CN112984597A - 一种基于相变材料的夹层通风式供热系统 - Google Patents

一种基于相变材料的夹层通风式供热系统 Download PDF

Info

Publication number
CN112984597A
CN112984597A CN202110195982.4A CN202110195982A CN112984597A CN 112984597 A CN112984597 A CN 112984597A CN 202110195982 A CN202110195982 A CN 202110195982A CN 112984597 A CN112984597 A CN 112984597A
Authority
CN
China
Prior art keywords
heat
pipeline
air
phase
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110195982.4A
Other languages
English (en)
Other versions
CN112984597B (zh
Inventor
杨宾
齐耀
张淞屹
侯宇田
赵艺茵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN202110195982.4A priority Critical patent/CN112984597B/zh
Publication of CN112984597A publication Critical patent/CN112984597A/zh
Application granted granted Critical
Publication of CN112984597B publication Critical patent/CN112984597B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/003Central heating systems using heat accumulated in storage masses water heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/004Central heating systems using heat accumulated in storage masses water heating system with conventional supplementary heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1042Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/04Gas or oil fired boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/14Solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

本发明公开了一种基于相变材料的夹层通风式供热系统,包括太阳能空气集热器、第一风机、相变蓄热箱、第二换热器、第二水泵、第二调温水箱、地暖、燃气锅炉、第三水泵、第四水泵、相变蓄热墙、电动蝶阀和电磁阀。本发明采用太阳能、相变材料和燃气炉相结合的供暖方式,弥补了太阳能取暖存在的昼夜供需不匹配以及连续阴天时太阳能无法正常使用的缺陷,减小了冬季供暖对环境的污染;增设相变蓄热墙提高用户冬季供暖的舒适性,并且能够在对空调室外机废热回收利用的同时,提高空调的制冷效率。

Description

一种基于相变材料的夹层通风式供热系统
技术领域
本发明涉及建筑节能领域,具体是一种基于相变材料的夹层通风式供热系统。
背景技术
当前我国冬季空气污染较为严重,尤其一些北方农村地区采用烧煤取暖更是加剧了对大气环境的污染。因此寻找一种清洁能源,改变农村现有的供暖方式已是迫在眉睫。
太阳能作为一种清洁能源,在我国北方地区资源丰富,且其年辐照量不少于4100MJ/m2。但是太阳能取暖存在昼夜供需不匹配的问题。CN201920606442.9公开了一种基于相变蓄热的地暖供暖与供热水系统,采用太阳能、相变材料和燃气炉相结合的供暖方式,考虑到连续阴天时太阳能无法正常使用的情况。但是并没有紧密联系实际,存在能源浪费的现象。
发明内容
针对现有技术的不足,本发明拟解决的技术问题是,提供一种基于相变材料的夹层通风式供热系统。
本发明解决所述技术问题的技术方案是,提供一种基于相变材料的夹层通风式供热系统,其特征在于,该系统包括太阳能空气集热器、第一风机、相变蓄热箱、第二换热器、第二水泵、第二调温水箱、地暖、燃气锅炉、第三水泵、第四水泵、相变蓄热墙、电动蝶阀和电磁阀;
所述太阳能空气集热器的热空气出口通过管路与第一风机的进气口相连;第一风机的出气口管路分为两条一级支路,一条一级支路上设置有第一电动蝶阀且末端与相变蓄热箱的热空气进口相连,另一条一级支路再分为两条二级支路,一条二级支路上设置有第三电动蝶阀且末端与第二换热器的热空气进口相连,另一条二级支路上设置有第四电动蝶阀且末端与相变蓄热墙的进风口相连;第二换热器的冷空气出口通过管路与太阳能空气集热器的冷空气进口相连;相变蓄热墙的出风口通过管路与太阳能空气集热器的冷空气进口相连,管路上设置有第二电动蝶阀;相变蓄热箱的冷空气出口通过管路与太阳能空气集热器的冷空气进口相连;
相变蓄热箱的进水口通过管路与第一换热器的出水口相连;相变蓄热箱的出水口通过管路与第一调温水箱的进水口相连;第一调温水箱的出水口管路用于供应生活用热水,管路上设置有第二电磁阀;第一换热器的进水口通过管路外接自来水进水,管路上设置有第一水泵和第一电磁阀;第二换热器的热水出口通过管路与第二调温水箱的进水口相连,管路上设置有第二水泵;第二调温水箱的出水口管路分为两条支路,一条支路上设置有第四电磁阀且末端与地暖的热水进口相连,另一条支路用于供应生活用热水且其上设置有第三电磁阀;燃气锅炉的第一热水出口通过管路与地暖的热水进口相连,管路上设置有第三水泵和第五电磁阀;燃气锅炉的第二热水出口管路用于供应生活用热水,管路上设置有第七电磁阀;燃气锅炉的第一冷水进口通过管路外接自来水进水,管路上设置有第四水泵和第六电磁阀;地暖的冷水出口管路分为两条支路,一条支路上设置有第八电磁阀且末端与燃气锅炉的第二冷水进口相连,另一路与第二换热器的冷水进口相连。
与现有技术相比,本发明有益效果在于:
(1)本发明采用太阳能、相变材料和燃气炉相结合的供暖方式,弥补了太阳能取暖存在的昼夜供需不匹配以及连续阴天时太阳能无法正常使用的缺陷,减小了冬季供暖对环境的污染。
(2)本发明充分利用太阳能,增设了相变蓄热墙,将相变蓄热材料置于传统建筑物的墙内,利用墙体夹层相变蓄热改变了散热器或地暖的传统单一供暖方式,使得热空气可以从墙壁四周向室内散热,增加了供暖的热舒适性。同时可以在夏季室外温度较低时,打开相变蓄热墙保温层的风道口,墙壁相变层可以蓄存多余冷量;待室外温度较高时,关闭风道口,墙壁相变层向室内释放蓄存冷量。进而完美地实现冬暖夏凉和能源的充分利用。
(3)本发明对空调室外机的废热进行了有效地回收利用,在充分利用可用能源的同时使空调的制冷效率得以提升。
附图说明
图1为本发明的系统整体结构示意图;
图2为本发明的相变蓄热墙的结构示意图;
图3为本发明的相变蓄热层的结构示意图。
图中:1、第一电动蝶阀;2、第二电动蝶阀;3、第一电磁阀;4、第二电磁阀;5、第三电动蝶阀;6、第三电磁阀;7、第四电磁阀;8、第五电磁阀;9、第六电磁阀;10、第七电磁阀;11、第四电动蝶阀;12、太阳能空气集热器;13、第一风机;14、相变蓄热箱;15、空调室外机;16、第二风机;17、第一换热器;18、第一水泵;19、第一调温水箱;20、第二换热器;21、第二水泵;22、第二调温水箱;23、地暖;24、燃气锅炉;25、第三水泵; 26、第四水泵;27、第八电磁阀;28、相变蓄热墙;
101、壳体层;102、墙壁相变层;103、保温层;104、空气通道;105、引流装置;106、导热层。
具体实施方式
下面给出本发明的具体实施例。具体实施例仅用于进一步详细说明本发明,不限制本申请权利要求的保护范围。
本发明提供了一种基于相变材料的夹层通风式供热系统(简称系统),其特征在于,该系统包括太阳能空气集热器12、第一风机13、相变蓄热箱14、第一换热器17、第一水泵18、第一调温水箱19、第二换热器20、第二水泵21、第二调温水箱22、地暖23、燃气锅炉24、第三水泵25、第四水泵26、相变蓄热墙28、电动蝶阀和电磁阀;
所述太阳能空气集热器12的热空气出口通过管路与第一风机13的进气口相连;第一风机13的出气口管路分为两条一级支路,一条一级支路上设置有第一电动蝶阀1且末端与相变蓄热箱14的热空气进口相连,另一条一级支路再分为两条二级支路,一条二级支路上设置有第三电动蝶阀5且末端与第二换热器20的热空气进口相连,另一条二级支路上设置有第四电动蝶阀11且末端与相变蓄热墙28的进风口相连;第二换热器20的冷空气出口通过管路与太阳能空气集热器12的冷空气进口相连;相变蓄热墙28的出风口通过管路与太阳能空气集热器12的冷空气进口相连,管路上设置有第二电动蝶阀2;相变蓄热箱14的冷空气出口通过管路与太阳能空气集热器12的冷空气进口相连;以此对空气进行循环加热并使用;
相变蓄热箱14的进水口通过管路与第一换热器17的出水口相连;相变蓄热箱14的出水口通过管路与第一调温水箱19的进水口相连;第一调温水箱19的出水口管路用于供应生活用热水,管路上设置有第二电磁阀4;第一换热器17的进水口通过管路外接自来水进水,管路上按照液体流动方向依次设置有第一水泵18和第一电磁阀3;第一电磁阀3设置在第一水泵18和第一换热器17之间,防止第一换热器17中的水倒流进第一水泵18;第二换热器20 的热水出口通过管路与第二调温水箱22的进水口相连,管路上设置有第二水泵21;第二调温水箱22的出水口管路分为两条支路,一条支路上设置有第四电磁阀7且末端与地暖23的热水进口相连,另一条支路用于供应生活用热水且其上设置有第三电磁阀6来控制;燃气锅炉24的第一热水出口通过管路与地暖23的热水进口相连,管路上按照液体流动方向依次设置有第三水泵25和第五电磁阀8;第五电磁阀8设置在第三水泵25和地暖23之间,防止地暖23中的水倒流进第三水泵25;燃气锅炉24的第二热水出口管路用于供应生活用热水,管路上设置有第七电磁阀10;燃气锅炉24的第一冷水进口通过管路外接自来水进水,用于补充系统水量,管路上按照液体流动方向依次设置有第四水泵26和第六电磁阀9;第六电磁阀 9设置在第四水泵26和燃气锅炉24之间,防止燃气锅炉24中的水倒流进第四水泵26;地暖 23的冷水出口管路分为两条支路,一条支路上设置有第八电磁阀27(第八电磁阀27一般情况下呈关闭状态)且末端与燃气锅炉24的第二冷水进口相连,另一路与第二换热器20的冷水进口相连。
优选地,夏季天气炎热,居民用户普遍采用空调制冷,空调室外机15通常会向空气中释放大量的热,造成热量的浪费。因此,该系统还包括空调室外机15和第二风机16;空调室外机15的热风出口通过管路与第一换热器17的进风口相连,管路上设置有第二风机16;第一换热器17的出风口与空调室外机15的冷风进口相连;通过第二风机16将空调室外机15的热风迅速转移到第一换热器17中,此热风作为高温热源与温度较低的自来水换热,降低热风温度,提高能源利用率的同时,使得空调制冷效率得以提升。
优选地,相变蓄热箱14具有换热和蓄热功能;相变蓄热箱14内部设置有两路换热盘管,一路换热盘管的两端分别连接第一换热器17的出水口和第一调温水箱19的进水口,另一路换热盘管的两端分别连接太阳能空气集热器12的热空气出口和冷空气进口,实现热风和冷水之间的直接换热;相变蓄热箱14内填充有低温相变材料,两路换热盘管均与相变材料接触换热,实现蓄热换热功能;相变蓄热箱14可用于热风和冷水之间的换热,同时内部的相变材料可以蓄存多余热量;相变蓄热箱14外壳整体设置有保温层,用于整体保温。
优选地,所述相变蓄热墙28由从内至外设置的壳体层101、相变蓄热层和保温层103;相变蓄热层和保温层103之间具有间隙,间隙为空气通道104;空气通道104的两端为相变蓄热墙28的进风口和出风口;空气通道104内竖向间隔设置有引流装置105;引流装置105倾斜设置于保温层103上,用于改变空气通道104中的热空气的流向,使热空气能够顺利贴附到相变蓄热层的外壁上,对相变蓄热层充分加热,向室内散热的同时使相变蓄热层蓄存更多的热量;壳体层101相当于房屋内墙,用于遮挡相变蓄热层,起到美观的作用;保温层103 相当于房屋外墙,有效地减少热量的散失。保温层103开有可开闭的风道口,开启时使得空气通道104内的空气与室外空气连通,关闭时实现保温层103的整体密闭起到保温的作用;
优选地,所述相变蓄热层由墙壁相变层102和导热层106构成,墙壁相变层102均匀填充于导热层106内部;热空气贴附到导热层106的外壁上,对导热层106充分加热,向室内散热的同时使墙壁相变层102蓄存更多的热量;
导热层106是由镀锌钢板或刷有防锈漆的钢板制成的盒状结构,用于密封存放相变材料;优选地,导热层106由若干个盒状结构以层的方式组成,盒状结构的高度从上层到下层逐渐增加,使得下层盒状结构的体积较大,这样设计的好处是:相变材料由固态变液态体积会增大,且温度较高的热空气从室内自下而上流动,同时人员活动区域主要是在2米以下的位置。盒状结构的体积逐渐增大,使得下层的相变材料更多,并且相变材料可根据实际供热情况,在盒状结构内不完全填满,从而将热量尽量发散在人员活动区域,减少不必要的热量供应。
优选地,所述墙壁相变层102采用相变温度为22℃~35℃的石蜡、氯化镁或六水氯化钙等;保温层103采用60mm发泡聚苯乙烯板(EPS板),导热系数0.038~0.041,隔热效果好,价格便宜;空气通道104的宽度不超过200mm;引流装置105为具有一定弧度的长方形薄板;镀锌钢板或刷有防锈漆的钢板的厚度为0.8mm,传热效果好,镀锌后在钢板表面形成锌涂层,避免了大气对钢板的锈蚀。
优选地,所述第一电磁阀3、第二电磁阀4、第三电磁阀6、第四电磁阀7、第五电磁阀8、第六电磁阀9、第七电磁阀10、第八电磁阀27均采用德力西公司的2W系列水阀。
优选地,所述第一电动蝶阀1、第二电动蝶阀2、第三电动蝶阀5和第四电动蝶阀11均采用北京湖泉工控设备有限公司的D941W-1C型风阀。
优选地,所述太阳能空气集热器12置于房顶,采用东莞绿光新能源科技有限公司的绿光 TMC-3B型太阳能空气集热器。
优选地,所述第一换热器17和第二换热器20采用江苏远卓ZGA015-DD 12P管壳式换热器,用于当水温较高或较低影响居民正常使用时,可以掺入适当温度的水来中和水温,以供正常使用;
优选地,所述第一风机13和第二风机16均采用赵氏DF-1.1型耐高温离心多翼式引风机。
优选地,所述第一水泵18、第二水泵21、第三水泵25和第四水泵26均采用德国威乐公司的TOP-RL25型水泵。
优选地,第一调温水箱19和第二调温水箱22设置于室内,用于调节水温使得生活用热水的温度适宜用户生活使用;生活用热水的出水口可以用于厨房用水或者洗漱用水。
优选地,所述燃气锅炉24置于室内厨房或卫生间处,用于连续阴天时对房间供暖,采用博力士L1PB18-B型20KW燃气壁挂炉。
本发明的工作原理和工作流程是:
夏季运行模式:关闭第三电动蝶阀5、第四电动蝶阀11和第二电动蝶阀2,打开第一电动蝶阀1;夏季供暖不运行,第一电磁阀3开启,第三电磁阀6、第四电磁阀7、第五电磁阀8、第六电磁阀9、第七电磁阀10和第八电磁阀27在一般情况下均处于关闭状态,根据需要可调节电磁阀开闭;
夏季日间,太阳能空气集热器12将空气加热,在第一风机13的作用下,将热空气送到相变蓄热箱14中,相变蓄热箱14蓄存热量;夏季天气炎热,居民通常会开启空调向室内制冷,同时空调室外机15会释放温度较高的空气;通过第二风机16将空调室外机15的热风快速转移至第一换热器17中;温度较低的自来水在第一水泵18的作用下,经过第一电磁阀3通入第一换热器17中与温度较高的热空气进行换热;待换热结束后,将升温后的自来水通入相变蓄热箱14中,与来自太阳能空气集热器12的高温空气在相变蓄热箱14中进行直接换热 (此时相变蓄热箱14相当于一个空气-水换热器);经第一调温水箱19后供应居民日常洗澡、洗漱的生活用热水并通过第二电磁阀4控制开启程度;夏季夜间,太阳能空气集热器12不能正常工作,相变蓄热箱14释放日间蓄存热量,供生活用热水;
当夏季遇到连续阴天时,开启第六电磁阀9;启动燃气锅炉24和第四水泵26,通过第四水泵26向燃气锅炉24接入自来水,待水温升高后(可根据需要加热至100℃)通过燃气锅炉24的第二热水出口管路供应居民日常饮用或洗澡、洗漱的生活用热水并通过第七电磁阀 10控制开启程度;
当夏季室外温度较低无需空调制冷时,开启相变蓄热墙28的保温层103上的风道口,使得维持室温的同时,墙壁相变层102可以蓄存多余冷量;待室外温度较高需开启空调制冷时,关闭风道口,保温层103起到保温的作用,利用空气导热系数低的特点,通过空气通道104 这一空气夹层,减少室外向室内传热,墙壁相变层102可以向室内释放冷量,进而维持室温;
冬季运行模式:
当日间太阳能特别充足时,打开第一电动蝶阀1、第二电动蝶阀2、第三电动蝶阀5和第四电动蝶阀11,打开第一电磁阀3和第四电磁阀7,关闭第五电磁阀8、第六电磁阀9、第七电磁阀10和第八电磁阀27;将经太阳能空气集热器12加热后的温度较高的热风通过第三电动蝶阀5在第一风机13的作用下,送入第二换热器20,使其与第二换热器20中的水进行换热;换热后的水依次经过第二水泵21和第二调温水箱22,一小部分热水用于用户生活用热水并通过第三电磁阀6根据需要调节开启程度,大部分通过地暖23供暖;热风还通过第四电动蝶阀11在第一风机13的作用下,送入相变蓄热墙28的空气通道104内,使相变蓄热墙 28的墙壁相变层102续存部分热量,多余热量直接散入室内维持室温,热量传递后的空气通过第二电动蝶阀2送回太阳能空气集热器12循环流动;热风还通过第一电动蝶阀1在第一风机13的作用下,送入相变蓄热箱14中;温度较低的自来水在第一水泵18的作用下,经过第一电磁阀3和第一换热器17与来自太阳能空气集热器12的高温空气在相变蓄热箱14中进行直接换热(此时相变蓄热箱14相当于一个空气-水换热器),同时相变蓄热箱14中的相变材料蓄存部分热量;经第一调温水箱19后供应居民日常洗澡、洗漱的生活用热水并通过第二电磁阀4控制开启程度;夜间,相变蓄热箱14释放日间蓄存热量,供生活用热水;相变蓄热墙 28蓄存的热量可以在夜间向室内释放热量;
当日间太阳能比较充分时,关闭第一电动蝶阀1,打开第二电动蝶阀2、第三电动蝶阀5 和第四电动蝶阀11,打开第四电磁阀7,关闭第一电磁阀3、第二电磁阀4、第五电磁阀8、第六电磁阀9、第七电磁阀10和第八电磁阀27;将经太阳能空气集热器12加热后的温度较高的热风通过第三电动蝶阀5在第一风机13的作用下,送入第二换热器20中,使其与第二换热器20中的水进行换热;换热后的水依次经过第二水泵21和第二调温水箱22,一小部分热水用于用户生活用热水并通过第三电磁阀6根据需要调节开启程度,大部分通过地暖23供暖;地暖水得以在第二换热器20、第二调温水箱22和地暖23之间循环流动;在第一风机13 的作用下热风通过第四电动蝶阀11送入相变蓄热墙28的空气通道104内,使相变蓄热墙28 的墙壁相变层102续存部分热量,多余热量直接散入室内维持室温,热量传递后的空气通过第二电动蝶阀2送回太阳能空气集热器12循环流动;此外,相变蓄热墙28蓄存的热量可以在夜间太阳能空气集热器12无法正常工作时向室内释放热量;
当日间太阳能不充足(例如连续阴天)以致太阳能空气集热器12无法正常工作时,关闭第一电动蝶阀1、第二电动蝶阀2、第三电动蝶阀5和第四电动蝶阀11,关闭第一电磁阀3、第二电磁阀4、第三电磁阀6和第四电磁阀7,开启第五电磁阀8、第六电磁阀9和第八电磁阀27,通过燃气锅炉24加热地暖水,通过地暖23供暖从而满足居民热需求;燃气锅炉24 的第二热水出口管路用于供应生活用热水并通过第七电磁阀10根据需要调节开启程度。
实施例1
采用本系统能够充分回收利用系统余热废热。在夏季,第二风机16将空调室外机15的热风迅速转移至第一换热器17,空调室外机15处的温度降低。根据逆卡诺循环制冷系数计算公式:
Figure RE-GDA0003055426930000071
此时热源温度T1降低,若要使室温维持在相同温度T2,制冷系数ε需要增大,故空调的制冷效率增加。此时虽然在启动第二风机16的时候用了一部分电能,但是在一定程度上通过提高空调的制冷效率,维持室温的同时使系统更加节能。
假设空调室外机15出口的热风温度为35℃,经管道后有热量散失,暂设进入第一换热器17的热风温度为33℃,经换热后出风温度为20℃。空调室外机15出口的热风流速为v=5m/s。此处热风由第二风机16提供动力,连接第二风机16的风管截面直径为0.2m。根据公式
Figure RE-GDA0003055426930000072
已知空气比热容c=1kJ/(kg·℃),空气密度ρ=1.293kg/m3,代入公式得q=cmΔt=cρVΔt=1×1.293×9.42×(33-20)=158.34kJ/min。
若夏季空调制冷日均5小时,则每天空调室外机15的热风可用热量为 Q=5×60×q=47502kJ。
此外,传统建筑墙体结构为建筑砖,外刷混凝土层;而本发明在内墙与外墙间设一空气通道104,空气通道104中充满空气。已知建筑砖导热系数为0.69W/(m·K),混凝土导热系数为1.28W/(m·K),空气导热系数为0.024W/(m·K)。显然空气层的存在可以更好地维持室内温度,起到冬暖夏凉的作用。
实施例2
本系统冬季供暖采用“太阳能+燃气锅炉”的联合运行模式。经测试冬季天气尚好时,每天太阳能总辐射可达20MJ/m2,此时太阳能空气集热器12采光面积可取5m2。在发表于《太阳能学报》期刊的《平板型双流道太阳能空气集热器热性能研究》一文中指出,基于采光面积的集热效率平均值为51.29%,故此处取太阳能空气集热器12的集热效率为51.29%,根据公式:
Figure RE-GDA0003055426930000073
代入数据解得,太阳能空气集热器12 的集热量=20×5×51.29%=51.29MJ。
此处可假设太阳能空气集热器12的出口风温为70℃,经系统环路充分换热后,太阳能空气集热器12的进口风温为30℃,空气流量为V=3m3/min。已知空气比热容c=1kJ/(kg·℃),空气密度ρ=1.293kg/m3,则开启太阳能空气集热器12后可集热 q=cmΔt=cρVΔt=1×1.293×3×(70-30)=155.16kJ/min,故冬季可开启太阳能空气集热器12 的时间为
Figure RE-GDA0003055426930000081
经计算,本发明系统可选在冬季上午10:00定时开启,开始向房间供热;在冬季下午15:30 定时关闭,结束向房间供热。期间,太阳能空气集热器12向房间供热51.29MJ热量,可提供北方地区一个用户所需供暖总量至少
Figure RE-GDA0003055426930000082
的供热量。
本发明未述及之处适用于现有技术。

Claims (10)

1.一种基于相变材料的夹层通风式供热系统,其特征在于,该系统包括太阳能空气集热器、第一风机、相变蓄热箱、第二换热器、第二水泵、第二调温水箱、地暖、燃气锅炉、第三水泵、第四水泵、相变蓄热墙、电动蝶阀和电磁阀;
所述太阳能空气集热器的热空气出口通过管路与第一风机的进气口相连;第一风机的出气口管路分为两条一级支路,一条一级支路上设置有第一电动蝶阀且末端与相变蓄热箱的热空气进口相连,另一条一级支路再分为两条二级支路,一条二级支路上设置有第三电动蝶阀且末端与第二换热器的热空气进口相连,另一条二级支路上设置有第四电动蝶阀且末端与相变蓄热墙的进风口相连;第二换热器的冷空气出口通过管路与太阳能空气集热器的冷空气进口相连;相变蓄热墙的出风口通过管路与太阳能空气集热器的冷空气进口相连,管路上设置有第二电动蝶阀;相变蓄热箱的冷空气出口通过管路与太阳能空气集热器的冷空气进口相连;
相变蓄热箱的进水口通过管路与第一换热器的出水口相连;相变蓄热箱的出水口通过管路与第一调温水箱的进水口相连;第一调温水箱的出水口管路用于供应生活用热水,管路上设置有第二电磁阀;第一换热器的进水口通过管路外接自来水进水,管路上设置有第一水泵和第一电磁阀;第二换热器的热水出口通过管路与第二调温水箱的进水口相连,管路上设置有第二水泵;第二调温水箱的出水口管路分为两条支路,一条支路上设置有第四电磁阀且末端与地暖的热水进口相连,另一条支路用于供应生活用热水且其上设置有第三电磁阀;燃气锅炉的第一热水出口通过管路与地暖的热水进口相连,管路上设置有第三水泵和第五电磁阀;燃气锅炉的第二热水出口管路用于供应生活用热水,管路上设置有第七电磁阀;燃气锅炉的第一冷水进口通过管路外接自来水进水,管路上设置有第四水泵和第六电磁阀;地暖的冷水出口管路分为两条支路,一条支路上设置有第八电磁阀且末端与燃气锅炉的第二冷水进口相连,另一路与第二换热器的冷水进口相连。
2.根据权利要求1所述的基于相变材料的夹层通风式供热系统,其特征在于,燃气锅炉的第一热水出口与地暖的热水进口之间的管路上按照液体流动方向依次设置有第三水泵和第五电磁阀。
3.根据权利要求1所述的基于相变材料的夹层通风式供热系统,其特征在于,燃气锅炉的第一冷水进口与自来水进水的管路上按照液体流动方向依次设置有第四水泵和第六电磁阀。
4.根据权利要求1所述的基于相变材料的夹层通风式供热系统,其特征在于,第一换热器的进水口与自来水进水的管路上按照液体流动方向依次设置有第一水泵和第一电磁阀。
5.根据权利要求1所述的基于相变材料的夹层通风式供热系统,其特征在于,相变蓄热箱内部设置有两路换热盘管,一路换热盘管的两端分别连接第一换热器的出水口和第一调温水箱的进水口,另一路换热盘管的两端分别连接太阳能空气集热器的热空气出口和冷空气进口。
6.根据权利要求5所述的基于相变材料的夹层通风式供热系统,其特征在于,相变蓄热箱内填充有相变材料,两路换热盘管均与相变材料接触换热;相变蓄热箱外壳整体设置有保温层。
7.根据权利要求1所述的基于相变材料的夹层通风式供热系统,其特征在于,该系统还包括空调室外机和第二风机;空调室外机的热风出口通过管路与第一换热器的进风口相连,管路上设置有第二风机;第一换热器的出风口与空调室外机的冷风进口相连。
8.根据权利要求1所述的基于相变材料的夹层通风式供热系统,其特征在于,所述相变蓄热墙由从内至外设置的壳体层、相变蓄热层和保温层;相变蓄热层和保温层之间具有空气通道;空气通道的两端为相变蓄热墙的进风口和出风口。
9.根据权利要求8所述的基于相变材料的夹层通风式供热系统,其特征在于,空气通道内竖向间隔设置有引流装置;引流装置倾斜设置于保温层上,用于改变空气通道中的热空气的流向。
10.根据权利要求8所述的基于相变材料的夹层通风式供热系统,其特征在于,所述相变蓄热层由墙壁相变层和导热层构成,墙壁相变层均匀填充于导热层内部。
CN202110195982.4A 2021-02-22 2021-02-22 一种基于相变材料的夹层通风式供热系统 Active CN112984597B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110195982.4A CN112984597B (zh) 2021-02-22 2021-02-22 一种基于相变材料的夹层通风式供热系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110195982.4A CN112984597B (zh) 2021-02-22 2021-02-22 一种基于相变材料的夹层通风式供热系统

Publications (2)

Publication Number Publication Date
CN112984597A true CN112984597A (zh) 2021-06-18
CN112984597B CN112984597B (zh) 2023-02-03

Family

ID=76394153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110195982.4A Active CN112984597B (zh) 2021-02-22 2021-02-22 一种基于相变材料的夹层通风式供热系统

Country Status (1)

Country Link
CN (1) CN112984597B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739297A (zh) * 2021-09-09 2021-12-03 沈阳建筑大学 一种太阳能耦合空气源热泵的建筑墙体
CN114097496A (zh) * 2021-11-22 2022-03-01 温州理工学院 一种适用于温室的太阳能主被动式相变蓄热通风墙体热泵系统
CN115342509A (zh) * 2022-08-15 2022-11-15 山东大学 一种冷凝热回收利用系统
CN115682205A (zh) * 2022-12-21 2023-02-03 芜湖大正电器科技有限公司 一种节能型空调机组
CN117288022A (zh) * 2023-11-22 2023-12-26 川楚联合国际工程有限公司 一种用于节能厂房工业余热回收系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017239A (zh) * 2012-12-27 2013-04-03 重庆大学 一种太阳能相变蓄热供暖、供热水系统
WO2013087952A1 (es) * 2011-12-16 2013-06-20 Detea, S. A. Cerramiento y fachada ventilados
EP2657619A2 (en) * 2012-04-26 2013-10-30 Datasteel Oy Method and device for controlling a hybrid heating and ventilation system
CN103925635A (zh) * 2014-04-28 2014-07-16 中国建筑西北设计研究院有限公司 一种全天候太阳能供能系统
CN108029403A (zh) * 2018-01-10 2018-05-15 河北工业大学 基于相变蓄热技术的自控温太阳能温室系统
CN209386403U (zh) * 2018-09-17 2019-09-13 北京凯昆广胜新能源电器有限公司 一种利用太阳能集热板供暖及蓄热墙体蓄热供暖的装置
CN209978160U (zh) * 2019-04-29 2020-01-21 河北工业大学 一种基于相变蓄热的地暖供暖与供热水系统
CN112211308A (zh) * 2020-10-22 2021-01-12 天津大学 一种采用空气源热泵系统的多级辐射相变墙体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013087952A1 (es) * 2011-12-16 2013-06-20 Detea, S. A. Cerramiento y fachada ventilados
EP2657619A2 (en) * 2012-04-26 2013-10-30 Datasteel Oy Method and device for controlling a hybrid heating and ventilation system
CN103017239A (zh) * 2012-12-27 2013-04-03 重庆大学 一种太阳能相变蓄热供暖、供热水系统
CN103925635A (zh) * 2014-04-28 2014-07-16 中国建筑西北设计研究院有限公司 一种全天候太阳能供能系统
CN108029403A (zh) * 2018-01-10 2018-05-15 河北工业大学 基于相变蓄热技术的自控温太阳能温室系统
CN209386403U (zh) * 2018-09-17 2019-09-13 北京凯昆广胜新能源电器有限公司 一种利用太阳能集热板供暖及蓄热墙体蓄热供暖的装置
CN209978160U (zh) * 2019-04-29 2020-01-21 河北工业大学 一种基于相变蓄热的地暖供暖与供热水系统
CN112211308A (zh) * 2020-10-22 2021-01-12 天津大学 一种采用空气源热泵系统的多级辐射相变墙体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘晓燕,孙睿忆,赵海谦*,崔雪,王忠华,马川: "严寒地区单体建筑太阳能-相变墙系统蓄热特性研究", 《热科学与技术》 *
史晓燕,王鹏主编: "《建筑节能技术》", 31 August 2020, 北京理工大学出版社 *
李汉章主编: "《建筑节能理论与实践》", 31 May 2006, 湖北科学技术出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739297A (zh) * 2021-09-09 2021-12-03 沈阳建筑大学 一种太阳能耦合空气源热泵的建筑墙体
CN114097496A (zh) * 2021-11-22 2022-03-01 温州理工学院 一种适用于温室的太阳能主被动式相变蓄热通风墙体热泵系统
CN115342509A (zh) * 2022-08-15 2022-11-15 山东大学 一种冷凝热回收利用系统
CN115682205A (zh) * 2022-12-21 2023-02-03 芜湖大正电器科技有限公司 一种节能型空调机组
CN115682205B (zh) * 2022-12-21 2023-08-11 深圳英创能源环境技术有限公司 一种节能型空调机组
CN117288022A (zh) * 2023-11-22 2023-12-26 川楚联合国际工程有限公司 一种用于节能厂房工业余热回收系统
CN117288022B (zh) * 2023-11-22 2024-02-13 川楚联合国际工程有限公司 一种用于节能厂房工业余热回收系统

Also Published As

Publication number Publication date
CN112984597B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN112984597B (zh) 一种基于相变材料的夹层通风式供热系统
CN201476200U (zh) 太阳能空调系统
CN107228436B (zh) 一种基于太阳能和地冷的空调系统
CN104895218A (zh) 耦合可再生能源的蓄能调温墙体系统及其使用方法
CN100476311C (zh) 温湿度独立控制空调系统
CN102338415A (zh) 自控热风式太阳能地板蓄热系统
CN107131550A (zh) 一种提高热传递效率的热暖蓄水罐的供热装置
CN109737486B (zh) 一种集热蓄热墙和空气水集热器的组合供暖系统
CN110762664B (zh) 一种基于pvt结合跨季节蓄热和露点蒸发冷却的装置、空调
CN101929733A (zh) 太阳能-空气-地能三热源型热泵热水器
CN113776148A (zh) 一种基于天空辐射和太阳能集热的相变新风管道系统
CN100572973C (zh) 一种太阳能、峰谷电蓄热的热水供应与制冷复合装置
CN209605321U (zh) 节能空调系统
CN209723729U (zh) 一种利用太阳能供暖供冷的活动板房
CN202281302U (zh) 自控热风式太阳能地板蓄热系统
CN108800292A (zh) 一种利用生活用水和相变蓄能材料的跨季节冷热供给系统
CN209801606U (zh) 一种用于农村独户的太阳能采暖系统
CN210399410U (zh) 一种家用空调的联合换热型热水箱
CN209623006U (zh) 一种内嵌管式辐射供冷相变墙体
CN103791653B (zh) 一种建筑生态节能系统
CN207196611U (zh) 一种提高热传递效率的热暖蓄水罐的供热装置
CN202254047U (zh) 建筑体节能空调系统
CN101592353B (zh) 供热系统及供热方法
CN110864572A (zh) 基于储能式热管管束的可再生能源利用系统及其控制方法
CN109869852A (zh) 一种用于鸡舍的光伏光热被动式空调系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant