CN112989615A - 基于卡方变异的ssa的fsc赛车转向梯形优化方法 - Google Patents
基于卡方变异的ssa的fsc赛车转向梯形优化方法 Download PDFInfo
- Publication number
- CN112989615A CN112989615A CN202110293907.1A CN202110293907A CN112989615A CN 112989615 A CN112989615 A CN 112989615A CN 202110293907 A CN202110293907 A CN 202110293907A CN 112989615 A CN112989615 A CN 112989615A
- Authority
- CN
- China
- Prior art keywords
- steering
- chi
- formula
- ssa
- relation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Computing Systems (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Evolutionary Computation (AREA)
- Strategic Management (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Databases & Information Systems (AREA)
- Development Economics (AREA)
- Algebra (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
本发明公开了一种基于卡方变异的SSA的FSC赛车转向梯形优化方法,S1:将整车坐标系作为转向梯形坐标系,根据转向梯形坐标系建立内外轮转角的实际转向关系,同时根据阿克曼转向建立目标转向关系;S2:将卡方变异引入麻雀搜索算法,并建立优化目标函数,利用优化目标函数使实际转向关系趋向于目标转向关系。本发明可以对赛车转向梯形进行优化,从而提高赛车转向性能。
Description
技术领域
本发明涉及赛车技术领域,具体涉及基于卡方变异的SSA的FSC赛车转向梯形优化方法。
背景技术
中国大学生方程式汽车大赛(Formula Student China,简称FSC)是一项由中国汽车工程学会举办、国内外70多所大学大学生参与赛车设计、制造的系列赛事,近年来越来越多的高校投入该赛事,被誉为中国汽车工程师的摇篮。转向梯形的设计直接影响赛车转向性能,继而影响赛车动态赛成绩,越来越多的国内外学者将研究方向转向转向梯形优化。L.Zhang等使用蒙特卡罗方法等传统优化算法优化转向梯形,但存在优化效率低的问题。吴平等利用RBF神经网络优化转向梯形断开点,将空间转型梯形简化为平面转向梯形,其优化结果与实际转向梯形有一定误差。
1975年Holland根据生物优胜劣汰的进化规律提出遗传算法,SMETS P于1991年根据蚁群觅食行为提出蚁群算法和Kennedy于1995年根据鸟类觅食行为提出粒子群算法,此后越来越多的学者根据生物特性提出了多种群智能优化算法和改进算法,如灰狼优化算法、蝗虫算法等。虽然群智能优化算法相比传统优化算法具有稳健性强、应用范围广的特点,但存在易陷入局部最优解,导致算法早熟的问题。
麻雀搜索算法(SSA)由薛建凯等于2020年提出,对比传统优化算法和传统群智能优化算法具有收敛速度快、求解精度高、稳健性强的优点,广泛应用领域广,但依然无法克服群智能优化算法在收敛后期易陷入局部最优解导致算法早熟,进而导致稳健性较差的缺点,使得转向梯形优化还存在优化不佳的问题。
发明内容
本发明的目的在于,提供一种基于卡方变异的SSA的FSC赛车转向梯形优化方法。本发明可以对赛车转向梯形进行优化,从而提高赛车转向性能。
为解决上述技术问题,本发明提供的技术方案如下:基于卡方变异的SSA的FSC赛车转向梯形优化方法,按以下步骤进行:
S1:将整车坐标系作为转向梯形坐标系,根据转向梯形坐标系建立内外轮转角的实际转向关系,同时根据阿克曼转向建立目标转向关系;
S2:将卡方变异引入麻雀搜索算法,并建立优化目标函数,利用优化目标函数使实际转向关系趋向于目标转向关系。
上述的基于卡方变异的SSA的FSC赛车转向梯形优化方法,所述实际转向关系的表达式如下:
θi1=f1(θo);
式中:θi1为符合实际转向关系的内轮转角;θo为外轮转角;f1为实际转向关系函数。
前述的基于卡方变异的SSA的FSC赛车转向梯形优化方法,所述目标转向关系的表达式如下:
式中:θi2为符合目标转向关系的内轮转角,K为阿克曼校正系数,L为轴距,θo为外轮转角;n为转向梯形坐标系中左梯形臂旋转中心与右梯形臂旋转中心的距离。
前述的基于卡方变异的SSA的FSC赛车转向梯形优化方法,将卡方变异引入麻雀搜索算法如下:
1)初始化种群;
式中:t表示当前迭代次数,表示第t次迭代时第i个麻雀个体的位置;ChiSquare(ν)为服从自由度为v的卡方分布的数,λ被随机赋值为正负1;Q为服从正态分布的随机数,L为1×d的全一矩阵;当R2<ST时,觅食环境安全,发现者广泛搜索食物,当R2>ST时,出现捕食者,发现者迅速转移到其它安全的地方进行觅食;
式中:Xbest表示当前最优位置,Xworst表示当前最差位置,A+=AT(AAT)-1,A表示个各元素为1或-1的1×d的矩阵,AT为A的转置矩阵;
4)根据公式
式中:β为均值为0,方差为1的正态分布随机数,K∈[-1,1]为一随机数,fi为当前个体适应度值,fbest和fworst分别为当前最优和最差适应度值,ε为一极小常数,避免分母为零;
6)若达到最大迭代次数,输出最优值麻雀位置及适应度值,否则返回步骤2),重复迭代。
前述的基于卡方变异的SSA的FSC赛车转向梯形优化方法,所述的优化目标函数如下:
式中:x为优化变量,即麻雀位置;w(θo)为加权函数,根据赛车角度传感器数据获取,θo为外轮转角;
利用优化目标函数使实际转向关系趋向于目标转向关系,求解过程如下:
(1)首先初始化转向梯形坐标系参数;
(2)将右轮转动固定角度;
(3)依次求解转向梯形坐标系中与转向有关的点;
(4)左轮转动开始搜索,解出左轮转动角度;
(5)若右轮转的角度大于右轮最大转动角度,执行步骤(6),否则返回步骤(2);
(6)根据优化目标函数计算适应度。
与现有技术相比,本发明将整车坐标系作为转向梯形坐标系,根据转向梯形坐标系建立内外轮转角的实际转向关系,同时根据阿克曼转向建立目标转向关系;再将卡方变异引入麻雀搜索算法,并建立优化目标函数,利用优化目标函数使实际转向关系趋向于目标转向关系,由此本发明可以对赛车转向梯形进行优化,从而提高赛车转向性能。此外,本发明将卡方变异引入麻雀搜索算法中,由于卡方分布一定会发生变异,不仅部分保留了局部变异能力,同时增强了全局变异概率,故将卡方变异引入SSA,可充分保留SSA的局部搜索能力,同时增强SSA的全局搜索能力,有效避免SSA迭代后期陷入局部最优解,导致SSA“早熟”,提高SSA稳健性;同时由于发现者在执行广泛搜索策略时,搜索范围会随着迭代次数的增加逐渐减小,导致SSA在迭代后期全局搜索能力变差,易陷入局部最优解;本发明使用高斯随机分布改进发现者更新公式,虽然高斯随机分布搜索范围遍历整个搜索空间,但高斯随机分布有一定概率使发现者进行局部搜索或位置不变,会减少发现者广泛搜索的概率,进一步地可以避免陷入最优解。
附图说明
图1是前置断开式空间转向梯形的示意图;
图2是本发明改进的麻雀搜索算法流程示意图;
图3是各算法收敛特性曲线示意图;
图4是各算法优化后的转向特性曲线与目标曲线的绝对误差示意图。
具体实施方式
下面结合实施例和附图对本发明作进一步的说明,但并不作为对本发明限制的依据。
实施例:基于卡方变异的SSA的FSC赛车转向梯形优化方法,按以下步骤进行:
S1:将整车坐标系作为转向梯形坐标系,本实施例以前置断开式转向梯形为例,其坐标系如图1所示,Z轴垂直XOY平面指向纸面外,点A为左侧梯形臂旋转中心,即点B在MN上的垂足,点B为左转向节臂球铰中心,点C为转向梯形左侧断开点,M为左侧上横臂外点,D、E、F分别与C、B、A关于YOZ平面对称,且n=||AF||,根据转向梯形坐标系建立如下的内外轮转角的实际转向关系:
θi1=f1(θo);
式中:θi1为符合实际转向关系的内轮转角;θo为外轮转角;f1为实际转向关系函数,根据图1求解,其并非一个确切的计算公式,本实施例中只是用θi1=f1(θo)表达实际转向关系,目的在于后续利用目标优化函数使实际转向关系来趋向于目标转向关系。
同时为保证车轮做纯滚动运动,赛车车轮应符合阿克曼转向,但在由于赛车在行驶过程中尤其是高速过弯时侧向力较大,导致车轮存在侧偏现象明显,即车轮前进方向与车轮方向不同,赛车车轮应符合考虑侧偏角存在的阿克曼转向关系,即目标转向关系,表达式如下:
式中:θi2为符合目标转向关系的内轮转角,K为阿克曼校正系数,L为轴距,θo为外轮转角。
S2:将卡方变异引入麻雀搜索算法,麻雀搜索算法通过模仿麻雀觅食搜索最优解,是发现者-跟随者模型的一种,并在发现者-跟随者模型基础上增加了预警侦查机制。麻雀搜索算法依据适应度升序将麻雀分为发现者、抢夺发现者食物的追随者、因饥肠辘辘需要广泛搜索的追随者,依次更新发现者和追随者后,从种群中随机挑选意识到危险的麻雀并更新。如图2所示,过程如下:
1)初始化种群;
式中:t表示当前迭代次数,表示第t次迭代时第i个麻雀个体的位置;ChiSquare(ν)为服从自由度为v的卡方分布的数,v越大,算法全局搜索能力越强,局部搜索能力越弱,反之亦然,λ被随机赋值为正负1;Q为服从正态分布的随机数,L为1×d的全一矩阵;当R2<ST时,觅食环境安全,发现者广泛搜索食物,当R2>ST时,出现捕食者,发现者迅速转移到其它安全的地方进行觅食;
本发明的公式是对原先的发现者更新公式作了改进,由于发现者在执行广泛搜索策略时,搜索范围会随着迭代次数的增加逐渐减小,导致SSA在迭代后期全局搜索能力变差,易陷入局部最优解。因此本发明使用高斯随机分布改进发现者更新公式,虽然高斯随机分布搜索范围遍历整个搜索空间,但高斯随机分布有一定概率使发现者进行局部搜索或位置不变,会减少发现者广泛搜索的概率。
式中:Xbest表示当前最优位置,Xworst表示当前最差位置,A+=AT(AAT)-1,A表示个各元素为1或-1的1×d的矩阵,AT为A的转置矩阵;位于适应度升序前10%或20%到50%的麻雀争夺发现者实物,位于适应度升序后50%的麻雀执行广泛搜索策略。
式中:β为均值为0,方差为1的正态分布随机数,K∈[-1,1]为一随机数,fi为当前个体适应度值,fbest和fworst分别为当前最优和最差适应度值,ε为一极小常数,避免分母为零;
6)若达到最大迭代次数,输出最优值麻雀位置及适应度值,否则返回步骤2),重复迭代。
本实施例中的转向梯形优化的目的是通过改变点B、点C初始坐标使实际转向关系θi1=f1(θo)靠近目标转向关系θi2=f2(θo),两者误差越小,优化效果越好,因此通过建立优化目标函数,利用优化目标函数使实际转向关系趋向于目标转向关系,即,所述的优化目标函数如下:
式中:x为优化变量,即麻雀位置;w(θo)为加权函数,根据赛车角度传感器数据获取,θo为外轮转角;其中:
式中:θmax为外轮最大转角.
优化变量取值范围主要受结构空间限制,本实施例优化变量范围如表1所示:
表1
利用优化目标函数使实际转向关系趋向于目标转向关系,求解过程如下:
(1)首先初始化转向梯形坐标系参数;
(2)将右轮转动固定角度step_o,单位为角度;
(3)依次求解转向梯形坐标系中点E(右转向节臂球铰中心)、点D(右转向梯形断开点)和点C(左转向梯形断开点);
(4)左轮转动开始搜索,解出左轮转动角度,求解精度为step_i,单位为角度;
(5)若右轮转的角度大于右轮最大转动角度θmax,执行步骤(6),否则返回步骤(2);
(6)根据优化目标函数计算适应度,程序结束。
基于卡方变异的麻雀搜索算法在求解时会多次调用上述6个步骤,在输入一组优化变量x后,调用上述6个步骤后得到这组优化变量对应的适应度值。其中步骤1-5仿真原地转向实验,得到实际内外轮转向关系θi1=f1(θo),步骤6根据公式
为验证本发明的优越性,在intel(R)Core(TM)i5-8250U@1.6GHz 1.8GHz,内存8G,Windows10系统和Matlab R2020a下对GWO、BA、CSO、SSA、GSSA和本发明的方法独立对比试验100次,种群数量为40,最大迭代次数60,各算法参数设置如下:
表2
其中,a为最优解,A、C为系数向量,Q为频率,A为响度,r为脉冲率,G为鸡群组数,rPer为公鸡比例,hPer为母鸡比例,mPer为孵小鸡的母鸡比例,F为随机参数,PD为发现者比例,SD为意识到危险的麻雀比例。μ为高斯变异均值,θ为高斯变异均值。
空间转向梯形优化问题参数设置如表3所示:
表3
选取各算法100次计算结果中适应度值与均值最接近的结果代表该算法求解结果,结果均取三位小数,并四舍五入,如表4所示。
表4
各算法收敛特性曲线如图3所示,各算法优化后的转向特性曲线与目标曲线的绝对误差|f1(θo)-f2(θo)|如图4所示:
在各算法求解的结果中,求解结果均值越低,算法的寻优精度越高,标准差越小,算法稳健性越强,平均耗时越短,算法的实时性表现越好。因此由表4可知,本发明相比传统群智能优化算法求解结果均值和标准差更低,且本发明寻优精度相对基本SSA和GSSA分别提高5.44%和4.35%,本发明稳健性相对基本SSA和GSSA分别提高57.78%和65.99%,平均耗时略低于GSSA但远高于其他算法。CSO寻优精度相对SSA及其改进算法略高,但稳定性仅次于本发明。GWO寻优精度略差于CSO,稳健性较差,但平均耗时最短。BA寻优精度和稳健性都远低于其他算法。这表明本发明相对其他算法具有良好的寻优能力和较强的稳健性,且是7种算法中寻优精度最高且稳健性最强的。这是因为本发明引入的卡方变异相对高斯变异全局变异能力更强,同时保留了一定的局部变异能力,可有效克服SSA在迭代后期跳出局部最优解的缺点。
由图4可知,各算法优化后的转向特性曲线均与目标转向特性曲线有2个交点,且外轮转角小于10°时的误差小于外轮转角大于10°小于25°时的误差小于外轮转角大于25°时的误差,这主要是因为加权函数w(θo)着重考虑赛车低速时的转向特性。当外轮转角小于25°时,各算法优化后的误差与其他算法相差不大,而本发明优化后的误差在外轮转角大于25°时小于其他算法。这说明本发明在降低外轮大转角转向特性的同时兼顾了外轮小转角转向特性。
综上所述,本发明通过引入卡方变异、牺牲部分求解时长,既保留了高斯变异一定的局部搜索能力,又提高了全局搜索能力,可改善SSA后期易陷入局部最优解的问题,提高SSA的寻优能力和稳健性,可在前置断开式空间转向梯形优化问题中搜索到一组接近目标转向关系的空间点位。
Claims (5)
1.基于卡方变异的SSA的FSC赛车转向梯形优化方法,其特征在于:按以下步骤进行:
S1:将整车坐标系作为转向梯形坐标系,根据转向梯形坐标系建立内外轮转角的实际转向关系,同时根据阿克曼转向建立目标转向关系;
S2:将卡方变异引入麻雀搜索算法,并建立优化目标函数,利用优化目标函数使实际转向关系趋向于目标转向关系。
2.根据权利要求1所述的基于卡方变异的SSA的FSC赛车转向梯形优化方法,其特征在于:所述实际转向关系的表达式如下:
θi1=f1(θo);
式中:θi1为符合实际转向关系的内轮转角;θo为外轮转角;f1为实际转向关系函数。
4.根据权利要求1所述的基于卡方变异的SSA的FSC赛车转向梯形优化方法,其特征在于:将卡方变异引入麻雀搜索算法如下:
1)初始化种群;
式中:t表示当前迭代次数,表示第t次迭代时第i个麻雀个体的位置;ChiSquare(ν)为服从自由度为v的卡方分布的数,λ被随机赋值为正负1;Q为服从正态分布的随机数,L为1×d的全一矩阵;当R2<ST时,觅食环境安全,发现者广泛搜索食物,当R2>ST时,出现捕食者,发现者迅速转移到其它安全的地方进行觅食;
式中:Xbest表示当前最优位置,Xworst表示当前最差位置,A+=AT(AAT)-1,A表示个各元素为1或-1的1×d的矩阵,AT为A的转置矩阵;
式中:β为均值为0,方差为1的正态分布随机数,K∈[-1,1]为一随机数,fi为当前个体适应度值,fbest和fworst分别为当前最优和最差适应度值,ε为一极小常数,避免分母为零;
6)若达到最大迭代次数,输出最优值麻雀位置及适应度值,否则返回步骤2),重复迭代。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110293907.1A CN112989615B (zh) | 2021-03-19 | 2021-03-19 | 基于卡方变异的ssa的fsc赛车转向梯形优化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110293907.1A CN112989615B (zh) | 2021-03-19 | 2021-03-19 | 基于卡方变异的ssa的fsc赛车转向梯形优化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112989615A true CN112989615A (zh) | 2021-06-18 |
CN112989615B CN112989615B (zh) | 2023-10-17 |
Family
ID=76333342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110293907.1A Active CN112989615B (zh) | 2021-03-19 | 2021-03-19 | 基于卡方变异的ssa的fsc赛车转向梯形优化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112989615B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114872786A (zh) * | 2022-05-26 | 2022-08-09 | 湖南三一中型起重机械有限公司 | 电控转向桥转角确定方法、装置、设备及作业机械 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112000096A (zh) * | 2020-08-12 | 2020-11-27 | 中国计量大学 | 一种基于麻雀搜索算法的差速agv轨迹跟踪控制方法 |
CN112329934A (zh) * | 2020-11-17 | 2021-02-05 | 江苏科技大学 | 一种基于改进麻雀搜索算法的rbf神经网络优化算法 |
-
2021
- 2021-03-19 CN CN202110293907.1A patent/CN112989615B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112000096A (zh) * | 2020-08-12 | 2020-11-27 | 中国计量大学 | 一种基于麻雀搜索算法的差速agv轨迹跟踪控制方法 |
CN112329934A (zh) * | 2020-11-17 | 2021-02-05 | 江苏科技大学 | 一种基于改进麻雀搜索算法的rbf神经网络优化算法 |
Non-Patent Citations (5)
Title |
---|
AALTJE CAMIELLE NOORDAM等: "Association between caregivers\' knowledge and care seeking behaviour for children with symptoms of pneumonia in six sub-Saharan African Countries", 《BMC HEALTH SERVICE RESEARCH》 * |
刘敏;黄友锐;徐善永;韩涛;: "改进型神经网络在室内三维定位中的应用研究", 计算机应用研究, no. 01 * |
吕鑫等: "基于改进麻雀搜索算法的多阈值图像分割", 《系统工程与电子技术》, vol. 43, no. 2 * |
毛清华等: "融合柯西变异和反向学习的改进麻雀算法", 《计算机科学与探索》 * |
赵聪: "FSAE赛车转向系统设计及性能分析", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114872786A (zh) * | 2022-05-26 | 2022-08-09 | 湖南三一中型起重机械有限公司 | 电控转向桥转角确定方法、装置、设备及作业机械 |
Also Published As
Publication number | Publication date |
---|---|
CN112989615B (zh) | 2023-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112990419A (zh) | 基于改进麻雀搜索算法的优化方法 | |
CN110378439B (zh) | 基于Q-Learning算法的单机器人路径规划方法 | |
CN107169557A (zh) | 一种对布谷鸟优化算法进行改进的方法 | |
CN108388250B (zh) | 一种基于自适应布谷鸟搜索算法的水面无人艇路径规划方法 | |
CN112989615A (zh) | 基于卡方变异的ssa的fsc赛车转向梯形优化方法 | |
CN115509233B (zh) | 基于优先经验回放机制的机器人路径规划方法及系统 | |
CN112465160A (zh) | 一种基于vr的车辆维修保养辅助系统 | |
CN117707168A (zh) | 一种基于深度强化学习的机器人避障路径规划方法 | |
CN107272419A (zh) | 一种基于改进pso的驾驶员自适应方向控制方法 | |
CN110687797A (zh) | 一种基于位置和姿态的自适应mpc泊车横向控制方法 | |
CN116127848A (zh) | 一种基于深度强化学习的多无人机协同追踪方法 | |
CN116880197B (zh) | 基于多目标多种群骨干粒子群优化算法的水下机器人作业轨迹规划优化方法及其优化系统 | |
CN117195729A (zh) | 一种具有时间窗约束的多无人机多目标协同分配方法及系统 | |
CN113190018A (zh) | 一种基于改进航向误差率的智能体路径控制方法 | |
CN115903808A (zh) | 基于粒子群、蚁群和A-Star算法结合的机器人路径规划方法 | |
CN112084700A (zh) | 一种基于a3c算法的混合动力系统能量管理方法 | |
CN115268494B (zh) | 基于分层强化学习的无人机路径规划方法 | |
CN116495014A (zh) | 一种自进化非博弈自动驾驶车辆人机共驾方法及系统 | |
CN114200960B (zh) | 基于禁忌表改进麻雀算法的无人机集群搜索控制优化方法 | |
CN114997048A (zh) | 基于探索策略改进的td3算法的自动驾驶车辆车道保持方法 | |
Tang et al. | Reinforcement learning for robots path planning with rule-based shallow-trial | |
CN111221338A (zh) | 一种路径跟踪的方法、装置、设备及存储介质 | |
CN115755876A (zh) | 一种基于rrt的改进全局路径规划方法 | |
CN118243109B (zh) | 基于多目标混合算法的拖拉机全局路径规划方法及系统 | |
Gao et al. | Hybrid path planning algorithm of the mobile agent based on Q-learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |