UE。例如,基站也可以将与各TCI状态对应的参考信号设定给UE(参照图2)。基站也可以通过高层信令、MAC控制信息以及DCI的至少一个(或者,任意的组合),将多个TCI状态(或者,参考信号)设定给UE。
此外,基站也可以按每个特定单位(例如,每个CORESET),设定多个TCI状态(或者,参考信号)。在图2中示出了设定3个TCI状态(或者,参考信号)的情况。例如,基站也可以利用高层信令来设定特定数量(例如,64个)的TCI状态,并利用MAC控制信息来指定3个TCI状态。当然,能够设定的TCI状态(或者,参考信号)的数量并不限于此。
这里,示出了作为与各TCI状态对应的参考信号,设定与跟踪用的CSI-RS相当的TRS(TRS#1-#3)的情况,然而要设定的参考信号并不限于此。也可以取代TRS,而设定其他用途的CSI-RS(例如,L1-RSRP用的CSI-RS、或者移动性用的CSI-RS)。或者,也可以取代TRS,而设定除了CSI-RS以外的参考信号(例如,相当于QCL检测用的参考信号的QRS)。
此外,也可以对于各参考信号(TRS#1-#3),将与TRS#1-#3分别成为QCL关系的其他参考信号进行关联。在图2中,示出了TRS#1与SSB#1具有QCL类型D的关系,TRS#2与SSB#2具有QCL类型D的关系,TRS#3与CSI-RS#1具有QCL类型D的关系的情况。关于各TRS与其他参考信号的QCL关系的信息,也可以从基站利用高层信令等而设定给UE。
UE考虑从基站而被设定的多个TCI状态(或者,与TCI状态对应的TRS#1-#3),进行PDCCH/PDSCH的检测。例如,UE设想为TRS#1-#3的至少一个与PDCCH/PDSCH的DMRS是QCL,来进行接收处理。
该情况下,UE也可以基于本终端的能力,利用多个波束(例如,多个模拟波束)来同时控制TRS#1-#3的接收。此外,UE也可以在TRS#1-#3的接收中,考虑与各TRS成为QCL的其他参考信号(例如,SSB#1、SSB#2以及CSI-RS#1的至少一个)。
此外,UE也可以将与本终端所支持的TCI状态的数量相关的信息(例如,能够同时接收的TCI状态数量),作为UE能力信息而预先通知给基站。
这样,通过设定多个TCI状态(或者,参考信号),并设想该多个TCI状态来进行PDCCH/PDSCH的接收,由此即使在存在TCI状态的变更的情况下,也能够高速地进行TCI状态的切换。例如,即使在从第一TCI状态(TRS#1)切换到第二TCI状态(TRS#2)来进行PDCCH/PDSCH的发送的情况下,也能够通过预先设想多个TCI状态而进行接收,由此使得不需要图1中示出的切换操作。由此,能够高速地切换信道的TCI状态、QCL设想或者波束。
此外,UE也可以设想为,至少以CORESET单位,对PDCCH与通过该PDCCH而被调度的PDSCH应用相同的TCI状态。例如,UE针对利用PDCCH而被调度的PDSCH,设想为是与PDCCH相同的TCI状态,来进行PDSCH的接收。由此,在PDCCH与PDSCH的接收中,变得不需要TCI状态的切换,因而能够简化UE操作。
(第二方式)
第二方式中,针对作为TCI状态而被设定的参考信号,设定1个以上的成为源(source)的参考信号,并利用该成为源的参考信号,控制PDCCH/PDSCH的接收。成为源的参考信号也可以是与TCI状态的参考信号成为QCL关系的参考信号的候选(QCL候选的参考信号)。
网络(或者,基站)针对PDCCH/PDSCH的解调用参考信号(DMRS),将与特定的参考信号进行了关联的特定的TCI状态(或者,QCL设想)设定给UE(参照图3)。基站也可以通过高层信令、MAC控制信息以及DCI的至少一个(或者,任意的组合),将特定的TCI状态(或者,参考信号)设定给UE。
此外,基站也可以按每个特定单位(例如,每个CORESET),设定与特定的TCI状态对应的参考信号。在图3中,示出了对UE设定1个参考信号(这里,TRS#1)的情况。例如,基站也可以利用高层信令来设定特定数量(例如,64个)的TCI状态,并利用MAC控制信息来指定1个TCI状态。当然,参考信号的数量并不限于此。
这里,示出了作为与各TCI状态对应的参考信号,设定与跟踪用的CSI-RS相当的TRS(TRS#1)的情况,然而要设定的参考信号并不限于此。也可以取代TRS,而设定其他用途的CSI-RS(例如,L1-RSRP用的CSI-RS、或者移动性用的CSI-RS)。
或者,也可以取代TRS,而设定除了CSI-RS以外的参考信号(例如,与QCL检测用的参考信号相当的QRS)(参照图4)。图4示出了对UE设定QRS#1的情况。在以下的说明中,也可以将TRS解读为QRS来应用。
此外,也可以针对设定了的参考信号(TRS#1),将与该TRS#1成为QCL关系的参考信号的候选(QCL候选的参考信号)进行关联。该参考信号的候选也可以称为源参考信号。
在图3中,示出了作为成为TCI状态的TRS#1的源的参考信号,设定了SSB#1、SSB#2、以及CSI-RS#1的至少一个的情况。成为源的参考信号的数量、类别并不限于此。关于与TRS#1进行关联的源参考信号的信息也可以从基站利用高层信令等而设定给UE。
UE在成为TRS#1的源的参考信号被设定了多个的情况下,也可以设想为至少一个参考信号与TRS#1成为QCL关系。例如,UE在能够成为TRS#1的源的参考信号被设定了多个的情况下,UE决定与TRS#1成为QCL的参考信号。
作为一例,UE也可以基于TRS#1的接收功率、以及TRS#1的序列等,确定成为QCL的源参考信号。在基于TRS#1的接收功率而决定的情况下,UE也可以生成SSB或者CSI-RS的发送复制(replica),并将接收到的TRS#1与生成的发送复制进行比较,由此来确定恰当的参考信号。另外,在将接收到的TRS#1与生成的发送复制进行比较中,也可以利用最大似然检测(MLD)等。
UE也可以设想为TRS#1(或者,确定出的参考信号)与PDCCH/PDSCH的DMRS是QCL,来进行接收处理。
该情况下,UE也可以将关于本终端能够支持的成为源的参考信号的数量的信息(例如,在确定与TRS#1是QCL的参考信号时能够计算的参考信号数量),作为UE能力信息而预先通知给基站。
基站也可以设为如下结构,即在作为TRS的源而设定多个参考信号的情况下,当在PDCCH的波束选择中进行TCI状态(QCL)的变更或者更新时,并不对UE进行显式的通知。例如,设想针对作为TCI状态而被设定的TRS#1,SSB#1或者SSB#2被设定为源的情况(参照图5)。另外,这里,列举SSB#1和SSB#2作为示例,然而能够设定的源的参考信号并不限于此。例如,CSI-RS也可以被设定为源的参考信号,其他的下行参考信号(例如,PDCCH/PDSCH的DMRS)也可以被设定为源的参考信号。
该情况下,UE判断为SSB#1和SSB#2中的一个与TRS#1处于QCL关系。基站也可以不对UE通知是哪一个源(SSB#1或者SSB#2)与TRS#1处于QCL关系。即使在不存在从基站针对QCL关系的显式的通知的情况下,UE也判断为SSB#1和SSB#2中的一个与TRS#1是QCL,来进行PDCCH的接收(参照图6)。
图6示出了PDCCH的QCL的更新的一例。这里,示出了TRS#1的QCL从SSB#1变更为SSB#2的情况。首先,基站发送与TRS#1成为QCL的PDCCH。在该时间点,TRS#1与SSB#1成为QCL。UE基于TRS#1的接收结果,判断SSB#1以及SSB#2的哪一个是QCL(这里,选择SSB#1),来控制PDCCH的接收。
之后,基站将TRS#1的QCL从SSB#1变更为SSB#2。此时,基站并不对UE进行关于QCL的变更的显式的通知。在进行了QCL的变更之后,基站发送与TRS#1成为QCL的PDCCH。在该时间点,TRS#1与SSB#2成为QCL。UE基于TRS#1的接收结果,判断SSB#1以及SSB#2的哪一个是QCL(这里,选择SSB#2),来控制PDCCH的接收。
该情况下,不需要针对QCL而从基站对UE进行显式的通知,因此,能够降低PDCCH的波束选择的延迟。
这样,针对被设定为TCI状态的参考信号(例如,TRS或者QRS)而设定成为源的多个参考信号,并考虑与该多个参考信号的至少一个参考信号的QCL来进行PDCCH/PDSCH的接收,由此,即使在存在TCI状态的变更的情况下,也能够高速地进行TCI状态的切换。例如,即使在从第一TCI状态(与SSB#1对应的QCL设想)切换成第二TCI状态(与SSB#2对应的QCL设想)而进行PDCCH/PDSCH的发送的情况下,也能够通过预先设想多个TCI状态而进行接收,由此使得不需要图1示出的切换操作。由此,能够高速地切换信道的TCI状态、QCL设想或者波束。
此外,UE也可以设想为,至少以CORESET单位,对PDCCH与通过该PDCCH而被调度的PDSCH应用相同的TCI状态。例如,UE针对利用PDCCH而被调度的PDSCH,设想为是与PDCCH相同的TCI状态,来进行PDSCH的接收。由此,在PDCCH与PDSCH的接收中,变得不需要TCI状态的切换,因而能够简化UE操作。
(第三方式)
第三方式中,针对作为TCI状态而被设定的参考信号,决定恰当的接收空域滤波器,并利用该接收空域滤波器来控制PDCCH/PDSCH的接收。另外,接收空域滤波器(Rxspatial domain filter)也可以称为空域滤波器、接收波束。
网络(或者,基站)针对PDCCH/PDSCH的解调用参考信号(DMRS),将与特定的参考信号进行了关联的特定的TCI状态(或者,QCL设想)设定给UE(参照图7)。基站也可以通过高层信令、MAC控制信息以及DCI的至少一个(或者,任意的组合),将特定的TCI状态(或者,参考信号)设定给UE。
此外,基站也可以按每个特定单位(例如,每个CORESET),设定与特定的TCI状态对应的参考信号。在图7中,示出了对UE设定1个参考信号(这里,QRS#1)的情况。例如,基站也可以利用高层信令来设定特定数量(例如,64个)的TCI状态,并利用MAC控制信息来指定1个TCI状态。当然,参考信号的数量并不限于此。此外,基站也可以将与QRS相关的信息(例如,被设定QRS的时间资源、频率资源、周期、以及发送类型的至少一个),利用高层信令等而设定给UE。
这里,示出了作为与各TCI状态对应的参考信号,设定在QCL检测中利用的QRS的情况,然而要设定的参考信号并不限于此。也可以取代QRS,而设定TRS,也可以设定其他用途的CSI-RS(例如,L1-RSRP用的CSI-RS、或者移动性用的CSI-RS)。另外,QRS也可以称为QCLRS、QCL用RS。
此外,也可以设为如下结构,即并不特别针对设定了的参考信号(QRS#1),进行与该QRS#1成为QCL关系的参考信号的候选(QCL候选的参考信号)的关联。该情况下,QRS本身相当于TCI状态的参考信号的源。
在作为TCI状态而被设定了QRS的情况下,UE也可以决定适合于该QRS的接收的接收空域滤波器。例如,UE也可以通过利用不同的接收空域滤波器来接收在特定的时域中被反复发送的QRS,来决定特定的接收空域滤波器。特定的接收空域滤波器也可以是接收到的QRS的接收功率最高的接收空域滤波器。
基站也可以将应用了相同的发送空域滤波器的QRS在不同的OFDM码元(例如,在时间方向上连续的N个OFDM码元)中进行反复发送(重复开启(repetition on))。发送空域滤波器(Tx spatial domain filter)也可以称为空域滤波器、DL空域滤波器、或者发送波束。UE设想为被应用了相同的发送空域滤波器的QRS在不同的码元中被发送,进行波束扫描而决定特定的接收空域滤波器即可。具体地,对每个码元应用不同的接收空域滤波器来接收QRS,选择接收功率最高的接收空域滤波器。
此外,UE也可以将与接收空域滤波器的决定所需要的码元数相关的信息(例如,UE所支持的接收空域滤波器数量),作为UE能力信息而预先通知给基站。
UE在被设定了QRS的情况下,也可以设想为QRS与被分配给从该QRS的分配时域起之后的时域(例如,之后的码元)的PDCCH/PDSCH是QCL,进行接收处理。
图8是表示基于QRS而进行PDCCH的接收的情况的一例的图。UE在从基站而被设定了QRS的情况下,在QRS资源中进行接收处理,并决定在接收中利用的特定的空域滤波器。与QRS资源相关的信息也可以预先从基站通知给UE。
这里,被应用了相同的发送空域滤波器#1的QRS被反复发送4次(例如,在不同的4个码元中),UE利用不同的接收空域滤波器来接收QRS,并决定特定的接收空域滤波器。UE设想为在此之后被发送的PDCCH与QRS是QCL,应用特定的接收空域滤波器来进行PDCCH(被应用了发送空域滤波器#1的PDCCH)的接收。
基站在切换接收波束而发送PDCCH的情况下,在QRS资源中切换发送空域滤波器而发送QRS。这里,示出了利用发送空域滤波器#2而发送QRS的情况。UE接收在被设定的QRS资源中被反复发送的QRS。此外,UE通过切换在接收中利用的接收空域滤波器而进行接收,由此能够确定对于接收而言恰当的特定的接收空域滤波器。UE设想为在此之后被发送的PDCCH与QRS是QCL,应用特定的接收空域滤波器来进行PDCCH(被应用了发送空域滤波器#2的PDCCH)的接收。
在图8中,示出了与在QRS的发送中应用的发送空域滤波器的数量无关地,将QRS资源设定为公共的情况。也就是说,UE在从基站被设定的QRS资源中,接收被应用了任一个发送空域滤波器的QRS。
这样,应用基于被设定为TCI状态的参考信号(例如,QRS)而选择出的特定的接收空域滤波器,进行PDCCH/PDSCH的接收,由此即使在变更发送波束(发送空域滤波器)的情况下,也能够高速地进行对应的接收波束(接收空域滤波器)的切换。
此外,UE也可以设想为,至少以CORESET单位,对PDCCH与通过该PDCCH而被调度的PDSCH应用相同的TCI状态。例如,UE针对利用PDCCH而被调度的PDSCH,设想为是与PDCCH相同的TCI状态,来进行PDSCH的接收。由此,在PDCCH与PDSCH的接收中,变得不需要TCI状态的切换,因而能够简化UE操作。
<多个QRS资源设定>
在图8中,示出了与在QRS的发送中应用的发送空域滤波器的数量无关地,将QRS资源设定为公共的情况,然而并不限于此。例如,也可以按照在QRS的发送中应用的发送空域滤波器,设定不同的QRS资源(参照图9)。
在图9中,示出了设定与可应用于QRS的发送空域字段#1-#3分别对应的QRS资源#1-#3的情况。QRS资源#1-#3也可以是通过时间复用、频率复用、序列复用、循环移位复用的至少一个而被划分的资源。与QRS资源#1-#3相关的信息也可以从基站而通知给UE。
在图9中,示出了QRS资源#1-#3被设定于相同时域的情况(例如,应用频率复用、序列复用、循环移位复用的至少一个的情况),然而,也可以通过时间复用而被设定于不同的时域。
在图9中,首先,被应用了发送空域滤波器#1的QRS在QRS资源#1中被反复发送4次(例如,在不同的4个码元中)。另一方面,在QRS资源#2、#3中,QRS未被发送。也就是说,基站将发送空域滤波器#1设为应用(开启),将发送空域滤波器#2、#3设为非应用(关闭)。
UE在QRS资源#1-#3中,利用不同的接收空域滤波器来尝试进行QRS的接收,并决定特定的接收空域滤波器。这里,UE在QRS资源#1中接收QRS,因此,能够判断基站应用发送空域滤波器#1。UE设想为在此之后被发送的PDCCH与QRS是QCL,应用特定的接收空域滤波器来进行PDCCH(被应用了发送空域滤波器#1的PDCCH)的接收。
基站在切换接收波束(例如,应用发送空域滤波器#2)而发送PDCCH的情况下,在QRS资源#2中,发送应用了发送空域滤波器#2的QRS。UE当在QRS资源#2中接收到QRS的情况下,能够判断基站应用了发送空域滤波器#2。UE设想为在此之后被发送的PDCCH与QRS是QCL,应用特定的接收空域滤波器来进行PDCCH(被应用了发送空域滤波器#2的PDCCH)的接收。
这样,通过按应用于QRS的每个发送空域滤波器而分开设定QRS资源,UE能够判断基站正在应用的发送空域滤波器。
此外,也可以将设定为QRS用的资源数(或者,应用于QRS的发送空域滤波器的数量)限制成特定数量以下(参照图10)。图10示出了将QRS资源(或者,应用于QRS的发送空域滤波器)的数量设为2个以下的情况的一例。
此外,也可以设为如下结构,即仅在对于PDCCH(或者,QRS)的QCL(或者,TCI状态)被变更的情况下,变更在QRS的发送中被利用的QRS资源。例如,在图10中示出了在QCL被变更的情况下(例如,对PDCCH应用的发送空域滤波器被变更的情况下),QRS被发送的QRS资源发生变更的情况。
此外,在图10中示出了将QRS反复发送多次(这里,4次)的情况,然而并不限于此。例如,UE也可以设想特定的接收空域滤波器,来进行QRS资源中的接收。该情况下,基站也可以在QRS资源中利用至少1个码元来发送QRS(参照图11)。特定的接收空域滤波器也可以是过去(或者,最近)所应用的接收空域滤波器(例如,通过接收波束扫描而被选择出的接收空域滤波器)。
在图11中,UE针对QRS资源#1和QRS资源#2,应用特定的接收空域滤波器来进行QRS的接收。另外,应用于不同的QRS资源中的接收的接收空域滤波器可以相同,也可以不同。UE基于检测到QRS的QRS资源,判断应用于QRS的发送空域滤波器,设想为该QRS与PDCCH是QCL,来进行PDCCH的接收。
由此,能够设为不设定多个码元来作为QRS资源的结构,因此,能够提高资源的利用效率。
(变化1)
在QCL资源被设定的情况下,也设想QCL资源与其他信道(例如,PDSCH)重复的情形。该情况下,UE也可以进行以下的操作1或者操作2。
<操作1>
UE也可以限于QRS被实际发送的情况下,对PDSCH进行速率匹配或者删截。
PDSCH的速率匹配处理是指,考虑实际能够利用的无线资源,控制编码后的比特(编码比特)的数量。在相比于能够映射到实际能够利用的无线资源的比特数,编码比特数较少的情况下,编码比特的至少一部分也可以被反复。在相比于能够进行该映射的比特数,编码比特数较多的情况下,编码比特的一部分也可以被删除。
PDSCH的删截处理设想为能使用被分配给PDSCH用的资源(或者,不考虑无法使用的资源量),进行编码,然而,也可以意指不将编码码元映射到实际无法利用的资源(空出资源)。在接收侧,通过设为不将该被删截了的资源的编码码元用于解码,能够抑制因删截导致的特性变差。
当限于QRS被实际发送的情况而对PDSCH进行处理时,若考虑会错过实际被发送了的QRS这一情况,则应用删截处理是适合的。
<操作2>
UE也可以无论QRS是否实际被发送,对与QRS资源重复的PDSCH进行速率匹配或者删截。另外,当与QRS的发送无关地,对PDSCH进行处理的情况下,应用速率映射处理是适合的。
(变化2)
UE也可以将在某个CORESET中被设定的TCI状态应用于其他CORESET。例如,在针对CORESET#X,TCI状态未被设定的情况下,UE也可以将在其他CORESET(例如,CORESET#X-1)中被设定的TCI状态(或者,QCL)应用于CORESET#X。
其他CORESET也可以是索引更小的CORESET。例如,当在CORESET#1、#2中TCI状态未被设定的情况下,UE也可以将CORESET#0中的QCL应用于CORESET#1、#2。
这样,通过将特定的CORESET的TCI状态(QCL设想)应用于其他CORESET,变得不再需要对各CORESET分别设定TCI状态。由此,网络(或者,基站)对多个CORESET中的至少一个(例如,索引最小的CORESET)设定TCI状态即可,因此,能够削减TCI状态的设定操作。
(变化3)
UE也可以设为如下结构,即在将由QRS指定的QCL应用于PDCCH的情况下,应用于在接收该QRS之后经过特定期间后的PDCCH。例如,UE也可以将基于QRS而确定出的QCL(或者,接收空域滤波器),应用于在接收该QCL之后特定期间(T)后的PDCCH的接收(参照图12)。
在图12中,示出了通过QRS而QCL从1被变更(或者,更新)为2的情况。UE即使在接收到指定第二QCL#2(或者,发送空域滤波器#2)的QRS的情况下,在接收该QRS之后直到经过特定期间(T)为止,设想变更前的QCL(这里,QCL#1)来进行PDCCH的接收。此外,也可以设定应用通过QRS而被指定的QCL的时域。
(变化4)
UE还考虑利用多个发送接收点(TRP)来进行PDCCH/PDSCH的接收。该情况下,在应用单TRP的情况下、和应用多TRP的情况下,需要恰当地设定TCI状态(或者,参考信号)。另外,TRP也可以解读为DMRS端口组、面板、码字。
例如,如图4所示那样,在设定多个TCI状态的情况下(或者,在设定多个与各TCI状态对应的参考信号的情况下),也可以将所有的参考信号(例如,TRS#1-#3)与各TRP(或者,DMRS端口组、面板、码字、PDSCH)进行关联来设定。也就是说,在各TRP中,也可以设定相同的TRS#1-#3。
或者,关于按每个CORESET而被设定的TCI状态所对应的RS,也可以按每个TRP(或者,DMRS端口组、面板、码字、PDSCH)而分开被设定。例如,也可以是,针对TRP1(或者,DMRS端口组1)而设定TRS#1(或者,SSB#1),针对TRP2(或者,DMRS端口组2)而设定TRS#3(或者,CSI-RS#1)。
在多TRP被应用的情况下,UE也可以在PDCCH/PDSCH的检测中,考虑全部被设定的各TCI状态,来进行接收处理。或者,UE也可以考虑被设定的TCI状态的组合(例如,不同的TRP的QCL特性的组合),进行PDCCH/PDSCH的检测。
(无线通信系统)
以下,对本公开的一实施方式所涉及的无线通信系统的结构进行说明。在该无线通信系统中,使用本公开的上述各实施方式所涉及的无线通信方法的任意一个或者它们的组合来进行通信。
图13是表示一实施方式所涉及的无线通信系统的概略结构的一例的图。无线通信系统1也可以是利用通过3GPP(第三代合作伙伴计划(Third Generation PartnershipProject))而被规范化的LTE(长期演进(Long Term Evolution))、5G NR(第五代移动通信系统新无线(5th generation mobile communication system New Radio))等来实现通信的系统。
此外,无线通信系统1也可以支持多个RAT(无线接入技术(Radio AccessTechnology))间的双重连接(多RAT双重连接(MR-DC:Multi-RAT Dual Connectivity))。MR-DC也可以包含LTE(演进的通用陆地无线接入(E-UTRA:Evolved UniversalTerrestrial Radio Access))与NR的双重连接(E-UTRA-NR双重连接(EN-DC:E-UTRA-NRDual Connectivity))、NR与LTE的双重连接(NR-E-UTRA双重连接(NE-DC:NR-E-UTRA DualConnectivity))等。
在EN-DC中,LTE(E-UTRA)的基站(eNB)是主节点(MN:Master Node),NR的基站(gNB)是副节点(SN:Secondary Node)。在NE-DC中,NR的基站(gNB)是MN,LTE(E-UTRA)的基站(eNB)是SN。
无线通信系统1也可以支持同一RAT内的多个基站间的双重连接(例如,MN以及SN这二者是NR的基站(gNB)的双重连接(NR-NR双重连接(NN-DC:NR-NR DualConnectivity)))。
无线通信系统1也可以具备:形成覆盖范围比较宽的宏小区C1的基站11、以及被配置在宏小区C1内并形成比宏小区C1窄的小型小区C2的基站12(12a-12c)。用户终端20也可以位于至少一个小区内。各小区以及用户终端20的配置、数量等并不限定于图中所示的方式。以下,在不区分基站11和12的情况下,总称为基站10。
用户终端20也可以连接至多个基站10中的至少一个。用户终端20也可以利用使用了多个分量载波(CC:Component Carrier)的载波聚合(Carrier Aggregation)以及双重连接(DC)的至少一者。
各CC也可以被包含在第一频带(频率范围1(FR1:Frequency Range 1))以及第二频带(频率范围2(FR2:Frequency Range 2))的至少一个中。宏小区C1也可以被包含在FR1中,小型小区C2也可以被包含在FR2中。例如,FR1也可以是6GHz以下的频带(低于6GHz(sub-6GHz)),FR2也可以是比24GHz高的频带(above-24GHz)。另外,FR1以及FR2的频带、定义等并不限于此,例如FR1也可以对应于比FR2高的频带。
此外,用户终端20也可以在各CC中,利用时分双工(TDD.Time Division Duplex)以及频分双工(FDD:Frequency Division Duplex)的至少一个来进行通信。
多个基站10也可以通过有线(例如,基于CPRI(通用公共无线接口(Common PublicRadio Interface))的光纤、X2接口等)或者无线(例如,NR通信)而连接。例如,当在基站11以及12间NR通信作为回程而被利用的情况下,相当于上位站的基站11也可以称为IAB(集成接入回程(Integrated Access Backhaul))施主(donor),相当于中继站(relay)的基站12也可以称为IAB节点。
基站10也可以经由其他基站10,或者直接地连接到核心网络30。核心网络30例如也可以包含EPC(演进分组核心(Evolved Packet Core))、5GCN(5G核心网络(5G CoreNetwork))、NGC(下一代核心(Next Generation Core))等的至少一个。
用户终端20也可以是支持LTE、LTE-A、5G等通信方式的至少一个的终端。
在无线通信系统1中,也可以利用基于正交频分复用(OFDM:OrthogonalFrequency Division Multiplexing)的无线接入方式。例如,在下行链路(DL:Downlink)以及上行链路(UL:Uplink)的至少一者中,也可以利用CP-OFDM(循环前缀OFDM(CyclicPrefix OFDM))、DFT-s-OFDM(离散傅里叶变换扩展OFDM(Discrete Fourier TransformSpread OFDM))、OFDMA(正交频分多址(Orthogonal Frequency Division MultipleAccess))、SC-FDMA(单载波频分多址(Single Carrier Frequency Division MultipleAccess))等。
无线接入方式也可以称为波形(waveform)。另外,在无线通信系统1中,在UL以及DL的无线接入方式中,也可以应用其他无线接入方式(例如,其他的单载波传输方式、其他的多载波传输方式)。
在无线通信系统1中,作为下行链路信道,也可以使用在各用户终端20中共享的下行共享信道(物理下行链路共享信道(PDSCH:Physical Downlink Shared Channel))、广播信道(物理广播信道(PBCH:Physical Broadcast Channel))、下行控制信道(物理下行链路控制信道(PDCCH:Physical Downlink Control Channel))等。
此外,在无线通信系统1中,作为上行链路信道,也可以使用在各用户终端20中共享的上行共享信道(物理上行链路共享信道(PUSCH:Physical Uplink Shared Channel))、上行控制信道(物理上行链路控制信道(PUCCH:Physical Uplink Control Channel))、随机接入信道(物理随机接入信道(PRACH:Physical Random Access Channel))等。
通过PDSCH,来传输用户数据、高层控制信息、SIB(系统信息块(SystemInformation Block))等。也可以通过PUSCH来传输用户数据、高层控制信息等。此外,也可以通过PBCH来传输MIB(主信息块(Master Information Block))。
也可以通过PDCCH来传输低层控制信息。低层控制信息例如也可以包括下行控制信息(下行链路控制信息(DCI:Downlink Control Information)),该下行控制信息包含PDSCH以及PUSCH的至少一者的调度信息。
另外,调度PDSCH的DCI也可以称为DL分配、DL DCI等,调度PUSCH的DCI也可以称为UL许可、UL DCI等。另外,PDSCH也可以解读为DL数据,PUSCH也可以解读为UL数据。
在PDCCH的检测中,也可以利用控制资源集(CORESET:COntrol REsource SET)以及搜索空间(search space)。CORESET对应于搜索DCI的资源。搜索空间对应于PDCCH候选(PDCCH candidates)的搜索区域以及搜索方法。1个CORESET也可以与1个或者多个搜索空间进行关联。UE也可以基于搜索空间设定,来监视与某个搜索空间关联的CORESET。
1个SS也可以对应于与1个或者多个聚合等级(aggregation Level)相符合的PDCCH候选。1个或者多个搜索空间也可以称为搜索空间集。另外,本公开的“搜索空间”、“搜索空间集”、“搜索空间设定”、“搜索空间集设定”、“CORESET”、“CORESET设定”等也可以相互替换。
也可以通过PUCCH来传输信道状态信息(CSI:Channel State Information)、送达确认信息(例如,也可以称为HARQ-ACK(混合自动重发请求(Hybrid Automatic RepeatreQuest))、ACK/NACK等)、调度请求(SR:Scheduling Request)等。也可以通过PRACH来传输用于与小区建立连接的随机接入前导码。
另外,在本公开中,下行链路、上行链路等也可以不带有“链路”来表述。此外,也可以表述成在各种信道的开头不带有“物理(Physical)”。
在无线通信系统1中,也可以传输同步信号(SS:Synchronization Signal)、下行链路参考信号(DL-RS:Downlink Reference Signal)等。在无线通信系统1中,作为DL-RS,也可以传输小区特定参考信号(CRS:Cell-specific Reference Signal)、信道状态信息参考信号(CSI-RS:Channel State Information Reference Signal)、解调用参考信号(DMRS:DeModulation Reference Signal)、定位参考信号(PRS:Positioning ReferenceSignal)、相位跟踪参考信号(PTRS:Phase Tracking Reference Signal)等。
同步信号例如也可以是主同步信号(PSS:Primary Synchronization Signal)以及副同步信号(SSS:Secondary Synchronization Signal)的至少一个。包含SS(PSS、SSS)以及PBCH(以及PBCH用的DMRS)的信号块也可以称为SS/PBCH块、SSB(SS块(SS Block))等。另外,SS、SSB等也可以称为参考信号。
此外,在无线通信系统1中,作为上行链路参考信号(UL-RS:Uplink ReferenceSignal),也可以传输测量用参考信号(探测参考信号(SRS:Sounding ReferenceSignal))、解调用参考信号(DMRS)等。另外,DMRS也可以称为用户终端特定参考信号(UE-specific Reference Signal)。
(基站)
图14是表示一实施方式所涉及的基站的结构的一例的图。基站10具备控制单元110、发送接收单元120、发送接收天线130以及传输路径接口(传输线接口(transmissionline interface))140。另外,控制单元110、发送接收单元120以及发送接收天线130以及传输路径接口140也可以分别具备一个以上。
另外,在本例中,主要示出了本实施方式中的特征部分的功能块,基站10也可以设想为也具有无线通信所需要的其他功能块。在以下所说明的各单元的处理的一部分也可以省略。
控制单元110实施基站10整体的控制。控制单元110能够由基于本公开所涉及的技术领域中的公共认知而说明的控制器、控制电路等构成。
控制单元110也可以控制信号的生成、调度(例如,资源分配、映射)等。控制单元110也可以控制使用了发送接收单元120、发送接收天线130以及传输路径接口140的发送接收、测量等。控制单元110也可以生成作为信号而发送的数据、控制信息、序列(sequence)等,并转发给发送接收单元120。控制单元110也可以进行通信信道的呼叫处理(设定、释放等)、基站10的状态管理、无线资源的管理等。
发送接收单元120也可以包含基带(baseband)单元121、RF(射频(RadioFrequency))单元122、测量单元123。基带单元121也可以包含发送处理单元1211以及接收处理单元1212。发送接收单元120能够由基于本公开所涉及的技术领域中的公共认知而说明的发送机/接收机、RF电路、基带电路、滤波器、相位偏移器(移相器(phase shifter))、测量电路、发送接收电路等构成。
发送接收单元120可以作为一体的发送接收单元而构成,也可以由发送单元以及接收单元构成。该发送单元也可以由发送处理单元1211、RF单元122构成。该接收单元也可以由接收处理单元1212、RF单元122、测量单元123构成。
发送接收天线130能够由基于本公开所涉及的技术领域中的公共认知而说明的天线、例如阵列天线等构成。
发送接收单元120也可以发送上述的下行链路信道、同步信号、下行链路参考信号等。发送接收单元120也可以接收上述的上行链路信道、上行链路参考信号等。
发送接收单元120也可以使用数字波束成形(例如,预编码)、模拟波束成形(例如,相位旋转)等,来形成发送波束以及接收波束的至少一者。
发送接收单元120(发送处理单元1211)例如也可以针对从控制单元110取得的数据、控制信息等,进行PDCP(分组数据汇聚协议(Packet Data Convergence Protocol))层的处理、RLC(无线链路控制(Radio Link Control))层的处理(例如,RLC重发控制)、MAC(媒体访问控制(Medium Access Control))层的处理(例如,HARQ重发控制)等,生成要发送的比特串。
发送接收单元120(发送处理单元1211)也可以针对要发送的比特串,进行信道编码(也可以包含纠错编码)、调制、映射、滤波器处理、离散傅里叶变换(DFT:DiscreteFourier Transform)处理(根据需要)、快速傅里叶逆变换(IFFT:Inverse Fast FourierTransform)处理、预编码、数字-模拟转换等的发送处理,输出基带信号。
发送接收单元120(RF单元122)也可以针对基带信号,进行向无线频带的调制、滤波器处理、放大等,将无线频带的信号经由发送接收天线130来发送。
另一方面,发送接收单元120(RF单元122)也可以针对通过发送接收天线130而被接收的无线频带的信号,进行放大、滤波器处理、向基带信号的解调等。
发送接收单元120(接收处理单元1212)也可以针对所取得的基带信号,应用模拟-数字转换、快速傅里叶变换(FFT:Fast Fourier Transform)处理、离散傅里叶逆变换(IDFT:Inverse Discrete Fourier Transform)处理(根据需要)、滤波器处理、解映射、解调、解码(也可以包含纠错解码)、MAC层处理、RLC层的处理以及PDCP层的处理等的接收处理,取得用户数据等。
发送接收单元120(测量单元123)也可以实施与接收到的信号相关的测量。例如,测量单元123也可以基于接收到的信号,进行RRM(无线资源管理(Radio ResourceManagement))测量、CSI(信道状态信息(Channel State Information))测量等。测量单元123也可以针对接收功率(例如,RSRP(参考信号接收功率(Reference Signal ReceivedPower)))、接收质量(例如,RSRQ(参考信号接收质量(Reference Signal ReceivedQuality))、SINR(信号与干扰加噪声比(Signal to Interference plus Noise Ratio))、SNR(信号与噪声比(Signal to Noise Ratio)))、信号强度(例如,RSSI(接收信号强度指示符(Received Signal Strength Indicator)))、传播路径信息(例如,CSI)等,进行测量。测量结果还可以被输出至控制单元110。
传输路径接口140也可以在与核心网络30中包含的装置、其他基站10等之间,对信号进行发送接收(回程信令),也可以对用于用户终端20的用户数据(用户面数据)、控制面数据等进行取得、传输等。
另外,本公开中的基站10的发送单元以及接收单元也可以通过发送接收单元120、发送接收天线130以及传输路径接口140的至少一个而构成。
另外,发送接收单元120也可以发送与1个以上的发送设定指示(发送设定指示符(TCI:Transmission Configuration Indicator))状态进行了关联的多个参考信号所相关的信息。此外,发送接收单元120也可以设想与多个参考信号的至少一个的准共址,来发送下行物理信道(例如,PDCCH以及PDSCH的至少一个)。
此外,发送接收单元120也可以遍及特定的时域,利用不同的发送空域滤波器,反复发送与发送设定指示(TCI)状态进行了关联的特定的参考信号。
控制单元110控制对于1个以上的发送设定指示(TCI)状态的参考信号的设定。此外,控制单元110控制下行物理信道的发送,以使与多个参考信号的至少一个成为准共址。
(用户终端)
图15是表示一实施方式所涉及的用户终端的结构的一例的图。用户终端20具备控制单元210、发送接收单元220以及发送接收天线230。另外,控制单元210、发送接收单元220以及发送接收天线230也可以分别被配备一个以上。
另外,在本例中,主要示出了本实施方式中的特征部分的功能块,用户终端20也可以设想为也具有无线通信所需要的其他功能块。在以下所说明的各单元的处理的一部分也可以省略。
控制单元210实施用户终端20整体的控制。控制单元210能够由基于本公开所涉及的技术领域中的公共认知而说明的控制器、控制电路等构成。
控制单元210也可以控制信号的生成、映射等。控制单元210也可以控制使用了发送接收单元220以及发送接收天线230的发送接收、测量等。控制单元210也可以生成作为信号而发送的数据、控制信息、序列等,并转发给发送接收单元220。
发送接收单元220也可以包含基带单元221、RF单元222、测量单元223。基带单元221也可以包含发送处理单元2211、接收处理单元2212。发送接收单元220能够由基于本公开所涉及的技术领域中的公共认知而说明的、发送机/接收机、RF电路、基带电路、滤波器、相位偏移器、测量电路、发送接收电路等构成。
发送接收单元220可以作为一体的发送接收单元而构成,也可以由发送单元以及接收单元构成。该发送单元也可以由发送处理单元2211、RF单元222构成。该接收单元也可以由接收处理单元2212、RF单元222、测量单元223构成。
发送接收天线230能够由基于本公开所涉及的技术领域中的公共认知而说明的天线例如阵列天线等构成。
发送接收单元220也可以发送上述的下行链路信道、同步信号、下行链路参考信号等。发送接收单元220也可以接收上述的上行链路信道、上行链路参考信号等。
发送接收单元220也可以使用数字波束成形(例如,预编码)、模拟波束成形(例如,相位旋转)等,来形成发送波束以及接收波束的至少一者。
发送接收单元220(发送处理单元2211)例如也可以针对从控制单元210取得的数据、控制信息等,进行PDCP层的处理、RLC层的处理(例如,RLC重发控制)、MAC层的处理(例如,HARQ重发控制)等,生成要发送的比特串。
发送接收单元220(发送处理单元2211)也可以针对要发送的比特列,进行信道编码(也可以包含纠错编码)、调制、映射、滤波器处理、DFT处理(根据需要)、IFFT处理、预编码、数字-模拟转换等的发送处理,输出基带信号。
另外,关于是否应用DFT处理,也可以基于变换预编码的设定。针对某个信道(例如,PUSCH),在变换预编码是激活(启用(enabled))的情况下,发送接收单元220(发送处理单元2211)也可以为了利用DFT-s-OFDM波形来发送该信道,作为上述发送处理而进行DFT处理,在不是这样的情况下,发送接收单元220(发送处理单元2211)也可以作为上述发送处理而不进行DFT处理。
发送接收单元220(RF单元222)也可以针对基带信号,进行向无线频带的调制、滤波器处理、放大等,将无线频带的信号经由发送接收天线230来发送。
另一方面,发送接收单元220(RF单元222)也可以针对通过发送接收天线230而被接收的无线频带的信号,进行放大、滤波器处理、向基带信号的解调等。
发送接收单元220(接收处理单元2212)也可以针对取得的基带信号,应用模拟-数字转换、FFT处理、IDFT处理(根据需要)、滤波器处理、解映射、解调、解码(也可以包含纠错解码)、MAC层处理、RLC层的处理以及PDCP层的处理等的接收处理,取得用户数据等。
发送接收单元220(测量单元223)也可以实施与接收到的信号相关的测量。例如,测量单元223也可以基于接收到的信号,进行RRM测量、CSI测量等。测量单元223也可以针对接收功率(例如,RSRP)、接收质量(例如,RSRQ、SINR、SNR)、信号强度(例如,RSSI)、传播路径信息(例如,CSI)等进行测量。测量结果还可以被输出至控制单元210。
另外,本公开中的用户终端20的发送单元以及接收单元也可以通过发送接收单元220、发送接收天线230以及传输路径接口240的至少一个而构成。
另外,发送接收单元220接收与1个以上的发送设定指示(发送设定指示符(TCI:Transmission Configuration Indicator))状态进行了关联的多个参考信号所相关的信息。此外,发送接收单元220也可以设想与多个参考信号的至少一个的准共址,来接收下行物理信道(例如,PDCCH以及PDSCH的至少一个)。多个参考信号的每一个参考信号也可以与不同的TCI状态进行关联。多个参考信号也可以是与针对1个TCI状态而被设定的特定参考信号进行了关联的源参考信号。
此外,发送接收单元220也可以遍及特定的时域,利用不同的接收空域滤波器,反复接收与发送设定指示(TCI)状态进行了关联的特定的参考信号。发送接收单元220也可以应用基于特定的参考信号的反复接收而决定的特定的接收空域滤波器,来接收下行物理信道。另外,也可以针对在预先被设定的特定资源中被发送的特定的参考信号,应用多个发送空域滤波器中的一个。
控制单元210也可以基于特定参考信号的接收结果,决定与特定参考信号成为准共址的源参考信号。此外,控制单元210也可以设想为对下行控制信道与利用下行控制信道而被调度的下行共享信道应用相同的TCI状态。
或者,控制单元210也可以设想为,被应用了不同的发送空域滤波器的特定的参考信号分别被分配给不同的资源。此外,控制单元210也可以设想为,在特定的参考信号的准共址发生变化的情况下,被分配了特定的参考信号的资源发生变更。
(硬件结构)
另外,在上述实施方式的说明中使用的框图示出了功能单位的块。这些功能块(结构单元)通过硬件以及软件的至少一者的任意组合来实现。此外,各功能块的实现方法并没有特别限定。即,各功能块可以用物理上或逻辑上结合而成的一个装置来实现,也可以将物理上或逻辑上分离的两个以上的装置直接或间接地(例如用有线、无线等)连接而用这些多个装置来实现。功能块也可以将上述一个装置或者上述多个装置与软件组合来实现。
这里,在功能中,有判断、决定、判定、计算、算出、处理、导出、调查、搜索、确认、接收、发送、输出、接入、解决、选择、选定、建立、比较、设想、期待、视为、广播(broadcasting)、通知(notifying)、通信(communicating)、转发(forwarding)、构成(设定(configuring))、重构(重设定(reconfiguring))、分配(allocating、mapping(映射))、分派(assigning)等,然而并不受限于这些。例如,实现发送功能的功能块(结构单元)也可以被称为发送单元(transmitting unit)、发送机(transmitter)等。任意一个均如上述那样,实现方法并不受到特别限定。
例如,本公开的一个实施方式中的基站、用户终端等也可以作为进行本公开的无线通信方法的处理的计算机而发挥功能。图16是表示一个实施方式所涉及的基站和用户终端的硬件结构的一例的图。上述的基站10和用户终端20在物理上也可以构成为包括处理器1001、存储器1002、储存器1003、通信装置1004、输入装置1005、输出装置1006、总线1007等的计算机装置。
另外,在本公开中,装置、电路、设备、部分(section)、单元等用语能够相互替换。基站10和用户终端20的硬件结构可以被构成为将图中示出的各装置包含一个或者多个,也可以构成为不包含一部分装置。
例如,处理器1001仅图示出一个,但也可以有多个处理器。此外,处理可以由一个处理器来执行,也可以同时地、依次地、或者用其他手法由两个以上的处理器来执行处理。另外,处理器1001也可以通过一个以上的芯片而被安装。
关于基站10和用户终端20中的各功能,例如通过将特定的软件(程序)读入到处理器1001、存储器1002等硬件上,从而由处理器1001进行运算并控制经由通信装置1004的通信,或者控制存储器1002和储存器1003中的数据的读出以及写入的至少一者,由此来实现。
处理器1001例如使操作系统进行操作来控制计算机整体。处理器1001也可以由包含与外围设备的接口、控制装置、运算装置、寄存器等的中央处理装置(中央处理单元(CPU:Central Processing Unit))而构成。例如,上述的控制单元110(210)、发送接收单元120(220)等的至少一部分也可以由处理器1001实现。
此外,处理器1001将程序(程序代码)、软件模块、数据等从储存器1003和通信装置1004的至少一者读出至存储器1002,并根据它们来执行各种处理。作为程序,可利用使计算机执行在上述的实施方式中说明的操作的至少一部分的程序。例如,控制单元110(210)也可以通过被存储于存储器1002中并在处理器1001中进行操作的控制程序来实现,针对其他功能块也可以同样地实现。
存储器1002也可以是计算机可读取的记录介质,例如由ROM(只读存储器(ReadOnly Memory))、EPROM(可擦除可编程只读存储器(Erasable Programmable ROM))、EEPROM(电可擦除可编程只读存储器(Electrically EPROM))、RAM(随机存取存储器(RandomAccess Memory))、其他恰当的存储介质中的至少一者而构成。存储器1002也可以被称为寄存器、高速缓存、主存储器(主存储装置)等。存储器1002能够保存为了实施本公开的一个实施方式所涉及的无线通信方法而可执行的程序(程序代码)、软件模块等。
储存器1003也可以是计算机可读取的记录介质,例如由柔性盘(flexible disc)、软(Floppy(注册商标))盘、光磁盘(例如压缩盘(CD-ROM(压缩盘只读存储器(Compact DiscROM))等)、数字多功能盘、Blu-ray(注册商标)盘(蓝光盘)、可移动磁盘(removable disc)、硬盘驱动器、智能卡(smart card)、闪存设备(例如卡(card)、棒(stick)、键驱动器(keydrive))、磁条(stripe)、数据库、服务器、其他恰当的存储介质中的至少一者而构成。储存器1003也可以称为辅助存储装置。
通信装置1004是用于经由有线网络以及无线网络的至少一者来进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。为了实现例如频分双工(FDD:Frequency Division Duplex)和时分双工(TDD:Time DivisionDuplex)的至少一者,通信装置1004也可以被构成为包含高频开关、双工器、滤波器、频率合成器等。例如上述的发送接收单元120(220)、发送接收天线130(230)等也可以由通信装置1004来实现。发送接收单元120(220)也可以由发送单元120a(220a)和接收单元120b(220b)在物理上或者逻辑上分离地被安装。
输入装置1005是受理来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1006是实施向外部的输出的输出设备(例如,显示器、扬声器、LED(发光二极管(Light Emitting Diode))灯等)。另外,输入装置1005和输出装置1006也可以是成为一体的结构(例如,触摸面板)。
此外,处理器1001、存储器1002等各装置通过用于对信息进行通信的总线1007来连接。总线1007可以用单一的总线构成,也可以在各装置间用不同的总线来构成。
此外,基站10和用户终端20还可以构成为包括微处理器、数字信号处理器(DSP:Digital Signal Processor)、ASIC(专用集成电路(Application Specific IntegratedCircuit))、PLD(可编程逻辑器件(Programmable Logic Device))、FPGA(现场可编程门阵列(Field Programmable Gate Array))等硬件,也可以用该硬件来实现各功能块的一部分或者全部。例如,处理器1001也可以用这些硬件的至少一个来被安装。
(变形例)
另外,关于在本公开中进行了说明的术语和为了理解本公开所需要的术语,也可以替换为具有相同或者类似的意思的术语。例如,信道、码元以及信号(信号或者信令)也可以相互替换。此外,信号也可以是消息。参考信号还能够简称为RS(Reference Signal),还可以根据所应用的标准而被称为导频(Pilot)、导频信号等。此外,分量载波(CC:ComponentCarrier)也可以被称为小区、频率载波、载波频率等。
无线帧在时域中还可以由一个或者多个期间(帧)构成。构成无线帧的该一个或者多个期间(帧)的各个期间(帧)也可以被称为子帧。进一步地,子帧在时域中还可以由一个或者多个时隙构成。子帧也可以是不依赖于参数集的固定的时间长度(例如1ms)。
这里,参数集还可以是指在某信号或者信道的发送以及接收的至少一者中应用的通信参数。例如,参数集还可以表示子载波间隔(SCS:SubCarrier Spacing)、带宽、码元长度、循环前缀长度、发送时间间隔(TTI:Transmission Time Interval)、每个TTI的码元数、无线帧结构、发送接收机在频域中所进行的特定的滤波处理、发送接收机在时域中所进行的特定的加窗(windowing)处理等的至少一者。
时隙在时域中还可以由一个或者多个码元(OFDM(正交频分复用(OrthogonalFrequency Division Multiplexing))码元、SC-FDMA(单载波频分多址(Single CarrierFrequency Division Multiple Access))码元等)而构成。此外,时隙也可以是基于参数集的时间单位。
时隙也可以包含多个迷你时隙。各迷你时隙(mini slot)也可以在时域内由一个或者多个码元构成。此外,迷你时隙也可以被称为子时隙。迷你时隙还可以由比时隙少的数量的码元构成。以比迷你时隙大的时间单位被发送的PDSCH(或者PUSCH)还可以被称为PDSCH(PUSCH)映射类型A。使用迷你时隙被发送的PDSCH(或者PUSCH)还可以被称为PDSCH(PUSCH)映射类型B。
无线帧、子帧、时隙、迷你时隙以及码元均表示传输信号时的时间单位。无线帧、子帧、时隙、迷你时隙以及码元还可以使用各自所对应的其他称呼。另外,本公开中的帧、子帧、时隙、迷你时隙、码元等时间单位也可以相互替换。
例如,一个子帧也可以被称为TTI,多个连续的子帧也可以被称为TTI,一个时隙或者一个迷你时隙也可以被称为TTI。也就是说,子帧和TTI的至少一者可以是现有的LTE中的子帧(1ms),也可以是比1ms短的期间(例如,1-13个码元),还可以是比1ms长的期间。另外,表示TTI的单位也可以不被称为子帧,而被称为时隙、迷你时隙等。
这里,TTI例如是指无线通信中的调度的最小时间单位。例如,在LTE系统中,基站对各用户终端进行以TTI单位来分配无线资源(在各用户终端中能够使用的频率带宽、发送功率等)的调度。另外,TTI的定义不限于此。
TTI也可以是进行了信道编码的数据分组(传输块)、码块、码字等的发送时间单位,还可以成为调度、链路自适应等的处理单位。另外,当TTI被给定时,实际上被映射传输块、码块、码字等的时间区间(例如,码元数)也可以比该TTI短。
另外,在将一个时隙或者一个迷你时隙称为TTI的情况下,一个以上的TTI(即,一个以上的时隙或者一个以上的迷你时隙)也可以成为调度的最小时间单位。此外,构成该调度的最小时间单位的时隙数(迷你时隙数)也可以被控制。
具有1ms的时间长度的TTI也可以被称为通常TTI(3GPP Rel.8-12中的TTI)、标准TTI、长TTI、通常子帧、标准子帧、长子帧、时隙等。比通常TTI短的TTI也可以被称为缩短TTI、短TTI、部分TTI(partial或者fractional TTI)、缩短子帧、短子帧、迷你时隙、子时隙、时隙等。
另外,长TTI(例如,通常TTI、子帧等)也可以解读为具有超过1ms的时间长度的TTI,短TTI(例如,缩短TTI等)也可以解读为具有小于长TTI的TTI长度且1ms以上的TTI长度的TTI。
资源块(RB:Resource Block)是时域和频域的资源分配单位,在频域中也可以包含一个或者多个连续的副载波(子载波(subcarrier))。RB中包含的子载波的数量也可以与参数集无关而均是相同的,例如也可以是12。RB中包含的子载波的数量也可以基于参数集来决定。
此外,RB在时域中也可以包含一个或者多个码元,也可以是一个时隙、一个迷你时隙、一个子帧、或者一个TTI的长度。一个TTI、一个子帧等也可以分别由一个或者多个资源块构成。
另外,一个或多个RB也可以被称为物理资源块(PRB:Physical RB)、子载波组(SCG:Sub-Carrier Group)、资源元素组(REG:Resource Element Group)、PRB对、RB对等。
此外,资源块也可以由一个或者多个资源元素(RE:Resource Element)构成。例如,一个RE也可以是一个子载波和一个码元的无线资源区域。
带宽部分(BWP:Bandwidth Part)(也可以被称为部分带宽等)也可以表示在某载波中某参数集用的连续的公共RB(公共资源块(common resource blocks))的子集。这里,公共RB也可以通过以该载波的公共参考点为基准的RB的索引来确定。PRB也可以在某BWP中被定义,并在该BWP内被附加编号。
在BWP中也可以包含UL用的BWP(UL BWP)和DL用的BWP(DL BWP)。针对UE,也可以在1个载波内设定一个或者多个BWP。
被设定的BWP的至少一个也可以是激活的,UE也可以不设想在激活的BWP以外,对特定的信号/信道进行发送接收。另外,本公开中的“小区”、“载波”等也可以被解读为“BWP”。
另外,上述的无线帧、子帧、时隙、迷你时隙和码元等结构只不过是例示。例如,无线帧中包含的子帧的数量、每个子帧或者无线帧的时隙的数量、时隙内包含的迷你时隙的数量、时隙或者迷你时隙中包含的码元和RB的数量、RB中包含的子载波的数量、以及TTI内的码元数、码元长度、循环前缀(CP:Cyclic Prefix)长度等结构能够进行各种各样的变更。
此外,在本公开中说明了的信息、参数等可以用绝对值来表示,也可以用相对于特定的值的相对值来表示,还可以用对应的其他信息来表示。例如,无线资源也可以由特定的索引来指示。
在本公开中,对参数等所使用的名称在所有方面均不是限定性的名称。此外,使用这些参数的数学式等也可以与在本公开中明确公开的不同。各种各样的信道(PUCCH(物理上行链路控制信道(Physical Uplink Control Channel))、PDCCH(物理下行链路控制信道(Physical Downlink Control Channel))等)和信息元素能够通过任何适宜的名称来识别,因此,分配给这些各种各样的信道和信息元素的各种各样的名称在所有方面均不是限定性的名称。
在本公开中进行了说明的信息、信号等也可以使用各种各样的不同技术中的任一种技术来表示。例如,可能遍及上述的整个说明而提及的数据、指令、命令、信息、信号、比特、码元、码片(chip)等也可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等能够向从高层(上位层)向低层(下位层)、以及从低层向高层的至少一者输出。信息、信号等也可以经由多个网络节点而被输入输出。
所输入输出的信息、信号等可以被保存于特定的部位(例如存储器),也可以用管理表格来进行管理。所输入输出的信息、信号等可以被覆写、更新或者追加。所输出的信息、信号等也可以被删除。所输入的信息、信号等也可以被发送至其他装置。
信息的通知不限于在本公开中进行了说明的方式/实施方式,也可以用其他方法进行。例如,本公开中的信息的通知也可以通过物理层信令(例如,下行控制信息(下行链路控制信息(DCI:Downlink Control Information))、上行控制信息(上行链路控制信息(UCI:Uplink Control Information)))、高层信令(例如,RRC(无线资源控制(RadioResource Control))信令、广播信息(主信息块(MIB:Master Information Block)、系统信息块(SIB:System Information Block)等)、MAC(媒体访问控制(Medium AccessControl))信令)、其他信号或者它们的组合来实施。
另外,物理层信令也可以被称为L1/L2(层1/层2(Layer 1/Layer 2))控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以被称为RRC消息,例如还可以是RRC连接建立(RRC Connection Setup)消息、RRC连接重构(RRC连接重设定(RRCConnection Reconfiguration))消息等。此外,MAC信令例如也可以使用MAC控制元素(MACCE(Control Element))而被通知。
此外,特定的信息的通知(例如,“是X”的通知)不限于显式的通知,也可以隐式地(例如,通过不进行该特定的信息的通知、或者通过其他信息的通知)进行。
判定可以通过由一个比特表示的值(0或1)来进行,也可以通过由真(true)或者假(false)来表示的真假值(布尔值(boolean))来进行,还可以通过数值的比较(例如,与特定的值的比较)来进行。
软件无论被称为软件(software)、固件(firmware)、中间件(middle-ware)、微代码(micro-code)、硬件描述语言,还是以其他名称来称呼,都应该被宽泛地解释为指令、指令集、代码(code)、代码段(code segment)、程序代码(program code)、程序(program)、子程序(sub-program)、软件模块(software module)、应用(application)、软件应用(software application)、软件包(software package)、例程(routine)、子例程(sub-routine)、对象(object)、可执行文件、执行线程、过程、功能等的意思。
此外,软件、指令、信息等也可以经由传输介质而被发送接收。例如,在使用有线技术(同轴线缆、光纤线缆、双绞线、数字订户专线(DSL:Digital Subscriber Line)等)和无线技术(红外线、微波等)的至少一者,从网站、服务器或者其他远程源(remote source)来发送软件的情况下,这些有线技术和无线技术的至少一者被包含在传输介质的定义内。
在本公开中使用的“系统”和“网络”这样的术语能够被互换使用。“网络”也可以意指网络中包含的装置(例如,基站)。
在本公开中,“预编码(precoding)”、“预编码器(precoder)”、“权重(预编码权重)”、“准共址(QCL:Quasi-Co-Location)”、“TCI状态(发送设定指示状态(TransmissionConfiguration Indication state))”、“空间关联(spatial relation)”、“空域滤波器(spatial domain filter)”、“发送功率”、“相位旋转”、“天线端口”、“天线端口组”、“层”、“层数”、“秩”、“资源”、“资源集”、“资源组”、“波束”、“波束宽度”、“波束角度”、“天线”、“天线元件”、“面板”等术语能够互换使用。
在本公开中,“基站(BS:Base Station)”、“无线基站”、“固定台(fixedstation)”、“NodeB”、“eNodeB(eNB)”、“gNodeB(gNB)”、“接入点(access point)”、“发送点(TP:transmission point)”、“接收点(RP:reception point)”、“发送接收点(TRP:transmission/reception point)”、“面板”、“小区”、“扇区”、“小区组”、“载波”、“分量载波”等术语能够互换使用。还存在如下情况,即,用宏小区、小型小区、毫微微小区、微微小区等术语来称呼基站。
基站能够容纳一个或者多个(例如三个)小区。在基站容纳多个小区的情况下,基站的覆盖区域整体能够划分为多个更小的区域,各个更小的区域也能够通过基站子系统(例如,室内用的小型基站(远程无线头(RRH:Remote Radio Head)))来提供通信服务。“小区”或者“扇区”这样的术语是指,在该覆盖范围内进行通信服务的基站以及基站子系统的至少一者的覆盖区域的一部分或者整体。
在本公开中,“移动台(MS:Mobile Station)”、“用户终端(user terminal)”、“用户装置(用户设备(UE:User Equipment))”、“终端”等术语能互换使用。
在有些情况下,也将移动台称为订户站、移动单元、订户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动订户站、接入终端、移动终端、无线终端、远程终端、手持通话器(hand set)、用户代理、移动客户端、客户端或者若干其他恰当的术语。
基站以及移动台的至少一者还可以被称为发送装置、接收装置、无线通信装置等。另外,基站以及移动台的至少一者还可以是在移动体中搭载的设备、移动体本体等。该移动体可以是交通工具(例如,车辆、飞机等),还可以是以无人的方式移动的移动体(例如,无人机(drone)、自动驾驶车辆等),还可以是机器人(有人型或者无人型)。另外,基站以及移动台的至少一者还包括并不一定在进行通信操作时进行移动的装置。例如,基站以及移动台的至少一者也可以是传感器等IoT(物联网(Internet of Things))设备。
此外,本公开中的基站也可以解读为用户终端。例如,针对将基站和用户终端间的通信替换为多个用户终端间的通信(例如,还可以称为D2D(设备对设备(Device-to-Device))、V2X(车联网(Vehicle-to-Everything))等)的结构,也可以应用本公开的各方式/实施方式。在这种情况下,也可以设为由用户终端20具有上述的基站10所具有的功能的结构。此外,“上行”和“下行”等表述也可以解读为与终端间通信对应的表述(例如,“侧(side)”)。例如,上行信道、下行信道等也可以解读为侧信道。
同样地,本公开中的用户终端也可以解读为基站。在这种情况下,也可以设为由基站10具有上述的用户终端20所具有的功能的结构。
在本公开中,设为由基站进行的动作,有时还根据情况而由其上位节点(uppernode)进行。明显地,在包括具有基站的一个或者多个网络节点(network nodes)的网络中,为了与终端的通信而进行的各种各样的动作可以由基站、除基站以外的一个以上的网络节点(例如考虑MME(移动性管理实体(Mobility Management Entity))、S-GW(服务网关(Serving-Gateway))等,但不限于这些)或者它们的组合来进行。
在本公开中进行了说明的各方式/实施方式可以单独地使用,也可以组合地使用,还可以随着执行而切换着使用。此外,在本公开中进行了说明的各方式/实施方式的处理过程、序列、流程图等,只要不矛盾则也可以调换顺序。例如,针对在本公开中进行了说明的方法,使用例示的顺序来提示各种各样的步骤的元素,但并不限定于所提示的特定的顺序。
在本公开中进行了说明的各方式/实施方式也可以应用于LTE(长期演进(LongTerm Evolution))、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(第四代移动通信系统(4th generation mobile communication system))、5G(第五代移动通信系统(5th generation mobile communication system))、FRA(未来无线接入(Future Radio Access))、New-RAT(无线接入技术(Radio Access Technology))、NR(新无线(New Radio))、NX(新无线接入(New radio access))、FX(新一代无线接入(Futuregeneration radio access))、GSM(注册商标)(全球移动通信系统(Global System forMobile communications))、CDMA2000、UMB(超移动宽带(Ultra Mobile Broadband))、IEEE802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE802.20、UWB(超宽带(Ultra-WideBand))、Bluetooth(蓝牙)(注册商标)、利用其他恰当的无线通信方法的系统、基于它们而扩展得到的下一代系统等中。此外,多个系统还可以被组合(例如,LTE或者LTE-A、与5G的组合等)来应用。
在本公开中使用的“基于”这一记载,只要没有特别地写明,就不表示“仅基于”的意思。换言之,“基于”这一记载表示“仅基于”和“至少基于”这两者的意思。
任何对使用了在本公开中使用的“第一”、“第二”等称呼的元素的参照均不会全面地限定这些元素的量或者顺序。这些称呼在本公开中可以作为区分两个以上的元素之间的便利的方法来使用。因此,关于第一和第二元素的参照,并不表示仅可以采用两个元素的意思、或者第一元素必须以某种形式优先于第二元素的意思。
在本公开中使用的“判断(决定)(determining)”这一术语在有些情况下包含多种多样的动作。例如,“判断(决定)”还可以被视为对判定(judging)、计算(calculating)、算出(computing)、处理(processing)、导出(deriving)、调查(investigating)、搜索(looking up(查找)、search、inquiry(查询))(例如表格、数据库或者其他数据结构中的搜索)、确认(ascertaining)等进行“判断(决定)”的情况。
此外,“判断(决定)”也可以被视为对接收(receiving)(例如,接收信息)、发送(transmitting)(例如,发送信息)、输入(input)、输出(output)、访问(accessing)(例如,访问存储器中的数据)等进行“判断(决定)”的情况。
此外,“判断(决定)”还可以被视为对解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等进行“判断(决定)”的情况。也就是说,“判断(决定)”还可以被视为对一些动作进行“判断(决定)”的情况。
此外,“判断(决定)”还可以解读为“设想(assuming)”、“期待(expecting)”、“视为(considering)”等。
在本公开中使用的“连接(connected)”、“结合(coupled)”这样的术语,或者它们的所有变形,表示两个或其以上的元素间的直接或者间接的所有连接或者结合的意思,并能够包含在相互“连接”或者“结合”的两个元素间存在一个或一个以上的中间元素这一情况。元素间的结合或者连接可以是物理上的,也可以是逻辑上的,或者还可以是这些的组合。例如,“连接”也可以解读为“接入(access)”。
在本公开中,在连接两个元素的情况下,能够认为使用一个以上的电线、线缆、印刷电连接等,以及作为若干个非限定且非包括的示例而使用具有无线频域、微波区域、光(可见以及不可见的两者)区域的波长的电磁能量等,来相互“连接”或“结合”。
在本公开中,“A与B不同”这样的术语也可以表示“A与B相互不同”的意思。另外,该术语也可以表示“A和B分别与C不同”的意思。“分离”、“结合”等术语也可以同样地被解释为“不同”。
在本公开中,在使用“包含(include)”、“包含有(including)”、和它们的变形的情况下,这些术语与术语“具备(comprising)”同样地,是指包括性的意思。进一步,在本公开中使用的术语“或者(or)”不是指异或的意思。
在本公开中,例如在如英语中的a、an以及the那样通过翻译追加了冠词的情况下,本公开还可以包含接在这些冠词之后的名词是复数形式的情况。
以上,针对本公开所涉及的发明详细地进行了说明,但是对本领域技术人员而言,本公开所涉及的发明显然并不限定于本公开中进行了说明的实施方式。本公开所涉及的发明在不脱离基于权利要求书的记载而确定的本发明的主旨和范围的情况下,能够作为修正和变更方式来实施。因此,本公开的记载以例示说明为目的,不带有对本公开所涉及的发明任何限制性的意思。

Claims (5)

1.一种用户终端,其特征在于,具有:
接收单元,遍及特定的时域,利用不同的接收空域滤波器,反复接收与发送设定指示状态即TCI状态进行了关联的特定的参考信号;以及
控制单元,应用基于所述特定的参考信号的反复接收而决定的特定的接收空域滤波器,来控制下行物理信道的接收。
2.根据权利要求1所述的用户终端,其特征在于,
针对在预先被设定的特定资源中被发送的所述特定的参考信号,应用多个发送空域滤波器中的一个。
3.根据权利要求1所述的用户终端,其特征在于,
所述控制单元设想为,被应用了不同的发送域滤波器的所述特定的参考信号分别被分配给不同的资源。
4.根据权利要求3所述的用户终端,其特征在于,
所述控制单元设想为,在所述特定的参考信号的准共址发生变化的情况下,被分配了特定的参考信号的资源发生变更。
5.一种无线通信方法,其特征在于,具有:
遍及特定的时域,利用不同的接收空域滤波器,反复接收与发送设定指示状态即TCI状态进行了关联的特定的参考信号的步骤;以及
应用基于所述特定的参考信号的反复接收而决定的特定的接收空域滤波器,来控制下行物理信道的接收的步骤。
CN201880099194.1A 2018-11-02 2018-11-02 用户终端以及无线通信方法 Active CN112997421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311038733.XA CN117202270A (zh) 2018-11-02 2018-11-02 用户终端以及无线通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/040903 WO2020090120A1 (ja) 2018-11-02 2018-11-02 ユーザ端末及び無線通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202311038733.XA Division CN117202270A (zh) 2018-11-02 2018-11-02 用户终端以及无线通信方法

Publications (2)

Publication Number Publication Date
CN112997421A CN112997421A (zh) 2021-06-18
CN112997421B true CN112997421B (zh) 2023-08-22

Family

ID=70463623

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880099194.1A Active CN112997421B (zh) 2018-11-02 2018-11-02 用户终端以及无线通信方法
CN202311038733.XA Pending CN117202270A (zh) 2018-11-02 2018-11-02 用户终端以及无线通信方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202311038733.XA Pending CN117202270A (zh) 2018-11-02 2018-11-02 用户终端以及无线通信方法

Country Status (2)

Country Link
CN (2) CN112997421B (zh)
WO (1) WO2020090120A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826510B (zh) * 2021-01-18 2023-08-18 大唐移动通信设备有限公司 一种信息处理方法、装置、终端及网络设备
CN117083942A (zh) * 2021-04-02 2023-11-17 中兴通讯股份有限公司 无线网络中多波束通信的参考信号配置
WO2023162436A1 (ja) * 2022-02-24 2023-08-31 株式会社Nttドコモ 端末、無線通信方法及び基地局

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1352490A (zh) * 2000-11-15 2002-06-05 华为技术有限公司 无线通信系统中数字波束形成方法、模块及其阵列接收机
WO2014045755A1 (ja) * 2012-09-20 2014-03-27 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、ユーザ端末、無線基地局及び無線通信方法
CN104145496A (zh) * 2012-03-06 2014-11-12 夏普株式会社 终端装置、基站装置、通信方法、集成电路
CN106559371A (zh) * 2015-09-24 2017-04-05 索尼公司 用于无线通信的电子设备以及无线通信方法
WO2018129300A1 (en) * 2017-01-06 2018-07-12 Idac Holdings, Inc. Beam failure recovery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237513B2 (en) * 2014-06-13 2016-01-12 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Method for performing a cell search in multiple antenna wireless systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1352490A (zh) * 2000-11-15 2002-06-05 华为技术有限公司 无线通信系统中数字波束形成方法、模块及其阵列接收机
CN104145496A (zh) * 2012-03-06 2014-11-12 夏普株式会社 终端装置、基站装置、通信方法、集成电路
WO2014045755A1 (ja) * 2012-09-20 2014-03-27 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、ユーザ端末、無線基地局及び無線通信方法
CN106559371A (zh) * 2015-09-24 2017-04-05 索尼公司 用于无线通信的电子设备以及无线通信方法
WO2018129300A1 (en) * 2017-01-06 2018-07-12 Idac Holdings, Inc. Beam failure recovery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Maintenance on Reference Signals and QCL;Qualcomm Incorporated;3GPP TSG RAN WG1 Meeting #94bis R1-1811232;全文 *

Also Published As

Publication number Publication date
CN112997421A (zh) 2021-06-18
WO2020090120A1 (ja) 2020-05-07
CN117202270A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
CN113228773B (zh) 用户终端以及无线通信方法
CN113748615B (zh) 用户终端以及无线通信方法
US11632164B2 (en) User terminal and radio communication method
CN113170482B (zh) 终端、基站、系统以及无线通信方法
CN114557002B (zh) 终端以及无线通信方法
CN113574943A (zh) 用户终端以及无线通信方法
CN113940107B (zh) 终端、无线通信方法以及系统
CN113170481B (zh) 发送装置以及接收装置
CN114631346B (zh) 终端以及无线通信方法
CN113228735A (zh) 用户终端以及无线通信方法
CN114128340B (zh) 用户终端以及无线通信方法
CN113906778B (zh) 终端、系统以及无线通信方法
CN112997421B (zh) 用户终端以及无线通信方法
CN113711553B (zh) 终端、基站、系统以及无线通信方法
CN116569630A (zh) 终端、无线通信方法以及基站
CN113273094A (zh) 用户终端
CN114424609B (zh) 终端以及无线通信方法
CN114009091B (zh) 用户终端以及无线通信方法
CN116325854A (zh) 终端、无线通信方法及基站
US20230319608A1 (en) Terminal, radio communication method, and base station
CN115004746B (zh) 终端以及无线通信方法
CN114503639B (zh) 终端以及无线通信方法
CN113557783B (zh) 用户终端以及无线通信方法
CN116325858A (zh) 终端、无线通信方法以及基站
CN116158153A (zh) 终端、无线通信方法以及基站

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant