CN112980891B - Coli genome editing tool based on CRISPR-Cas - Google Patents

Coli genome editing tool based on CRISPR-Cas Download PDF

Info

Publication number
CN112980891B
CN112980891B CN201911291240.0A CN201911291240A CN112980891B CN 112980891 B CN112980891 B CN 112980891B CN 201911291240 A CN201911291240 A CN 201911291240A CN 112980891 B CN112980891 B CN 112980891B
Authority
CN
China
Prior art keywords
plasmid
genome editing
escherichia coli
editing tool
peccas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911291240.0A
Other languages
Chinese (zh)
Other versions
CN112980891A (en
Inventor
杨晟
陈飚
蒋宇
孙兵兵
杨俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Center for Excellence in Molecular Plant Sciences of CAS
Original Assignee
Center for Excellence in Molecular Plant Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center for Excellence in Molecular Plant Sciences of CAS filed Critical Center for Excellence in Molecular Plant Sciences of CAS
Priority to CN201911291240.0A priority Critical patent/CN112980891B/en
Publication of CN112980891A publication Critical patent/CN112980891A/en
Application granted granted Critical
Publication of CN112980891B publication Critical patent/CN112980891B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The application discloses a CRISPR-Cas-based escherichia coli genome editing tool, which comprises a plasmid pEcCas for expressing endonuclease Cas9, wherein the plasmid pEcCas comprises Cas9 nuclease genes, lambda-RED recombinase genes, araC protein genes, sacB genes, replicon pSC101, rhamnose regulatory protein RhaS/RhaR genes and sgRNA sequences for guiding Cas9 to auxiliary plasmid DNA sequences. The genome editing tool can realize genome editing in B-series and K-12-series escherichia coli, shortens the editing period and has wider host adaptability.

Description

Coli genome editing tool based on CRISPR-Cas
Technical Field
The application belongs to the field of genetic engineering, and relates to a CRISPR-Cas-based escherichia coli genome editing tool and application thereof in escherichia coli.
Background
Coli is a common host for molecular biology as a model microbial strain. It is extremely important to establish an efficient genome editing method in E.coli. Several genome editing tools based on the type II CRISPR-Cas system have been reported to be established in e.coli, pCas using pTargetF or ptarget in combination being the most widely used set of plasmids at present. We originally established pCas/pTargetF or pTargetT dual plasmid systems (ECCRISPR 1.0) that enable iterative genome editing in E.coli MG1655, already shared on Addgene. However, some researchers have shown that the pCas/pTargetF or pTargetT double plasmid system does not work in E.coli Bl21 (DE 3) after using pCas. Thus, we did not obtain transformants after transformation of pTargetT-. DELTA.cadA or pTargetT-. DELTA.maeA plasmids (Jiang Y, chen B, et al appl Environ Microbiol, 2015) into pCas-containing Bl21 (DE 3) (see Table 2), indicating that existing genome editing tools do not work well in some E.coli such as E.coli BL 21B (DE 3). We speculate that the sgRNA anchoring the helper plasmid pTargetF or pTargetT replicon on the pCas plasmid had leaky transcription in BL21 (DE 3) such that the helper plasmid was cut so that we could not obtain transformants on dual-antibody screening plates containing kanamycin (50. Mu.g/mL) and spectinomycin (50. Mu.g/mL).
Disclosure of Invention
In order to overcome the defects of the double-plasmid CRISPR-Cas9 gene editing system in the prior art, a new thought is designed, and the new thought comprises the following strategies: 1. substitution of the lacI/trc promoter on the pCas plasmid with a rhamnose-inducible promoter (rhaS/rhaR) to control the gRNA of the cleavage helper plasmid DNA sequence, avoiding leaky transcription of the cleavage helper plasmid in certain E.coli, such as BL21 (DE 3), and thus enabling genome editing in more types of E.coli; 2. the temperature-sensitive replicon pSC101ts on the pCas plasmid is replaced by pSC101, so that the escherichia coli can grow rapidly at 37 ℃, the limitation of low-temperature (ECCRISPR 1.0 is 30 ℃) culture is avoided, and the experimental period is shortened; 3. the sacB gene is added to the pCas plasmid, and can be used for carrying out reverse screening on a sucrose flat plate when the plasmid is lost, so as to replace the original low-temperature reverse screening. Finally, an upgrade version plasmid pEcCas (ecrspr 2.0) was obtained.
Accordingly, a first object of the present application is to provide a universal E.coli genome editing tool. The method comprises the following technical scheme:
a CRISPR-Cas based escherichia coli genome editing tool comprising a plasmid pEcCas for expressing endonuclease Cas9, the plasmid pEcCas comprising Cas9 nuclease gene, lambda-RED recombination system (or weighing group enzyme) gene for improving editing efficiency, araC protein gene, sacB gene, replicon pSC101, rhamnose regulatory protein RhaS/RhaR gene, sgRNA sequence for guiding Cas9 to helper plasmid DNA sequence.
The lambda-RED recombination system comprises Exo protein, beta protein and Gam protein. The expression of the lambda-RED recombination system can be induced by arabinose and is regulated by an arabinose promoter.
The addition of the RhaS/RhaR gene described above allows the rhamnose-inducible promoter to replace the lacI/trc promoter to avoid leaky transcription of the sgRAN which cleaves helper plasmids.
Preferably, the above plasmid pEcCas further comprises the kanamycin resistance gene kanR.
In one embodiment, the cas9 nuclease gene is a cas9 nuclease gene derived from streptococcus pyogenes, and may be a cas nuclease gene derived from another microorganism.
To achieve the gene editing function, the above-described E.coli genome editing tool further includes another helper plasmid (selected from pTargetF or pTargetT) used in cooperation with the plasmid pEcCas, so that the above-described E.coli genome editing tool is presented as a pEcCas/pTargetF or pEcCas/pTargetT double plasmid system.
The above plasmid pEcCas also includes an sgRNA sequence for directing Cas9 to a helper plasmid DNA sequence, the transcription of which is induced by L-rhamnose.
When genome editing is completed, the sgRNA sequence is used for targeting a helper plasmid DNA sequence, guiding Cas9 to cleave the helper plasmid, and achieving the effect of eliminating the helper plasmid.
Preferably, the sgRNA sequence is a 20nt N20 sequence located downstream of the rhamnose promoter Prha, complementary to the target sequence, which is: 5'-CTATCGTCTTGAGTCCAACC-3' (SEQ ID NO: 2).
The N20 sequence is identical to part of the sequences of the replicon pMB1 and P15A genes, which N20 sequence is followed by the PAM sequence 5'-CGG-3' on the pMB1 and P15A genes.
The nucleotide sequence of the plasmid pEcCas described above can be SEQ ID NO. 1, which includes 14605 bases.
The helper plasmid pTargetF or pTargetT described above is used in combination with a plasmid pEcCas comprising sgRNA, pMB1 and/or P15A replicons for targeting predetermined sites of the E.coli genome.
The length of the sgRNA on the helper plasmid may be 18-25nt, preferably 19-22nt, more preferably 20nt.
Preferably, the helper plasmid pTargetF or ptarget further comprises the spectinomycin resistance gene aadA.
In one embodiment, transcription of sgRNA on the helper plasmid described above is controlled by a Pj23119 constitutive promoter.
The above-described E.coli genome editing tool is in the form of a kit comprising a plasmid pEcCas, helper plasmid pTargetF or pTargetT, various PCR primers for performing genome editing, and the like.
A second object of the present application is to provide a method for constructing the pEcCas described above, comprising the steps of:
obtaining pSC101 replicon fragments by PCR amplification; PCR amplification of kanamycin resistance gene kanR fragment using pCas plasmid as template; PCR amplification of cas9 and lambda-RED recombinase gene fragments by using pCas plasmid as template; amplifying sacB gene fragments from bacillus subtilis genome DNA; the sgRNA fragment was amplified from the pTargetF-cadA plasmid reported in the literature Jiang Y, chen B, et al Appl Environ Microbiol, 2015; the rhaRS fragment was amplified from the genomic DNA of E.coli MG1655, and the six fragments were assembled to obtain the pEcCas plasmid.
Preferably, the assembly may be a ClonExpress MultiS One Step Cloning Kit (Vazyme) assembly or a Gibson assembly.
A third object of the present application is to provide the use of the novel E.coli genome editing tool described above in B-and K-12-series E.coli for genome editing. The E.coli genome editing tool of the present application has wide applicability, and can be applied to genome editing of B-series, K-12-series and W-series E.coli, for example, to genome editing of E.coli BL21 and derivatives thereof such as BL21 (DE 3) or E.coli MG 1655.
In a preferred embodiment, the above application comprises the steps of:
1) Transforming plasmid pEcCas into competent cells of escherichia coli, and screening on an LB solid plate containing kanamycin at 37 ℃;
2) Selecting positive clones, preparing electrotransformation competent cells, and adding arabinose to induce RED recombinase expression 1 hour before centrifugal collection;
3) Transferring helper plasmids pTargetF or pTargetT into competent cells obtained in the step 2) through electrotransformation, coating bacterial liquid on a dual-antibody LB solid plate containing kanamycin and spectinomycin, culturing overnight at 37 ℃, and then verifying and screening clones;
4) Selecting positive clones in LB culture solution containing kanamycin, adding rhamnose, inducing the sgRNA sequence of the DNA sequence of the guide auxiliary plasmid to transcribe, and verifying the elimination of the auxiliary plasmid on LB solid plates containing spectinomycin;
5) Picking auxiliary plasmid to eliminate positive clones, directly culturing overnight at 37 ℃ in an LB liquid culture medium containing glucose, sucking bacterial liquid, streaking and dividing single bacteria on an LB solid plate containing glucose and sucrose, identifying single bacteria on an LB plate containing kanamycin resistance, and verifying pEcCas plasmid elimination to obtain an editing strain.
The escherichia coli genome editing tool pEcCas/pTargetF or pTargetT is a universal double-plasmid system, can effectively realize genome editing in K-12, B and W escherichia coli, shortens editing period, and has wider host adaptability.
Drawings
FIG. 1 is a schematic representation of the structure of plasmid pEcCas plasmid.
FIG. 2 is a schematic representation of the structure of the sgRNA sequence in plasmid pEcCas. The gene fragment was used to anchor the pMB1 and/or P15A replicon of the helper plasmid DNA sequence, wherein the N20 sequence was identical to part of the sequences of the replicon pMB1 and P15A genes, which N20 sequence was followed by the PAM sequence 5'-CGG-3' on the pMB1 and P15A genes.
Detailed Description
In this context, for ease of description, a protein such as Cas9 is sometimes used in combination with its coding gene (DNA) name, and those skilled in the art will appreciate that they represent different substances in different descriptive contexts. Those skilled in the art will readily understand their meaning depending on the context and context. For example, for Cas9, when used to describe nuclease function or class, refers to a protein; when described as a gene, it refers to the gene encoding the Cas 9. Similarly, RNA such as sgRNA is sometimes used in combination with the name of its encoding gene (DNA), and those skilled in the art will appreciate that they represent different substances in different descriptive contexts.
The E.coli genome editing tool of the present application may be a double plasmid combination of plasmid pEcCas and helper plasmid, wherein the helper plasmid may be pTargetF or pTargetT, pTargetF and pTargetT, the difference being that the pTargetF plasmid does not contain the homology arm sequences required for homologous recombination, the homology arms being provided separately in fragment form; and pTargetT is a plasmid in which the homology arm sequence is cloned.
In this two-plasmid system, the nickase Cas9 expressed by the pEcCas plasmid is to function in two places: firstly, sgRNA on an auxiliary plasmid guides Cas9 to cut an escherichia coli genome target point, so that genome transformation is realized; second, after genome engineering is completed, to obtain a plasmid-free host bacterium for iterative editing, pMB1 and/or P15A replicons of helper plasmids need to be cleaved using sgrnas on the pEcCas plasmid to guide Cas9 to eliminate the helper plasmids.
In view of the convenience of experimental operation, the escherichia coli genome editing tool of the application can be a kit, and the required materials are integrated in one kit. In a preferred embodiment, the above-described kit may include at least one of the following items, in addition to the plasmid pEcCas, pTargetF or ptarget plasmid, various PCR primers for performing genome editing, and the like: a carrying means, the space of which is divided into a defined space which can house one or more containers, such as kits, vials, test tubes, and the like, each of which contains a separate component for use in the method of the application; the instructions, which can be written on bottles, test tubes and the like, or on a single piece of paper, or outside or inside the container, for example paper with a video APP download window for the operation demonstration, such as a two-dimensional code, can also be in the form of multimedia, such as a CD, a U-disc, a netdisk, etc.
The application will be further illustrated with reference to specific examples. It is to be understood that these examples are for illustrative purposes only and are not limiting of the application. It is also to be understood that various changes and modifications may be made by those skilled in the art after reading the inventive concept, and that such equivalents are intended to fall within the scope of the application as defined by the appended claims.
The amounts, amounts and concentrations of various substances are referred to herein, wherein the percentages refer to percentages by mass unless otherwise specified.
In the examples, to simplify the expression of pEcCas in a two-plasmid system with a helper plasmid (pTargetF or pTargetT), pEcCas is referred to as plasmid A and helper plasmids such as pTargetT-. DELTA.cadA and pTargetT-. DELTA.maeA are referred to as plasmid B.
Examples
Materials and methods
Primer synthesis herein was done by Shanghai Bai Lige Biotechnology Co., ltd, and sequencing was done by Shanghai Biotechnology Co., ltd.
Molecular biology experiments herein include plasmid construction, digestion, ligation, competent cell preparation, transformation, medium preparation, etc., and are mainly described in "molecular cloning Experimental guidelines (third edition), J.Sam Broker, D.W. Lassel (America) code, huang Peitang, et al, scientific Press, beijing, 2002). The specific experimental conditions can be determined by simple experiments, if necessary.
The PCR amplification experiments were performed according to the reaction conditions or instructions provided by the plasmid or DNA template suppliers. Can be adjusted if necessary by simple tests.
Example 1 construction of plasmid pEcCas
The primers required for construction of the pEcCas plasmid are shown in table 1.
TABLE 1 PCR primer sequences
Note that: the number 1 of the suffix of the primer name in the table represents the forward primer, i.e., -F, and the number 2 represents the reverse primer, i.e., -R.
1.1 construction of pSC101 replicon fragments
pSC101 replicon fragments were obtained by PCR amplification using repA1/repA2 as primers and pMW119 vector (Nippon Gene) as a template.
PCR reaction System (50. Mu.L):
PCR reaction conditions:
KOD Plus kit was purchased from Toyobo (Shanghai) Biotechnology Co.
1.2 construction of kanamycin resistance Gene kanR fragment
The kanamycin resistance gene kanR fragment was amplified by PCR using kan1/kan2 as a primer and pCas plasmid (Addgene: 62225) as a template.
The PCR reaction conditions and the required reagents are the same as in step 1.1.
1.3 amplification of cas9 and lambda-RED recombinase Gene fragments
PCR was performed using cas9 and lambda-RED recombinase gene fragments, respectively, as primers, pCas plasmid (Addgene: 62225) as a template.
The PCR reaction conditions and the required reagents are the same as in step 1.1.
1.4 amplification of sacB Gene fragments
The sacB gene fragment was amplified from the genomic DNA of Bacillus subtilis (ATCC 23857) using sac1/sac2 as a primer.
The PCR reaction conditions and the required reagents are the same as in step 1.1.
1.5 construction of sgRNA fragments
The sgRNA fragment was amplified from the pTargetF-cadA plasmid (Jiang Y, chen B, et al appl Environ Microbiol, 2015) using primers sgnna 1/sgnna 2.
The PCR reaction conditions and the required reagents are the same as in step 1.1.
1.6 amplification of rhaR, rhaS fragments
The rhaRS fragment was amplified from E.coli MG1655 (ATCC 700926) genomic DNA using primers rha1/rha 2.
The PCR reaction conditions and the required reagents are the same as in step 1.1.
1.7 fragment Assembly
Six fragments obtained in the above steps were assembled using ClonExpress MultiS One Step Cloning Kit (Vazyme) to obtain pEcCas plasmid. Sequencing was verified to be correct.
The PCR reaction conditions and the required reagents are the same as in step 1.1.
EXAMPLE 2 E.coli genome editing
2.1 transformation of pEcCas plasmid into E.coli MG1655 and BL21 (DE 3) chemocompetent cells, respectively, screening on LB solid plates containing kanamycin (50. Mu.g/mL) at 37 ℃; preparation of chemically transformed competent cells reference the guidelines for molecular cloning experiments (third edition);
2.2 picking positive clones, preparing electrotransformation competent cells, and adding 10mM arabinose to induce RED recombinase expression 1 hour before centrifugation collection;
2.3 electrotransformation into helper plasmid pTargetT-DeltacadA or pTargetT-DeltamaeA plasmid (electrotransformation voltage is 2.5 kV), recovering for 1 hour at 37 ℃ and 200rpm, then coating bacterial liquid on double-anti-LB solid plate containing kanamycin (50 mug/mL) and spectinomycin (50 mug/mL), and verifying and screening clone after overnight culture at 37 ℃; electrotransformation competent cell preparation methods are described in molecular cloning Experimental guidelines (third edition);
2.4 helper plasmid elimination: selecting positive clones in LB liquid (containing 50 mug/mL kanamycin), adding 10mM rhamnose, inducing transcription of sgRNA sequence leading to helper plasmid DNA sequence, culturing overnight, streaking out single bacteria, and verifying elimination of helper plasmid on LB solid plate containing spectinomycin (50 mug/mL);
2.5pEcCas plasmid elimination: picking auxiliary plasmids to eliminate positive clones, directly performing shake culture in a liquid LB medium containing 5g/L glucose at 37 ℃ overnight, and sucking a small amount of bacterial liquid to score and divide single bacteria on a solid LB plate containing 5g/L glucose and 10g/L sucrose. Single colonies were identified on LB plates containing kanamycin (50. Mu.g/mL) resistance and pEcCas plasmid elimination was verified.
We successfully obtained the editing strains after transformation of helper plasmid pTargetT-. DELTA.cadA or pTargetT-. DELTA.maeA plasmids into pEcCas-containing E.coli Bl21 (DE 3) and MG61655, respectively, with editing efficiency and plasmid elimination rates as shown in Table 2.
Table 2, comparison of Gene editing by pEcCas in E.coli MG1655 and Bl21 (DE 3)
a. Number of correctly edited clones/total number of clones selected
The comparison results in Table 2 show that, in E.coli MG1655, the editing efficiency using pEcCas is comparable to pCas; however, in E.coli Bl21 (DE 3), pEcCas has high editing efficiency, but pCas has no editing effect. The novel E.coli genome editing tool pEcCas is shown to have wider host adaptability.
The above experiments verify the function and characteristics of the E.coli genome editing tool of the present application using pEcCas/pTargetF or pTargetT double plasmid system as examples, and those skilled in the art will understand that various changes or modifications can be made on the basis of the ideas of the present application, and equivalents of the various changes or modifications can be made, which shall also fall within the scope of the present application.
Sequence listing
<110> Shanghai life science institute of China academy of sciences
<120> an E.coli genome editing tool based on CRISPR-Cas
<130> SHPI1910731
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 14605
<212> DNA
<213> Artificial sequence ()
<400> 1
catgggtatg gacagttttc cctttgatat gtaacggtga acagttgttc tacttttgtt 60
tgttagtctt gatgcttcac tgatagatac aagagccata agaacctcag atccttccgt 120
atttagccag tatgttctct agtgtggttc gttgtttttg cgtgagccat gagaacgaac 180
cattgagatc atacttactt tgcatgtcac tcaaaaattt tgcctcaaaa ctggtgagct 240
gaatttttgc agttaaagca tcgtgtagtg tttttcttag tccgttacgt aggtaggaat 300
ctgatgtaat ggttgttggt attttgtcac cattcatttt tatctggttg ttctcaagtt 360
cggttacgag atccatttgt ctatctagtt caacttggaa aatcaacgta tcagtcgggc 420
ggcctcgctt atcaaccacc aatttcatat tgctgtaagt gtttaaatct ttacttattg 480
gtttcaaaac ccattggtta agccttttaa actcatggta gttattttca agcattaaca 540
tgaacttaaa ttcatcaagg ctaatctcta tatttgcctt gtgagttttc ttttgtgtta 600
gttcttttaa taaccactca taaatcctca tagagtattt gttttcaaaa gacttaacat 660
gttccagatt atattttatg aattttttta actggaaaag ataaggcaat atctcttcac 720
taaaaactaa ttctaatttt tcgcttgaga acttggcata gtttgtccac tggaaaatct 780
caaagccttt aaccaaagga ttcctgattt ccacagttct cgtcatcagc tctctggttg 840
ctttagctaa tacaccataa gcattttccc tactgatgtt catcatctga gcgtattggt 900
tataagtgaa cgataccgtc cgttctttcc ttgtagggtt ttcaatcgtg gggttgagta 960
gtgccacaca gcataaaatt agcttggttt catgctccgt taagtcatag cgactaatcg 1020
ctagttcatt tgctttgaaa acaactaatt cagacataca tctcaattgg tctaggtgat 1080
tttaatcact ataccaattg agatgggcta gtcaatgata attactagtc cttttccttt 1140
gagttgtggg tatctgtaaa ttctgctaga cctttgctgg aaaacttgta aattctgcta 1200
gaccctctgt aaattccgct agacctttgt gtgttttttt tgtttatatt caagtggtta 1260
taatttatag aataaagaaa gaataaaaaa agataaaaag aatagatccc agccctgtgt 1320
ataactcact actttagtca gttccgcagt attacaaaag gatgtcgcaa acgctgtttg 1380
ctcctctaca aaacagacct taaaacccta aaggcttaag tagcaccctc gcaagctcgg 1440
ttgcggccgc aatcgggcaa atcgctgaat attccttttg tctccgacca tcaggcacct 1500
gagtcgctgt ctttttcgtg acattcagtt cgctgcgctc acggctctgg cagtgaatgg 1560
gggtaaatgg cactacaggc gccttttatg gattcatgca aggaaactac ccataataca 1620
agaaaagccc gtcacgggct tctcagggcg ttttatggcg ggtctgctat gtggtgctat 1680
ctgacttttt gctgttcagc agttcctgcc ctctgatttt ccagtctgac cacttcggat 1740
tatcccgtga caggtcattc agactggcta atgcacccag taaggcagcg gtatcatcaa 1800
cccactgcag caaccaatta accaattctg attagaaaaa ctcatcgagc atcaaatgaa 1860
actgcaattt attcatatca ggattatcaa taccatattt ttgaaaaagc cgtttctgta 1920
atgaaggaga aaactcaccg aggcagttcc ataggatggc aagatcctgg tatcggtctg 1980
cgattccgac tcgtccaaca tcaatacaac ctattaattt cccctcgtca aaaataaggt 2040
tatcaagtga gaaatcacca tgagtgacga ctgaatccgg tgagaatggc aaaagcttat 2100
gcatttcttt ccagacttgt tcaacaggcc agccattacg ctcgtcatca aaatcactcg 2160
catcaaccaa accgttattc attcgtgatt gcgcctgagc gagacgaaat acgcgatcgc 2220
tgttaaaagg acaattacaa acaggaatcg aatgcaaccg gcgcaggaac actgccagcg 2280
catcaacaat attttcacct gaatcaggat attcttctaa tacctggaat gctgttttcc 2340
cggggatcgc agtggtgagt aaccatgcat catcaggagt acggataaaa tgcttgatgg 2400
tcggaagagg cataaattcc gtcagccagt ttagtctgac catctcatct gtaacatcat 2460
tggcaacgct acctttgcca tgtttcagaa acaactctgg cgcatcgggc ttcccataca 2520
atcgatagat tgtcgcacct gattgcccga cattatcgcg agcccattta tacccatata 2580
aatcagcatc catgttggaa tttaatcgcg gcctcgagca agacgtttcc cgttgaatat 2640
ggctcataac accccttgta ttactgttta tgtaagcaga cagttttatt gttcatgatg 2700
atatattttt atcttgtgca atgtaacatc agagattttg agacacaacg tggctttccc 2760
tgcagctgaa caatacttaa tactatagaa tgataacaaa ataaactact ttttaaaaga 2820
attttgtgtt ataatctatt tattattaag tattgggtaa tattttttga agagatattt 2880
tgaaaaagaa aaattaaagc atattaaact aatttcggag gtcattaaaa ctattattga 2940
aatcatcaaa ctcattatgg atttaattta aactttttat tttaggaggc aaaaatggat 3000
aagaaatact caataggctt agatatcggc acaaatagcg tcggatgggc ggtgatcact 3060
gatgattata aggttccgtc taaaaagttc aaggttctgg gaaatacaga ccgccacagt 3120
atcaaaaaaa atcttatagg ggctctttta tttgacagtg gagagacagc ggaagcgact 3180
cgtctcaaac ggacagctcg tagaaggtat acacgtcgga agaatcgtat ttgttatcta 3240
caggagattt tttcaaatga gatggcgaaa gtagatgata gtttctttca tcgacttgaa 3300
gagtcttttt tggtggaaga agacaagaag catgaacgtc atcctatttt tggaaatata 3360
gtagatgaag ttgcttatca tgagaaatat ccaactatct atcatctgcg aaaaaaattg 3420
gtagattcta ctgataaagc ggatttgcgc ttaatctatt tggccttagc gcatatgatt 3480
aagtttcgtg gtcatttttt gattgaggga gatttaaatc ctgataatag tgatgtggac 3540
aaactattta tccagttggt acaaacctac aatcaattat ttgaagaaaa ccctattaac 3600
gcaagtggag tagatgctaa agcgattctt tctgcacgat tgagtaaatc aagacgatta 3660
gaaaatctca ttgctcagct ccccggtgag aagaaaaatg gcttatttgg gaatctcatt 3720
gctttgtcat tgggtttgac ccctaatttt aaatcaaatt ttgatttggc agaagatgct 3780
aaattacagc tttcaaaaga tacttacgat gatgatttag ataatttatt ggcgcaaatt 3840
ggagatcaat atgctgattt gtttttggca gctaagaatt tatcagatgc tattttactt 3900
tcagatatcc taagagtaaa tactgaaata actaaggctc ccctatcagc ttcaatgatt 3960
aaacgctacg atgaacatca tcaagacttg actcttttaa aagctttagt tcgacaacaa 4020
cttccagaaa agtataaaga aatctttttt gatcaatcaa aaaacggata tgcaggttat 4080
attgatgggg gagctagcca agaagaattt tataaattta tcaaaccaat tttagaaaaa 4140
atggatggta ctgaggaatt attggtgaaa ctaaatcgtg aagatttgct gcgcaagcaa 4200
cggacctttg acaacggctc tattccccat caaattcact tgggtgagct gcatgctatt 4260
ttgagaagac aagaagactt ttatccattt ttaaaagaca atcgtgagaa gattgaaaaa 4320
atcttgactt ttcgaattcc ttattatgtt ggtccattgg cgcgtggcaa tagtcgtttt 4380
gcatggatga ctcggaagtc tgaagaaaca attaccccat ggaattttga agaagttgtc 4440
gataaaggtg cttcagctca atcatttatt gaacgcatga caaactttga taaaaatctt 4500
ccaaatgaaa aagtactacc aaaacatagt ttgctttatg agtattttac ggtttataac 4560
gaattgacaa aggtcaaata tgttactgaa ggaatgcgaa aaccagcatt tctttcaggt 4620
gaacagaaga aagccattgt tgatttactc ttcaaaacaa atcgaaaagt aaccgttaag 4680
caattaaaag aagattattt caaaaaaata gaatgttttg atagtgttga aatttcagga 4740
gttgaagata gatttaatgc ttcattaggt acctaccatg atttgctaaa aattattaaa 4800
gataaagatt ttttggataa tgaagaaaat gaagatatct tagaggatat tgttttaaca 4860
ttgaccttat ttgaagatag ggagatgatt gaggaaagac ttaaaacata tgctcacctc 4920
tttgatgata aggtgatgaa acagcttaaa cgtcgccgtt atactggttg gggacgtttg 4980
tctcgaaaat tgattaatgg tattagggat aagcaatctg gcaaaacaat attagatttt 5040
ttgaaatcag atggttttgc caatcgcaat tttatgcagc tgatccatga tgatagtttg 5100
acatttaaag aagacattca aaaagcacaa gtgtctggac aaggcgatag tttacatgaa 5160
catattgcaa atttagctgg tagccctgct attaaaaaag gtattttaca gactgtaaaa 5220
gttgttgatg aattggtcaa agtaatgggg cggcataagc cagaaaatat cgttattgaa 5280
atggcacgtg aaaatcagac aactcaaaag ggccagaaaa attcgcgaga gcgtatgaaa 5340
cgaatcgaag aaggtatcaa agaattagga agtcagattc ttaaagagca tcctgttgaa 5400
aatactcaat tgcaaaatga aaagctctat ctctattatc tccaaaatgg aagagacatg 5460
tatgtggacc aagaattaga tattaatcgt ttaagtgatt atgatgtcga tcacattgtt 5520
ccacaaagtt tccttaaaga cgattcaata gacaataagg tcttaacgcg ttctgataaa 5580
aatcgtggta aatcggataa cgttccaagt gaagaagtag tcaaaaagat gaaaaactat 5640
tggagacaac ttctaaacgc caagttaatc actcaacgta agtttgataa tttaacgaaa 5700
gctgaacgtg gaggtttgag tgaacttgat aaagctggtt ttatcaaacg ccaattggtt 5760
gaaactcgcc aaatcactaa gcatgtggca caaattttgg atagtcgcat gaatactaaa 5820
tacgatgaaa atgataaact tattcgagag gttaaagtga ttaccttaaa atctaaatta 5880
gtttctgact tccgaaaaga tttccaattc tataaagtac gtgagattaa caattaccat 5940
catgcccatg atgcgtatct aaatgccgtc gttggaactg ctttgattaa gaaatatcca 6000
aaacttgaat cggagtttgt ctatggtgat tataaagttt atgatgttcg taaaatgatt 6060
gctaagtctg agcaagaaat aggcaaagca accgcaaaat atttctttta ctctaatatc 6120
atgaacttct tcaaaacaga aattacactt gcaaatggag agattcgcaa acgccctcta 6180
atcgaaacta atggggaaac tggagaaatt gtctgggata aagggcgaga ttttgccaca 6240
gtgcgcaaag tattgtccat gccccaagtc aatattgtca agaaaacaga agtacagaca 6300
ggcggattct ccaaggagtc aattttacca aaaagaaatt cggacaagct tattgctcgt 6360
aaaaaagact gggatccaaa aaaatatggt ggttttgata gtccaacggt agcttattca 6420
gtcctagtgg ttgctaaggt ggaaaaaggg aaatcgaaga agttaaaatc cgttaaagag 6480
ttactaggga tcacaattat ggaaagaagt tcctttgaaa aaaatccgat tgacttttta 6540
gaagctaaag gatataagga agttaaaaaa gacttaatca ttaaactacc taaatatagt 6600
ctttttgagt tagaaaacgg tcgtaaacgg atgctggcta gtgccggaga attacaaaaa 6660
ggaaatgagc tggctctgcc aagcaaatat gtgaattttt tatatttagc tagtcattat 6720
gaaaagttga agggtagtcc agaagataac gaacaaaaac aattgtttgt ggagcagcat 6780
aagcattatt tagatgagat tattgagcaa atcagtgaat tttctaagcg tgttatttta 6840
gcagatgcca atttagataa agttcttagt gcatataaca aacatagaga caaaccaata 6900
cgtgaacaag cagaaaatat tattcattta tttacgttga cgaatcttgg agctcccgct 6960
gcttttaaat attttgatac aacaattgat cgtaaacgat atacgtctac aaaagaagtt 7020
ttagatgcca ctcttatcca tcaatccatc actggtcttt atgaaacacg cattgatttg 7080
agtcagctag gaggtgactg aagtatattt tagatgaaga ttatttctta atctagacat 7140
gagcggatac atatttgaat gtatttagaa aaataaacaa ataggggttc cgcgcacatt 7200
tccccgaaaa gtgccacctg catcgattta ttatgacaac ttgacggcta catcattcac 7260
tttttcttca caaccggcac ggaactcgct cgggctggcc ccggtgcatt ttttaaatac 7320
ccgcgagaaa tagagttgat cgtcaaaacc aacattgcga ccgacggtgg cgataggcat 7380
ccgggtggtg ctcaaaagca gcttcgcctg gctgatacgt tggtcctcgc gccagcttaa 7440
gacgctaatc cctaactgct ggcggaaaag atgtgacaga cgcgacggcg acaagcaaac 7500
atgctgtgcg acgctggcga tatcaaaatt gctgtctgcc aggtgatcgc tgatgtactg 7560
acaagcctcg cgtacccgat tatccatcgg tggatggagc gactcgttaa tcgcttccat 7620
gcgccgcagt aacaattgct caagcagatt tatcgccagc agctccgaat agcgcccttc 7680
cccttgcccg gcgttaatga tttgcccaaa caggtcgctg aaatgcggct ggtgcgcttc 7740
atccgggcga aagaaccccg tattggcaaa tattgacggc cagttaagcc attcatgcca 7800
gtaggcgcgc ggacgaaagt aaacccactg gtgataccat tcgcgagcct ccggatgacg 7860
accgtagtga tgaatctctc ctggcgggaa cagcaaaata tcacccggtc ggcaaacaaa 7920
ttctcgtccc tgatttttca ccaccccctg accgcgaatg gtgagattga gaatataacc 7980
tttcattccc agcggtcggt cgataaaaaa atcgagataa ccgttggcct caatcggcgt 8040
taaacccgcc accagatggg cattaaacga gtatcccggc agcaggggat cattttgcgc 8100
ttcagccata cttttcatac tcccgccatt cagagaagaa accaattgtc catattgcat 8160
cagacattgc cgtcactgcg tcttttactg gctcttctcg ctaaccaaac cggtaacccc 8220
gcttattaaa agcattctgt aacaaagcgg gaccaaagcc atgacaaaaa cgcgtaacaa 8280
aagtgtctat aatcacggca gaaaagtcca cattgattat ttgcacggcg tcacactttg 8340
ctatgccata gcatttttat ccataagatt agcggatcct acctgacgct ttttatcgca 8400
actctctact gtttctccat acccgttttt ttgggaattc gagctctaag gaggttataa 8460
aaaatggata ttaatactga aactgagatc aagcaaaagc attcactaac cccctttcct 8520
gttttcctaa tcagcccggc atttcgcggg cgatattttc acagctattt caggagttca 8580
gccatgaacg cttattacat tcaggatcgt cttgaggctc agagctgggc gcgtcactac 8640
cagcagctcg cccgtgaaga gaaagaggca gaactggcag acgacatgga aaaaggcctg 8700
ccccagcacc tgtttgaatc gctatgcatc gatcatttgc aacgccacgg ggccagcaaa 8760
aaatccatta cccgtgcgtt tgatgacgat gttgagtttc aggagcgcat ggcagaacac 8820
atccggtaca tggttgaaac cattgctcac caccaggttg atattgattc agaggtataa 8880
aacgaatgag tactgcactc gcaacgctgg ctgggaagct ggctgaacgt gtcggcatgg 8940
attctgtcga cccacaggaa ctgatcacca ctcttcgcca gacggcattt aaaggtgatg 9000
ccagcgatgc gcagttcatc gcattactga tcgttgccaa ccagtacggc cttaatccgt 9060
ggacgaaaga aatttacgcc tttcctgata agcagaatgg catcgttccg gtggtgggcg 9120
ttgatggctg gtcccgcatc atcaatgaaa accagcagtt tgatggcatg gactttgagc 9180
aggacaatga atcctgtaca tgccggattt accgcaagga ccgtaatcat ccgatctgcg 9240
ttaccgaatg gatggatgaa tgccgccgcg aaccattcaa aactcgcgaa ggcagagaaa 9300
tcacggggcc gtggcagtcg catcccaaac ggatgttacg tcataaagcc atgattcagt 9360
gtgcccgtct ggccttcgga tttgctggta tctatgacaa ggatgaagcc gagcgcattg 9420
tcgaaaatac tgcatacact gcagaacgtc agccggaacg cgacatcact ccggttaacg 9480
atgaaaccat gcaggagatt aacactctgc tgatcgccct ggataaaaca tgggatgacg 9540
acttattgcc gctctgttcc cagatatttc gccgcgacat tcgtgcatcg tcagaactga 9600
cacaggccga agcagtaaaa gctcttggat tcctgaaaca gaaagccgca gagcagaagg 9660
tggcagcatg acaccggaca ttatcctgca gcgtaccggg atcgatgtga gagctgtcga 9720
acagggggat gatgcgtggc acaaattacg gctcggcgtc atcaccgctt cagaagttca 9780
caacgtgata gcaaaacccc gctccggaaa gaagtggcct gacatgaaaa tgtcctactt 9840
ccacaccctg cttgctgagg tttgcaccgg tgtggctccg gaagttaacg ctaaagcact 9900
ggcctgggga aaacagtacg agaacgacgc cagaaccctg tttgaattca cttccggcgt 9960
gaatgttact gaatccccga tcatctatcg cgacgaaagt atgcgtaccg cctgctctcc 10020
cgatggttta tgcagtgacg gcaacggcct tgaactgaaa tgcccgttta cctcccggga 10080
tttcatgaag ttccggctcg gtggtttcga ggccataaag tcagcttaca tggcccaggt 10140
gcagtacagc atgtgggtga cgcgaaaaaa tgcctggtac tttgccaact atgacccgcg 10200
tatgaagcgt gaaggcctgc attatgtcgt gattgagcgg gatgaaaagt acatggcgag 10260
ttttgacgag atcgtgccgg agttcatcga aaaaatggac gaggcactgg ctgaaattgg 10320
ttttgtattt ggggagcaat ggcgatgacg catcctcacg ataatatccg ggtaggcgca 10380
atcactttcg tctactccgt tacaaagcga ggctgggtat ttcccggcct ttctgttatc 10440
cgaaatccac tgaaagcaca gcggctggct gaggagataa ataataaacg aggggctgta 10500
tgcacaaagc atcttctgtt gagttaagaa cgagtatcga gatggcacat agccttgctc 10560
aaattggaat caggtttgtg ccaataccag tagaaacaga cgaagaatcc atgggtatgg 10620
acagatcctc tttaggcccg tagtctgcaa atccttttat gattttctat caaacaaaag 10680
aggaaaatag accagttgca atccaaacga gagtctaata gaatgaggtc gaaaagtaaa 10740
tcgcgcgggt ttgttactga taaagcaggc aagacctaaa atgtgtaaag ggcaaagtgt 10800
atactttggc gtcacccctt acatatttta ggtctttttt tattgtgcgt aactaacttg 10860
ccatcttcaa acaggagggc tggaagaagc agaccgctaa cacagtacat aaaaaaggag 10920
acatgaacga tgaacatcaa aaagtttgca aaacaagcaa cagtattaac ctttactacc 10980
gcactgctgg caggaggcgc aactcaagcg tttgcgaaag aaacgaacca aaagccatat 11040
aaggaaacat acggcatttc ccatattaca cgccatgata tgctgcaaat ccctgaacag 11100
caaaaaaatg aaaaatatca agttcctgaa ttcgattcgt ccacaattaa aaatatctct 11160
tctgcaaaag gcctggacgt ttgggacagc tggccattac aaaacgctga cggcactgtc 11220
gcaaactatc acggctacca catcgtcttt gcattagccg gagatcctaa aaatgcggat 11280
gacacatcga tttacatgtt ctatcaaaaa gtcggcgaaa cttctattga cagctggaaa 11340
aacgctggcc gcgtctttaa agacagcgac aaattcgatg caaatgattc tatcctaaaa 11400
gaccaaacac aagaatggtc aggttcagcc acatttacat ctgacggaaa aatccgttta 11460
ttctacactg atttctccgg taaacattac ggcaaacaaa cactgacaac tgcacaagtt 11520
aacgtatcag catcagacag ctctttgaac atcaacggtg tagaggatta taaatcaatc 11580
tttgacggtg acggaaaaac gtatcaaaat gtacagcagt tcatcgatga aggcaactac 11640
agctcaggcg acaaccatac gctgagagat cctcactacg tagaagataa aggccacaaa 11700
tacttagtat ttgaagcaaa cactggaact gaagatggct accaaggcga agaatcttta 11760
tttaacaaag catactatgg caaaagcaca tcattcttcc gtcaagaaag tcaaaaactt 11820
ctgcaaagcg ataaaaaacg cacggctgag ttagcaaacg gcgctctcgg tatgattgag 11880
ctaaacgatg attacacact gaaaaaagtg atgaaaccgc tgattgcatc taacacagta 11940
acagatgaaa ttgaacgcgc gaacgtcttt aaaatgaacg gcaaatggta cctgttcact 12000
gactcccgcg gatcaaaaat gacgattgac ggcattacgt ctaacgatat ttacatgctt 12060
ggttatgttt ctaattcttt aactggccca tacaagccgc tgaacaaaac tggccttgtg 12120
ttaaaaatgg atcttgatcc taacgatgta acctttactt actcacactt cgctgtacct 12180
caagcgaaag gaaacaatgt cgtgattaca agctatatga caaacagagg attctacgca 12240
gacaaacaat caacgtttgc gccaagcttc ctgctgaaca tcaaaggcaa gaaaacatct 12300
gttgtcaaag acagcatcct tgaacaagga caattaacag ttaacaaata aaaacgcaaa 12360
agaaaatgcc gatatcctat tggcattttc ttttatttct tatcaacata aaggtgaatc 12420
ccatatgaac tatataaaag caggcaaatg gctaaccgta ttcctcaaaa aaagcaccga 12480
ctcggtgcca ctttttcaag ttgataacgg actagcctta ttttaacttg ctatttctag 12540
ctctaaaacg gttggactca agacgatagt tacgaccagt ctaaaaagcg cctgaattcg 12600
cgaccttctc gttactgaca ggaaaatggg ccattggcaa ccagggaaag atgaacgtga 12660
tgatgttcac aatttgctga attgtggtga tgtgatgctc accgcatttc ctgaaaattc 12720
acgctgtatc ttgaaaaatc gacgtttttt acgtggtttt ccgtcgaaaa tttaaggtaa 12780
gaacctgacc tcgtgattac tatttcgccg tgttgacgac atcaggaggc cagtatgacc 12840
gtattacata gtgtggattt ttttccgtct ggtaacgcgt ccgtggcgat agaaccccgg 12900
ctcccgcagg cggattttcc tgaacatcat catgattttc atgaaattgt gattgtcgaa 12960
catggcacgg gtattcatgt gtttaatggg cagccctata ccatcaccgg tggcacggtc 13020
tgtttcgtac gcgatcatga tcggcatctg tatgaacata ccgataatct gtgtctgacc 13080
aatgtgctgt atcgctcgcc ggatcgattt cagtttctcg ccgggctgaa tcagttgctg 13140
ccacaagagc tggatgggca gtatccgtct cactggcgcg ttaaccacag cgtattgcag 13200
caggtgcgac agctggttgc acagatggaa cagcaggaag gggaaaatga tttaccctcg 13260
accgccagtc gcgagatctt gtttatgcaa ttactgctct tgctgcgtaa aagcagtttg 13320
caggagaacc tggaaaacag cgcatcacgt ctcaacttgc ttctggcctg gctggaggac 13380
cattttgccg atgaggtgaa ttgggatgcc gtggcggatc aattttctct ttcactgcgt 13440
acgctacatc ggcagcttaa gcagcaaacg ggactgacgc ctcagcgata cctgaaccgc 13500
ctgcgactga tgaaagcccg acatctgcta cgccacagcg aggccagcgt tactgacatc 13560
gcctatcgct gtggattcag cgacagtaac cacttttcga cgctttttcg ccgagagttt 13620
aactggtcac cgcgtgatat tcgccaggga cgggatggct ttctgcaata acgcgaatct 13680
tctcaacgta tttgtacgcc atattgcgaa taatcaactt cgttctctgg ccgaggtagc 13740
cacggtggcg catcagttaa aacttctcaa agatgatttt tttgccagcg accagcaggc 13800
agtcgctgtg gctgaccgtt atccgcaaga tgtctttgct gaacatacac atgatttttg 13860
tgagctggtg attgtctggc gcggtaatgg cctgcatgta ctcaacgatc gcccttatcg 13920
cattacccgt ggcgatctct tttacattca tgctgacgat aaacactcct acgcttccgt 13980
taacgatctg gttttgcaga atattattta ttgcccggag cgtctgaagc tgaatcttga 14040
ctggcagggg gcgattccgg gatttaacgc cagcgcaggg caaccacact ggcgcttagg 14100
tagcatgggg atggcgcagg cgcggcaggt tatcggtcag cttgagcatg aaagtagtca 14160
gcatgtgccg tttgctaacg aaatggctga gttgctgttc gggcagttgg tgatgttgct 14220
gaatcgccat cgttacacca gtgattcgtt gccgccaaca tccagcgaaa cgttgctgga 14280
taagctgatt acccggctgg cggctagcct gaaaagtccc tttgcgctgg ataaattttg 14340
tgatgaggca tcgtgcagtg agcgcgtttt gcgtcagcaa tttcgccagc agactggaat 14400
gaccatcaat caatatctgc gacaggtcag agtgtgtcat gcgcaatatc ttctccagca 14460
tagccgcctg ttaatcagtg atatttcgac cgaatgtggc tttgaagata gtaactattt 14520
ttcggtggtg tttacccggg aaaccgggat gacgcccagc cagtggcgtc atctcaattc 14580
gcagaaagat taattcgcca tgccc 14605
<210> 2
<211> 20
<212> DNA
<213> Artificial sequence ()
<400> 2
ctatcgtctt gagtccaacc 20

Claims (16)

1. A CRISPR-Cas based escherichia coli genome editing tool comprising a plasmid pEcCas for expressing an endonuclease Cas9, the plasmid pEcCas comprising Cas9 nuclease gene, lambda-RED recombination system gene, araC protein gene, sacB gene, replicon pSC101, rhamnose regulatory protein RhaS/RhaR gene, sgRNA sequence for directing Cas9 to helper plasmid DNA sequences, the escherichia coli genome editing tool for genome editing of B-and K-12-line escherichia coli, wherein
Transcription of the sgRNA sequence of the targeting helper plasmid DNA sequence, which is the N20 sequence located 20nt downstream of the rhamnose promoter Prha complementary to the target sequence, is induced by L-rhamnose.
2. The escherichia coli genome editing tool of claim 1 wherein the N20 sequence is SEQ ID No. 2.
3. The escherichia coli genome editing tool of claim 1 or 2, wherein the plasmid pEcCas plasmid further comprises a kanamycin resistance gene kanR.
4. The escherichia coli genome editing tool of claim 1, wherein the cas9 nuclease gene is a streptococcus pyogenes-derived cas9 nuclease gene.
5. The escherichia coli genome editing tool of claim 4 wherein the nucleotide sequence of the plasmid pEcCas is SEQ ID No. 1.
6. The escherichia coli genome editing tool of claim 1, further comprising a helper plasmid, thereby making the escherichia coli genome editing tool a two-plasmid system.
7. The escherichia coli genome editing tool of claim 6 wherein the helper plasmid is selected from pTargetF or ptarget comprising: (a) An sgRNA sequence for targeting the genome of escherichia coli, (b) a pMB1 replicon or a P15A replicon.
8. The escherichia coli genome editing tool of claim 7 wherein the helper plasmid pTargetF or ptarget comprises a spectinomycin resistance gene aadA.
9. The escherichia coli genome editing tool of claim 7, wherein transcription of the sgRNA for targeting the escherichia coli genome is controlled by a Pj23119 constitutive promoter.
10. The escherichia coli genome editing tool of claim 7, wherein the sgRNA for targeting the escherichia coli genome is 18-25nt in length.
11. The escherichia coli genome editing tool of claim 1 wherein the N20 sequence is identical to a partial sequence of replicons pMB1 and P15A, the N20 sequence on the pMB1 and P15A replicons being followed by the PAM sequence 5'-CGG-3'.
12. The escherichia coli genome editing tool of claim 7, wherein the tool comprises a plasmid pEcCas, a helper plasmid pTargetF or ptarget, and PCR primers for performing genome editing in the form of a kit.
13. The escherichia coli genome editing tool of claim 1, wherein the plasmid pEcCas is constructed by a method comprising: obtaining pSC101 replicon fragments by PCR amplification; PCR amplification of kanamycin resistance gene kanR fragment using pCas plasmid as template; PCR amplification of cas9 and lambda-RED recombinase gene fragments by using pCas plasmid as template; amplifying sacB gene fragments from bacillus subtilis genome DNA; amplifying sgRNA fragments directed to pMB1 and P15A replicons; the rhaRS fragment was amplified from the genomic DNA of E.coli MG1655, and the six fragments were assembled to obtain the pEcCas plasmid.
14. Use of the escherichia coli genome editing tool of any one of claims 1-13 in escherichia coli genome editing of B-line and K-12-line.
15. Use according to claim 14 for genome editing of e.coli BL21 (DE 3) or e.coli MG 1655.
16. The use according to claim 14, comprising the steps of:
1) Transforming plasmid pEcCas into competent cells of escherichia coli, and screening on an LB solid plate containing kanamycin at 37 ℃;
2) Selecting positive clones, preparing electrotransformation competent cells, and adding arabinose to induce RED recombinase expression 1 hour before centrifugal collection;
3) Transferring helper plasmids pTargetF or pTargetT into competent cells obtained in the step 2) through electrotransformation, coating bacterial liquid on a dual-antibody LB solid plate containing kanamycin and spectinomycin, and verifying clones after overnight culture at 37 ℃;
4) Selecting positive clones in LB culture solution containing kanamycin, adding rhamnose, inducing the sgRNA sequence of the DNA sequence of the guide auxiliary plasmid to transcribe, and verifying the elimination of the auxiliary plasmid on LB solid plates containing spectinomycin;
5) Picking auxiliary plasmid to eliminate positive clones, directly culturing overnight at 37 ℃ in an LB liquid culture medium containing glucose, sucking bacterial liquid, streaking and dividing single bacteria on an LB solid plate containing glucose and sucrose, identifying single bacteria on an LB plate containing kanamycin resistance, and verifying pEcCas plasmid elimination to obtain an editing strain.
CN201911291240.0A 2019-12-16 2019-12-16 Coli genome editing tool based on CRISPR-Cas Active CN112980891B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911291240.0A CN112980891B (en) 2019-12-16 2019-12-16 Coli genome editing tool based on CRISPR-Cas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911291240.0A CN112980891B (en) 2019-12-16 2019-12-16 Coli genome editing tool based on CRISPR-Cas

Publications (2)

Publication Number Publication Date
CN112980891A CN112980891A (en) 2021-06-18
CN112980891B true CN112980891B (en) 2023-12-12

Family

ID=76343119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911291240.0A Active CN112980891B (en) 2019-12-16 2019-12-16 Coli genome editing tool based on CRISPR-Cas

Country Status (1)

Country Link
CN (1) CN112980891B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214352B (en) * 2021-12-27 2024-04-16 黄山同兮生物科技有限公司 Method for optimizing escherichia coli genome for lactose fermentation
CN114457100B (en) * 2022-03-03 2023-06-09 江南大学 Escherichia coli gene editing system based on CRISPR/Cpf1 and application thereof
CN115927423A (en) * 2022-08-16 2023-04-07 大连理工大学 Method for improving CRISPR/Cas gene editing efficiency

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1668923A (en) * 2002-06-24 2005-09-14 佳能株式会社 DNA micro-array having standard probe and kit including the array
CN105483067A (en) * 2008-06-25 2016-04-13 瓦克星治疗有限责任公司 Method for manufacturing semiconductor substrate
CN109486737A (en) * 2018-12-03 2019-03-19 江南大学 A kind of recombination bacillus coli and its construction method of high yield L-Trp
CN109652435A (en) * 2018-12-28 2019-04-19 中国农业科学院兰州兽医研究所 Recombinant plasmid and corresponding gene target point mutation process for salmonella typhimurium gene target point mutation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE544860T1 (en) * 2008-02-29 2012-02-15 Xbrane Bioscience Aktiebolag EXPRESSION SYSTEM FOR PROTEINS
CN104603274B (en) * 2012-08-05 2020-08-18 Absci有限责任公司 Inducible coexpression system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1668923A (en) * 2002-06-24 2005-09-14 佳能株式会社 DNA micro-array having standard probe and kit including the array
CN105483067A (en) * 2008-06-25 2016-04-13 瓦克星治疗有限责任公司 Method for manufacturing semiconductor substrate
CN109486737A (en) * 2018-12-03 2019-03-19 江南大学 A kind of recombination bacillus coli and its construction method of high yield L-Trp
CN109652435A (en) * 2018-12-28 2019-04-19 中国农业科学院兰州兽医研究所 Recombinant plasmid and corresponding gene target point mutation process for salmonella typhimurium gene target point mutation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KY563785.1;无;GenBank;全文 *
MN023175.1;无;GenBank;全文 *
Multigene Editing in the Escherichia coli Genome via the CRISPR-Cas9 System;Yu Jiang等;Applied and Environmental Microbiology;第2506-2514页 *
Positively regulated bacterial expression systems;Trygve Brautaset等;Microbial Biotechnology;表1,图2,第22页右栏 *

Also Published As

Publication number Publication date
CN112980891A (en) 2021-06-18

Similar Documents

Publication Publication Date Title
Song et al. CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei
CN112980891B (en) Coli genome editing tool based on CRISPR-Cas
Posfai et al. Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157: H7 genome
Hoang et al. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants
TWI608100B (en) Cas9 expression plasmid, gene editing system of escherichia coli and method thereof
López et al. Versatile dual-technology system for markerless allele replacement in Burkholderia pseudomallei
US12024727B2 (en) Enzymes with RuvC domains
Choi et al. Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei
Bouillaut et al. Genetic Manipulation of Clostridium difficile: Firmicutes (Low G+ C Gram Positive)
CN108277231B (en) CRISPR system for corynebacterium genome editing
US20230287439A1 (en) Pathway integration and expression in host cells
CN102703424B (en) A kind of method of genome of E.coli point mutation of recombined engineering mediation
JP2004524031A (en) Bacterial plasmid lacking synthetic gene and CpG
EP2588615B1 (en) Self-deleting plasmid
JP2022524043A (en) Repeated genome editing of microorganisms
JPH04346787A (en) Method for obtaining dnarecombinant vector, microorganism and dna, method for obtaining recombinant protein and recombinant protein
JP2009524406A (en) Modular genomes for synthetic biology and metabolic engineering
Rodriguez et al. Targeted gene disruption in Francisella tularensis by group II introns
Fu et al. Sequence analysis of anerwinia stewartiiplasmid, psw100
Wilson et al. VEX-capture: a new technique that allows in vivo excision, cloning, and broad-host-range transfer of large bacterial genomic DNA segments
Rouws et al. Validation of a Tn5 transposon mutagenesis system for Gluconacetobacter diazotrophicus through characterization of a flagellar mutant
Chain et al. oriT-directed cloning of defined large regions from bacterial genomes: identification of the Sinorhizobium meliloti pExo megaplasmid replicator region
Tsuchida et al. Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector
CN111893130A (en) PCCI-2U plasmid and construction method and application thereof
Näsvall Dup-In and DIRex: Techniques for Single-Step, Scar-Free Mutagenesis with Marker Recycling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant