CN112984673B - 一种模块化容错式新风空调机 - Google Patents

一种模块化容错式新风空调机 Download PDF

Info

Publication number
CN112984673B
CN112984673B CN202110337667.0A CN202110337667A CN112984673B CN 112984673 B CN112984673 B CN 112984673B CN 202110337667 A CN202110337667 A CN 202110337667A CN 112984673 B CN112984673 B CN 112984673B
Authority
CN
China
Prior art keywords
fault
air
tolerant
module
air inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110337667.0A
Other languages
English (en)
Other versions
CN112984673A (zh
Inventor
娄阳
周莹
丁晚霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bortel Chongqing Electric Power Technology Co ltd
Original Assignee
Bortel Chongqing Electric Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bortel Chongqing Electric Power Technology Co ltd filed Critical Bortel Chongqing Electric Power Technology Co ltd
Priority to CN202110337667.0A priority Critical patent/CN112984673B/zh
Publication of CN112984673A publication Critical patent/CN112984673A/zh
Application granted granted Critical
Publication of CN112984673B publication Critical patent/CN112984673B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提出了一种模块化容错式新风空调机及其控制方法,包括箱体,其特征在于,还包括:智能控制箱、m个容错式模块,其中m为大于1的正整数,以及用于固定安装智能控制箱的智能控制箱固定安装座和用于固定安装m个容错式模块的m个容错式模块固定安装座。本发明装置采用模块化容错结构,具有高可靠运行安全性,同时可以长时间连续运行。当某工作单元模块发生故障时,30S内自动切换备用工作单元模块,对于故障功能模块可以不停机更换维修。

Description

一种模块化容错式新风空调机
技术领域
本发明涉及空调技术领域,尤其涉及一种模块化容错式新风空调机。
背景技术
通信基站IT电子设备运行时,要散发大量的热量,这些热量必须及时传导走,否则会造成IT电子设备热崩溃宕机,给国家和社会带来严重的经济损失。目前,通信基站多采用3P分体空调散热问题,因而空调能耗占据通信基站总能耗的 40%~50%,再由于通信基站数量众多,每年需要花费巨额的空调电费。
发明内容
本发明旨在至少解决现有技术中存在的技术问题,特别创新地提出了一种模块化容错式新风空调机。
为了实现本发明的上述目的,本发明提供了一种模块化容错式新风空调机,包括箱体,还包括:设置在箱体内的用于固定安装智能控制箱的智能控制箱固定安装座和用于固定安装m个容错式模块的m个容错式模块固定安装座;其中m为大于1 的正整数;智能控制箱固定安装在智能控制箱固定安装座上;
m个容错式模块包括第1容错式模块、第2容错式模块、第3容错式模块、……、第m容错式模块,m个容错式模块固定安装座包括第1容错式模块固定安装座、第2容错式模块固定安装座、第3容错式模块固定安装座、……、第m容错式模块固定安装座;其第1容错式模块固定安装在第1容错式模块固定安装座上、第2 容错式模块固定安装在第2容错式模块固定安装座上、第3容错式模块固定安装在第3容错式模块固定安装座上、……、第m容错式模块固定安装在第m容错式模块固定安装座上;
任一容错式模块包括:自然通风模块和压缩制冷模块;压缩制冷模块工作时能将自然通风模块中的空气降温;
所述自然通风模块包括:第一进风格栅、蒸发湿膜、高效过滤层、轴流送风机、送风格栅;
从左至右依次是第一进风格栅、蒸发湿膜、高效过滤层、轴流送风机、送风格栅,即所述第一进风格栅位于最左侧,蒸发湿膜位于第一进风格栅的右侧,高效过滤层位于蒸发湿膜的左侧,蒸发器位于高效过滤层的右侧,轴流送风机位于蒸发器的右侧,轴流送风机的转速控制端与控制器的转速控制端相连,送风格栅位于轴流送风机的右侧;
还包括数据采集模块,数据采集模块包括进风温湿度传感器、出风温湿度传感器、第一压差传感器、第二压差传感器之一或者任意组合;
所述进风温湿度传感器的进风温湿度数据输出端与控制器的进风温湿度数据输入端相连,进风温湿度传感器设置安装于第一进风格栅处,用于记录、存储进风环境温湿度数据;
所述出风温湿度传感器的出风温湿度数据输出端与控制器的出风温湿度数据输入端相连,出风温湿度传感器设置安装于送风格栅,用于记录、存储出风环境温湿度数据;
所述第一压差传感器位于蒸发湿膜上,通过获取蒸发湿膜左右侧空气的压差,得到第一压差信号;控制器通过第一压差信号判断蒸发湿膜的脏堵和异常情况;
所述第二压差传感器位于高效过滤层上,通过获取高效过滤层左右侧空气的压差,得到第二压差信号;控制器通过第二压差信号判断高效过滤层的脏堵和异常情况;
所述第一进风格栅用于外进风;
所述蒸发湿膜用于吸热,使进入新风空调机内的自然空气降温和湿洗;
所述高效过滤层为插拔式高效过滤层,用于净化空气;
所述轴流送风机,用于将空气通送风格栅送入房间;
每个容错式模块中的控制器与智能控制箱相连,智能控制箱根据接收的模式执行以下操作:
模式一,自然通风模式:自然通风模块工作,压缩制冷模块不工作;
模式二,压缩制冷模式:自然通风模块和压缩制冷模块同时工作。
在本发明的一种优选实施方式中,所述压缩制冷模块包括:蒸发器,蒸发器设置于高效过滤层和轴流送风机之间,蒸发器工作时,将流过蒸发器的空气制冷。
在本发明的一种优选实施方式中,所述智能控制箱采用PLC逻辑控制器,用于自动切换新风空调机的运行模式;智能控制本新风空调机的启停、运行和故障报警;和自动记录能耗数据和数据分析。
在本发明的一种优选实施方式中,所述第一压差传感器、第二压差传感器采用的型号为QBM2030-1U。
在本发明的一种优选实施方式中,所述进风温湿度传感器、出风温湿度传感器采用的型号为HTU21D。
本发明还公开了一种模块化容错式新风空调机的控制方法,包括:
S1,第1容错式模块工作;
S11,启动自然通风模块:
空气自第一进风格栅进入,首先通过蒸发湿膜吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层净化,进入不工作状态下的压缩制冷模块,最后由轴流送风机,将空气通过进风短管和送风格栅输出;
S12,进风温湿度传感器检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S11;
S13,启动压缩制冷模块:
空气自第一进风格栅进入,首先通过蒸发湿膜吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层净化,进入工作状态下的压缩制冷模块,最后由轴流送风机,将冷空气通过进风短管和送风格栅输出;
同时制冷循环从热空气中交换出的热量,被压缩机排至冷凝器,环境冷空气自侧进风口吸入,流过冷凝器,带走热量,被散热风扇排到环境中;
S14,ΔT时间后,出风温湿度传感器检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S13;
S2,第2容错式模块工作;
S21,启动自然通风模块:
空气自第一进风格栅进入,首先通过蒸发湿膜吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层净化,进入不工作状态下的压缩制冷模块,最后由轴流送风机,将空气通过进风短管和送风格栅输出;
S22,进风温湿度传感器检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S21;
S23,启动压缩制冷模块:
空气自第一进风格栅进入,首先通过蒸发湿膜吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层净化,进入工作状态下的压缩制冷模块,最后由轴流送风机,将冷空气通过进风短管和送风格栅输出;
同时制冷循环从热空气中交换出的热量,被压缩机排至冷凝器,环境冷空气自侧进风口吸入,流过冷凝器,带走热量,被散热风扇排到环境中;
S24,ΔT时间后,出风温湿度传感器检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S23;
S3,第3容错式模块工作;
S31,启动自然通风模块:
空气自第一进风格栅进入,首先通过蒸发湿膜吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层净化,进入不工作状态下的压缩制冷模块,最后由轴流送风机,将空气通过进风短管和送风格栅输出;
S32,进风温湿度传感器检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S31;
S33,启动压缩制冷模块:
空气自第一进风格栅进入,首先通过蒸发湿膜吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层净化,进入工作状态下的压缩制冷模块,最后由轴流送风机,将冷空气通过进风短管和送风格栅输出;
同时制冷循环从热空气中交换出的热量,被压缩机排至冷凝器,环境冷空气自侧进风口吸入,流过冷凝器,带走热量,被散热风扇排到环境中;
S34,ΔT时间后,出风温湿度传感器检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S33;
........;
Sm,第m容错式模块工作;
Sm1,启动自然通风模块:
空气自第一进风格栅进入,首先通过蒸发湿膜吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层净化,进入不工作状态下的压缩制冷模块,最后由轴流送风机,将空气通过进风短管和送风格栅输出;
Sm2,进风温湿度传感器检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤Sm1;
Sm3,启动压缩制冷模块:
空气自第一进风格栅进入,首先通过蒸发湿膜吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层净化,进入工作状态下的压缩制冷模块,最后由轴流送风机,将冷空气通过进风短管和送风格栅输出;
同时制冷循环从热空气中交换出的热量,被压缩机排至冷凝器,环境冷空气自侧进风口吸入,流过冷凝器,带走热量,被散热风扇排到环境中。
在本发明的一种优选实施方式中,还包括通过移动智能手持设备查看模块化容错式新风空调机的运行参数,其通过移动智能手持设备查看模块化容错式新风空调机的运行参数的方法包括以下步骤:
S91,是否接收到查看模块化容错式新风空调机的运行参数的控制命令:
若接收到查看模块化容错式新风空调机的运行参数的控制命令,则获取其移动智能手持设备的移动智能手持设备号码,对其获取的移动智能手持设备的移动智能手持设备号码进行MD5计算,得到其云登陆码;
S92,云平台对其接收到的云登陆码与云平台存储的云登陆码存储库相核对,判断其接收到的云登陆码是否在云平台存储的云登陆码存储库中:
若接收到的云登陆码在云平台存储的云登陆码存储库中,执行步骤S93;
若接收到的云登陆码是否不在云平台存储的云登陆码存储库中,则提示登陆设备不正确;
S93,云平台向其移动智能手持设备发送通过码,该通过码为云登陆码进行MD 5计算得到的,判断其移动智能手持设备接收的通过码与移动智能手持设备计算得到的通过码是否相同:
若移动智能手持设备接收的通过码与移动智能手持设备计算得到的通过码相同,其移动智能手持设备计算得到的通过码为对移动智能手持设备计算得到的云登陆码进行MD5计算;则移动智能手持设备登陆云平台通过,可以进行相应的模块化容错式新风空调机的运行参数进行查看;
若移动智能手持设备接收的通过码与移动智能手持设备计算得到的通过码不相同,则移动智能手持设备登陆云平台不通过。
在本发明的一种优选实施方式中,模块化容错式新风空调机的运行参数包括进风环境温湿度数据、出风环境温湿度数据、蒸发湿膜左右侧空气的压差、高效过滤层左右侧空气的压差之一或者任意组合。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.本发明装置采用模块化容错结构,具有高可靠运行安全性,同时可以长时间连续运行。当某工作单元模块发生故障时,30S内自动切换备用工作单元模块,对于故障功能模块可以不停机更换维修。
2.本发明装置直接利用自然空气冷源,并通过湿膜自然蒸发降温,可直接利用 25℃~30℃高温位自然空气,大大提高了全年通信基站利用自然空气冷源的时段,从而使通信基站空调节能达到20%~30%。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明的结构示意图。
图2是本发明通信基站空调配置示意图。
图3是本发明通信基站3D布局示意图。
图4是本发明蒸发湿膜的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
本发明提供了一种模块化容错式新风空调机,包括箱体,还包括:设置在箱体内的用于固定安装智能控制箱的智能控制箱固定安装座和用于固定安装m个容错式模块的m个容错式模块固定安装座;其中m为大于1的正整数;智能控制箱固定安装在智能控制箱固定安装座上;
m个容错式模块包括第1容错式模块、第2容错式模块、第3容错式模块、……、第m容错式模块,m个容错式模块固定安装座包括第1容错式模块固定安装座、第2容错式模块固定安装座、第3容错式模块固定安装座、……、第m容错式模块固定安装座;其第1容错式模块固定安装在第1容错式模块固定安装座上、第2 容错式模块固定安装在第2容错式模块固定安装座上、第3容错式模块固定安装在第3容错式模块固定安装座上、……、第m容错式模块固定安装在第m容错式模块固定安装座上;
任一容错式模块如图1所示包括:自然通风模块和压缩制冷模块;压缩制冷模块工作时能将自然通风模块中的空气降温;
所述自然通风模块包括:第一进风格栅1、蒸发湿膜2、高效过滤层3、轴流送风机5、送风格栅7;
从左至右依次是第一进风格栅1、蒸发湿膜2、高效过滤层3、轴流送风机5、送风格栅7,即所述第一进风格栅1位于最左侧,蒸发湿膜2位于第一进风格栅1 的右侧,高效过滤层3位于蒸发湿膜2的左侧,蒸发器4位于高效过滤层3的右侧,轴流送风机5位于蒸发器4的右侧,轴流送风机5的转速控制端与控制器的转速控制端相连,送风格栅7位于轴流送风机5的右侧;
还包括数据采集模块,数据采集模块包括进风温湿度传感器15、出风温湿度传感器18、第一压差传感器16、第二压差传感器17之一或者任意组合;
所述进风温湿度传感器15的进风温湿度数据输出端与控制器的进风温湿度数据输入端相连,进风温湿度传感器15设置安装于第一进风格栅1处,用于记录、存储进风环境温湿度数据;
所述出风温湿度传感器18的出风温湿度数据输出端与控制器的出风温湿度数据输入端相连,出风温湿度传感器18设置安装于送风格栅7,用于记录、存储出风环境温湿度数据;
所述第一压差传感器16位于蒸发湿膜2上,通过获取蒸发湿膜2左右侧空气的压差,得到第一压差信号;控制器通过第一压差信号判断蒸发湿膜2的脏堵和异常情况;
所述第二压差传感器17位于高效过滤层3上,通过获取高效过滤层3左右侧空气的压差,得到第二压差信号;控制器通过第二压差信号判断高效过滤层3的脏堵和异常情况;
所述第一进风格栅1用于进风;
所述蒸发湿膜2用于吸热,使进入新风空调机内的自然空气降温和湿洗;
所述高效过滤层3为插拔式高效过滤层,用于净化空气;
所述轴流送风机5,用于将空气通过进风短管6和送风格栅7送入房间内部;
每个容错式模块中的控制器与智能控制箱相连,智能控制箱根据接收的模式执行以下操作:
模式一,自然通风模式:自然通风模块工作,压缩制冷模块不工作;
模式二,压缩制冷模式:自然通风模块和压缩制冷模块同时工作。
在本发明的一种优选实施方式中,所述压缩制冷模块包括:蒸发器4,蒸发器4 设置于高效过滤层3和轴流送风机5之间,蒸发器4工作时,将流过蒸发器4的空气制冷。压缩制冷模块还包括蒸发器4、散热进风口10、冷凝器11、压缩机12、第一散热风扇13;其蒸发器4、冷凝器11、压缩机12、蒸发器4、散热进风口10、第一散热风扇13的连接安装关系为现有技术,在此不做赘述。
在本发明的一种优选实施方式中,所述智能控制箱采用PLC逻辑控制器,用于自动切换新风空调机的运行模式;智能控制本新风空调机的启停、运行和故障报警;和自动记录能耗数据和数据分析。
在本发明的一种优选实施方式中,所述第一压差传感器16、第二压差传感器17 采用的型号为QBM2030-1U。
在本发明的一种优选实施方式中,所述进风温湿度传感器15、出风温湿度传感器18采用的型号为HTU21D。
本发明还公开了一种模块化容错式新风空调机的控制方法,包括:
S1,第1容错式模块工作;
S11,启动自然通风模块:
空气自第一进风格栅1进入,首先通过蒸发湿膜2吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层3净化,进入不工作状态下的压缩制冷模块(蒸发器4),最后由轴流送风机5,将空气通过进风短管6和送风格栅7 输出;
S12,进风温湿度传感器15检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S11;
S13,启动压缩制冷模块:
空气自第一进风格栅1进入,首先通过蒸发湿膜2吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层3净化,进入工作状态下的压缩制冷模块(蒸发器4),最后由轴流送风机5,将冷空气通过进风短管6和送风格栅7 输出;
同时制冷循环从热空气中交换出的热量,被压缩机12排至冷凝器11,环境冷空气自侧进风口10吸入,流过冷凝器11,带走热量,被散热风扇13排到环境中;
S14,ΔT时间后,出风温湿度传感器18检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S13;
S2,第2容错式模块工作;
S21,启动自然通风模块:
空气自第一进风格栅1进入,首先通过蒸发湿膜2吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层3净化,进入不工作状态下的压缩制冷模块(蒸发器4),最后由轴流送风机5,将空气通过进风短管6和送风格栅7 输出;
S22,进风温湿度传感器15检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S21;
S23,启动压缩制冷模块:
空气自第一进风格栅1进入,首先通过蒸发湿膜2吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层3净化,进入工作状态下的压缩制冷模块(蒸发器4),最后由轴流送风机5,将冷空气通过进风短管6和送风格栅7 输出;
同时制冷循环从热空气中交换出的热量,被压缩机12排至冷凝器11,环境冷空气自侧进风口10吸入,流过冷凝器11,带走热量,被散热风扇13排到环境中;
S24,ΔT时间后,出风温湿度传感器18检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S23;
S3,第3容错式模块工作;
S31,启动自然通风模块:
空气自第一进风格栅1进入,首先通过蒸发湿膜2吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层3净化,进入不工作状态下的压缩制冷模块,最后由轴流送风机5,将空气通过进风短管6和送风格栅7输出;
S32,进风温湿度传感器15检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S31;
S33,启动压缩制冷模块:
空气自第一进风格栅1进入,首先通过蒸发湿膜2吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层3净化,进入工作状态下的压缩制冷模块,最后由轴流送风机5,将冷空气通过进风短管6和送风格栅7输出;
同时制冷循环从热空气中交换出的热量,被压缩机12排至冷凝器11,环境冷空气自侧进风口10吸入,流过冷凝器11,带走热量,被散热风扇13排到环境中;
S34,ΔT时间后,出风温湿度传感器18检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S33;
........;
Sm,第m容错式模块工作;
Sm1,启动自然通风模块:
空气自第一进风格栅1进入,首先通过蒸发湿膜2吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层3净化,进入不工作状态下的压缩制冷模块,最后由轴流送风机5,将空气通过进风短管6和送风格栅7输出;
Sm2,进风温湿度传感器15检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤Sm1;
Sm3,启动压缩制冷模块:
空气自第一进风格栅1进入,首先通过蒸发湿膜2吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层3净化,进入工作状态下的压缩制冷模块,最后由轴流送风机5,将冷空气通过进风短管6和送风格栅7输出;
同时制冷循环从热空气中交换出的热量,被压缩机12排至冷凝器11,环境冷空气自侧进风口10吸入,流过冷凝器11,带走热量,被散热风扇13排到环境中。
在本发明的一种优选实施方式中,还包括通过移动智能手持设备查看模块化容错式新风空调机的运行参数,其通过移动智能手持设备查看模块化容错式新风空调机的运行参数的方法包括以下步骤:
S91,是否接收到查看模块化容错式新风空调机的运行参数的控制命令:
若接收到查看模块化容错式新风空调机的运行参数的控制命令,则获取其移动智能手持设备的移动智能手持设备号码,对其获取的移动智能手持设备的移动智能手持设备号码进行MD5计算,得到其云登陆码;其云登陆码的计算方法为:
M1′=MD5(M1),
其中,MD5()表示MD5算法;
M1表示移动智能手持设备号码;
M1′表示登陆码;其值为16位16进制的数值。
S92,云平台对其接收到的云登陆码与云平台存储的云登陆码存储库相核对,判断其接收到的云登陆码是否在云平台存储的云登陆码存储库中:
若接收到的云登陆码在云平台存储的云登陆码存储库中,执行步骤S93;
若接收到的云登陆码是否不在云平台存储的云登陆码存储库中,则提示登陆设备不正确;
S93,云平台向其移动智能手持设备发送通过码,该通过码为云登陆码进行MD 5计算得到的,判断其移动智能手持设备接收的通过码与移动智能手持设备计算得到的通过码是否相同:
若移动智能手持设备接收的通过码与移动智能手持设备计算得到的通过码相同,其移动智能手持设备计算得到的通过码为对移动智能手持设备计算得到的云登陆码进行MD5计算;则移动智能手持设备登陆云平台通过,可以进行相应的模块化容错式新风空调机的运行参数进行查看;
若移动智能手持设备接收的通过码与移动智能手持设备计算得到的通过码不相同,则移动智能手持设备登陆云平台不通过。
在本发明的一种优选实施方式中,模块化容错式新风空调机的运行参数包括进风环境温湿度数据、出风环境温湿度数据、蒸发湿膜2左右侧空气的压差、高效过滤层3左右侧空气的压差之一或者任意组合。
通信基站应用场景下空调配置如图2所示,包括恒温蓄电池柜20、蓄电池柜空调21、智能控制柜22、通信机柜23、空调机24;其中恒温蓄电池柜20的温度不超过25℃,通信机柜23的柜内温度不超过35℃。
通信基站应用场景下3D布局如图3所示,包括:本发明提出的模块化容错式新风空调机31,控制系统30、恒温蓄电池柜34、智能控制柜32、智能排风机33。
如图4所示,包括集水盒,在集水盒上设置有用于固定安装蒸发湿膜2的蒸发湿膜安装架,蒸发湿膜2固定安装在蒸发湿膜安装架上,以及在集水盒上设置有用于排走集水盒中水份的排水管道28,在蒸发湿膜2的顶部设置有用于固定安装末端滴水器的末端滴水器安装座,末端滴水器固定安装在末端滴水器安装座上,末端滴水器与软水管202相连。通过软水管202供水使蒸发湿膜2的表面湿润,空气流过时,从而使空气温度下降;多余的水则通过排水管道28流出。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (7)

1.一种模块化容错式新风空调机,包括箱体,其特征在于,还包括:设置在箱体内的用于固定安装智能控制箱的智能控制箱固定安装座和用于固定安装m个容错式模块的m个容错式模块固定安装座;其中m为大于1的正整数;智能控制箱固定安装在智能控制箱固定安装座上;
m个容错式模块包括第1容错式模块、第2容错式模块、第3容错式模块、……、第m容错式模块,m个容错式模块固定安装座包括第1容错式模块固定安装座、第2容错式模块固定安装座、第3容错式模块固定安装座、……、第m容错式模块固定安装座;其第1容错式模块固定安装在第1容错式模块固定安装座上、第2容错式模块固定安装在第2容错式模块固定安装座上、第3容错式模块固定安装在第3容错式模块固定安装座上、……、第m容错式模块固定安装在第m容错式模块固定安装座上;
任一容错式模块包括:自然通风模块和压缩制冷模块;压缩制冷模块工作时能将自然通风模块中的空气降温;
所述自然通风模块包括:第一进风格栅(1)、蒸发湿膜(2)、高效过滤层(3)、轴流送风机(5)、送风格栅(7);
从左至右依次是第一进风格栅(1)、蒸发湿膜(2)、高效过滤层(3)、轴流送风机(5)、送风格栅(7),即所述第一进风格栅(1)位于最左侧,蒸发湿膜(2)位于第一进风格栅(1)的右侧,高效过滤层(3)位于蒸发湿膜(2)的左侧,蒸发器(4)位于高效过滤层(3)的右侧,轴流送风机(5)位于蒸发器(4)的右侧,轴流送风机(5)的转速控制端与控制器的转速控制端相连,送风格栅(7)位于轴流送风机(5)的右侧;
还包括数据采集模块,数据采集模块包括进风温湿度传感器(15)、出风温湿度传感器(18)、第一压差传感器(16)、第二压差传感器(17)之一或者任意组合;
所述进风温湿度传感器(15)的进风温湿度数据输出端与控制器的进风温湿度数据输入端相连,进风温湿度传感器(15)设置安装于第一进风格栅(1)处,用于记录、存储进风环境温湿度数据;
所述出风温湿度传感器(18)的出风温湿度数据输出端与控制器的出风温湿度数据输入端相连,出风温湿度传感器(18)设置安装于送风格栅(7),用于记录、存储出风环境温湿度数据;
所述第一压差传感器(16)位于蒸发湿膜(2)上,通过获取蒸发湿膜(2)左右侧空气的压差,得到第一压差信号;控制器通过第一压差信号判断蒸发湿膜(2)的脏堵和异常情况;
所述第二压差传感器(17)位于高效过滤层(3)上,通过获取高效过滤层(3)左右侧空气的压差,得到第二压差信号;控制器通过第二压差信号判断高效过滤层(3)的脏堵和异常情况;
所述第一进风格栅(1)用于进风;
所述蒸发湿膜(2)用于吸热,使进入新风空调机内的自然空气降温和湿洗;
所述高效过滤层(3)为插拔式高效过滤层,用于净化空气;
所述轴流送风机(5),用于将空气通过送风格栅(7)送入房间;
每个容错式模块中的控制器与智能控制箱相连,智能控制箱根据接收的模式执行以下操作:
模式一,自然通风模式:自然通风模块工作,压缩制冷模块不工作;
模式二,压缩制冷模式:自然通风模块和压缩制冷模块同时工作;
所述模块化容错式新风空调机的控制方法,包括以下步骤:
S1,第1容错式模块工作;
S11,启动自然通风模块:
空气自第一进风格栅(1)进入,首先通过蒸发湿膜(2)吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层(3)净化,进入不工作状态下的压缩制冷模块,最后由轴流送风机(5),将空气通过进风短管(6)和送风格栅(7)输出;
S12,进风温湿度传感器(15)检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S11;
S13,启动压缩制冷模块:
空气自第一进风格栅(1)进入,首先通过蒸发湿膜(2)吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层(3)净化,进入工作状态下的压缩制冷模块,最后由轴流送风机(5),将冷空气通过进风短管(6)和送风格栅(7)输出;
同时制冷循环从热空气中交换出的热量,被压缩机(12)排至冷凝器(11),环境冷空气自侧进风口(10)吸入,流过冷凝器(11),带走热量,被散热风扇(13)排到环境中;
S14,ΔT时间后,出风温湿度传感器(18)检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S13;
S2,第2容错式模块工作;
S21,启动自然通风模块:
空气自第一进风格栅(1)进入,首先通过蒸发湿膜(2)吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层(3)净化,进入不工作状态下的压缩制冷模块,最后由轴流送风机(5),将空气通过进风短管(6)和送风格栅(7)输出;
S22,进风温湿度传感器(15)检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S21;
S23,启动压缩制冷模块:
空气自第一进风格栅(1)进入,首先通过蒸发湿膜(2)吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层(3)净化,进入工作状态下的压缩制冷模块,最后由轴流送风机(5),将冷空气通过进风短管(6)和送风格栅(7)输出;
同时制冷循环从热空气中交换出的热量,被压缩机(12)排至冷凝器(11),环境冷空气自侧进风口(10)吸入,流过冷凝器(11),带走热量,被散热风扇(13)排到环境中;
S24,ΔT时间后,出风温湿度传感器(18)检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S23;
S3,第3容错式模块工作;
S31,启动自然通风模块:
空气自第一进风格栅(1)进入,首先通过蒸发湿膜(2)吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层(3)净化,进入不工作状态下的压缩制冷模块,最后由轴流送风机(5),将空气通过进风短管(6)和送风格栅(7)输出;
S32,进风温湿度传感器(15)检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S31;
S33,启动压缩制冷模块:
空气自第一进风格栅(1)进入,首先通过蒸发湿膜(2)吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层(3)净化,进入工作状态下的压缩制冷模块,最后由轴流送风机(5),将冷空气通过进风短管(6)和送风格栅(7)输出;
同时制冷循环从热空气中交换出的热量,被压缩机(12)排至冷凝器(11),环境冷空气自侧进风口(10)吸入,流过冷凝器(11),带走热量,被散热风扇(13)排到环境中;
S34,ΔT时间后,出风温湿度传感器(18)检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤S33;
........;
Sm,第m容错式模块工作;
Sm1,启动自然通风模块:
空气自第一进风格栅(1)进入,首先通过蒸发湿膜(2)吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层(3)净化,进入不工作状态下的压缩制冷模块,最后由轴流送风机(5),将空气通过进风短管(6)和送风格栅(7)输出;
Sm2,进风温湿度传感器(15)检测温度,并将检测到的温度信号传给智能控制箱,从而判断温度是否位高于x℃,若是,执行下一步骤;若否,则跳转执行步骤Sm1;
Sm3,启动压缩制冷模块:
空气自第一进风格栅(1)进入,首先通过蒸发湿膜(2)吸热,使进入新风空调机内的自然空气降温和湿洗,然后再经过高效过滤层(3)净化,进入工作状态下的压缩制冷模块,最后由轴流送风机(5),将冷空气通过进风短管(6)和送风格栅(7)输出;
同时制冷循环从热空气中交换出的热量,被压缩机(12)排至冷凝器(11),环境冷空气自侧进风口(10)吸入,流过冷凝器(11),带走热量,被散热风扇(13)排到环境中。
2.根据权利要求1所述的一种模块化容错式新风空调机,其特征在于,所述压缩制冷模块包括:蒸发器(4),蒸发器(4)设置于高效过滤层(3)和轴流送风机(5)之间,蒸发器(4)工作时,将流过蒸发器(4)的空气制冷。
3.根据权利要求1所述的一种模块化容错式新风空调机,其特征在于,所述智能控制箱采用PLC逻辑控制器,用于自动切换新风空调机的运行模式;智能控制本新风空调机的启停、运行和故障报警;和自动记录能耗数据和数据分析。
4.根据权利要求1所述的一种模块化容错式新风空调机,其特征在于,所述第一压差传感器(16)、第二压差传感器(17)采用的型号为QBM2030-1U。
5.根据权利要求1所述的一种模块化容错式新风空调机,其特征在于,所述进风温湿度传感器(15)、出风温湿度传感器(18)采用的型号为HTU21D。
6.根据权利要求1所述的一种模块化容错式新风空调机,其特征在于,所述控制方法还包括通过移动智能手持设备查看模块化容错式新风空调机的运行参数,其通过移动智能手持设备查看模块化容错式新风空调机的运行参数的方法包括以下步骤:
S91,是否接收到查看模块化容错式新风空调机的运行参数的控制命令:
若接收到查看模块化容错式新风空调机的运行参数的控制命令,则获取其移动智能手持设备的移动智能手持设备号码,对其获取的移动智能手持设备的移动智能手持设备号码进行MD5计算,得到其云登陆码;
S92,云平台对其接收到的云登陆码与云平台存储的云登陆码存储库相核对,判断其接收到的云登陆码是否在云平台存储的云登陆码存储库中:
若接收到的云登陆码在云平台存储的云登陆码存储库中,执行步骤S93;
若接收到的云登陆码是否不在云平台存储的云登陆码存储库中,则提示登陆设备不正确;
S93,云平台向其移动智能手持设备发送通过码,该通过码为云登陆码进行MD5计算得到的,判断其移动智能手持设备接收的通过码与移动智能手持设备计算得到的通过码是否相同:
若移动智能手持设备接收的通过码与移动智能手持设备计算得到的通过码相同,其移动智能手持设备计算得到的通过码为对移动智能手持设备计算得到的云登陆码进行MD5计算;则移动智能手持设备登陆云平台通过,可以进行相应的模块化容错式新风空调机的运行参数进行查看;
若移动智能手持设备接收的通过码与移动智能手持设备计算得到的通过码不相同,则移动智能手持设备登陆云平台不通过。
7.根据权利要求6所述的一种模块化容错式新风空调机,其特征在于,所述模块化容错式新风空调机的运行参数包括进风环境温湿度数据、出风环境温湿度数据、蒸发湿膜(2)左右侧空气的压差、高效过滤层(3)左右侧空气的压差之一或者任意组合。
CN202110337667.0A 2021-03-30 2021-03-30 一种模块化容错式新风空调机 Active CN112984673B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110337667.0A CN112984673B (zh) 2021-03-30 2021-03-30 一种模块化容错式新风空调机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110337667.0A CN112984673B (zh) 2021-03-30 2021-03-30 一种模块化容错式新风空调机

Publications (2)

Publication Number Publication Date
CN112984673A CN112984673A (zh) 2021-06-18
CN112984673B true CN112984673B (zh) 2022-06-17

Family

ID=76338161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110337667.0A Active CN112984673B (zh) 2021-03-30 2021-03-30 一种模块化容错式新风空调机

Country Status (1)

Country Link
CN (1) CN112984673B (zh)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI64855C (fi) * 1982-03-26 1984-01-10 Verdal Maskinverk Anordning foer att tillvarataga vaermen och ventilera ett utrymme
AT381790B (de) * 1985-04-04 1986-11-25 Voest Alpine Ag Anlage zum aufwaermen von stahlgut auf warmformgebungstemperatur
US6176305B1 (en) * 1998-11-09 2001-01-23 Building Performance Equipment Inc. Ventilator system and method
KR20060039308A (ko) * 2004-11-02 2006-05-08 삼성전자주식회사 공기조화기 및 그 운전제어방법
US8702482B2 (en) * 2004-12-07 2014-04-22 Trane International Inc. Ventilation controller
CN101144683B (zh) * 2007-08-29 2010-05-26 彭坚宁 使用无动力方式产生的太阳能热气流加热、干燥物料的方法
CN201672631U (zh) * 2010-05-27 2010-12-15 四川众通通信工程有限公司 基站机房双模式制冷智能控制系统
CN102252378A (zh) * 2011-07-13 2011-11-23 上海克络蒂新能源科技有限公司 一种全屋式空调新风机组
CN102269453A (zh) * 2011-08-17 2011-12-07 合肥天鹅制冷科技有限公司 一体式节能空调
CN102287894A (zh) * 2011-08-23 2011-12-21 Tcl空调器(中山)有限公司 空调备份控制装置
CN103574812B (zh) * 2013-11-26 2016-11-23 广东申菱环境系统股份有限公司 一种直通风机房空调系统及其控制方法
CN104315625B (zh) * 2014-10-20 2018-05-22 中铁建设集团有限公司 中央空调新风净化系统及控制方法
CN104879896A (zh) * 2015-06-01 2015-09-02 江苏荣泉科技发展有限公司 一种空调机组的智能精确送风系统
CN104943705A (zh) * 2015-07-20 2015-09-30 马宏 铁路客车备用新风装置
CN106801925A (zh) * 2017-03-13 2017-06-06 深圳沃海森科技有限公司 蜂巢式加湿膜的超薄型风管机
CN108302723A (zh) * 2018-02-06 2018-07-20 北京智能管家科技有限公司 室内空气质量的调节方法、装置及存储介质
CN108413522A (zh) * 2018-03-16 2018-08-17 阿尔西制冷工程技术(北京)有限公司 空调机组
CN112367802A (zh) * 2020-10-16 2021-02-12 艾图欧环境科技(北京)有限公司 一种数据中心用蒸发冷却模块化水冷空调机组及控制方法
CN112333977A (zh) * 2020-10-16 2021-02-05 艾图欧环境科技(北京)有限公司 一种数据中心用蒸发冷却模块化风冷空调机组及控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
多区域变风量空调系统新风循环再利用变新风量控制策略;曾伟;《制冷与空调》;20180228(第02期) *
蒸发冷却与机械制冷复合空调系统实验台设计;徐方成等;《制冷》;20090315(第01期) *

Also Published As

Publication number Publication date
CN112984673A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN203837171U (zh) 用于风机盘管和热回收新风空调机组的热泵系统
CN102777981B (zh) 用于通讯基站的面向对象送风节能型空调系统及其运行方法
CN109451701B (zh) 一种全年可利用室外空气的数据中心节能制冷系统
CN108834366B (zh) 一种数据机房空调系统
CN103499137A (zh) 一种机房的制冷控制方法、装置及系统
CN108281913B (zh) 复叠式循环通道降温除湿防凝露电气设备保障系统及方法
CN2811873Y (zh) 一种空调压缩机散热装置
CN202709319U (zh) 智能定点制冷节能空调系统
KR102560048B1 (ko) 연료전지 배열 활용 고효율 일체형 흡수식 냉방시스템
CN115443052A (zh) 一种idc机房智能温控系统
CN107289563A (zh) 再热型热泵热回收空调机组
CN100439847C (zh) 一种板式换热器防冻装置及其控制方法
CN112984673B (zh) 一种模块化容错式新风空调机
CN102878649A (zh) 基站智能通风节能系统
CN201589350U (zh) 一体式空气能机房专用空调机组
CN112944502A (zh) 一种模块化容错式洁净新风机组的装置及控制方法
CN210891960U (zh) 一种用于数据机房散热的恒温恒湿空调设备
CN202101363U (zh) 数据机房空调系统利用自然能节能装置
CN219199367U (zh) 一种利用海水自然冷却的暖通空调系统
CN217402767U (zh) 一种模块化容错式新风空调机
CN201875825U (zh) 分体式新风除湿机组
CN202973396U (zh) 空气源冷水机组
CN202350192U (zh) 气流空调一体化温控装置及系统
CN104654496A (zh) 采用抽热与换热制冷相结合的节能基站机房及其冷却方法
CN213118440U (zh) 一种智慧型集成气站

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant