CN112971749B - 基于人工智能的疲劳检测方法和装置 - Google Patents

基于人工智能的疲劳检测方法和装置 Download PDF

Info

Publication number
CN112971749B
CN112971749B CN202110309824.7A CN202110309824A CN112971749B CN 112971749 B CN112971749 B CN 112971749B CN 202110309824 A CN202110309824 A CN 202110309824A CN 112971749 B CN112971749 B CN 112971749B
Authority
CN
China
Prior art keywords
data
pulse wave
target
target object
time domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110309824.7A
Other languages
English (en)
Other versions
CN112971749A (zh
Inventor
张闻涛
李祥
郭广跃
张志明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Resources Life Sciences Group Co ltd
Tongxintang Health Technology Beijing Co ltd
Original Assignee
China Resources Life Sciences Group Co ltd
Tongxintang Health Technology Beijing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Resources Life Sciences Group Co ltd, Tongxintang Health Technology Beijing Co ltd filed Critical China Resources Life Sciences Group Co ltd
Priority to CN202110309824.7A priority Critical patent/CN112971749B/zh
Publication of CN112971749A publication Critical patent/CN112971749A/zh
Application granted granted Critical
Publication of CN112971749B publication Critical patent/CN112971749B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Psychiatry (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Cardiology (AREA)
  • Fuzzy Systems (AREA)
  • Psychology (AREA)
  • Data Mining & Analysis (AREA)
  • Social Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Educational Technology (AREA)
  • Developmental Disabilities (AREA)
  • Computational Linguistics (AREA)
  • Vascular Medicine (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Child & Adolescent Psychology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本申请涉及一种基于人工智能的疲劳检测方法和装置。所述方法包括:获取目标对象的脉搏波数据;对所述目标对象的脉搏波数据进行特征分析得到目标特征数据;所述目标特征数据包括所述目标对象的脉搏特征;将所述目标特征数据发送到服务器,并接收所述服务器反馈的疲劳检测结果;所述疲劳检测结果为所述服务器根据预先训练的疲劳检测模型和所述目标特征数据进行疲劳检测得到的,所述疲劳检测结果用于指示所述目标对象是否处于疲劳状态。采用本方法能够降低检测成本、简化检测操作。

Description

基于人工智能的疲劳检测方法和装置
技术领域
本申请涉及人工智能技术领域,特别是涉及一种基于人工智能的疲劳检测方法和装置。
背景技术
疲劳,是指机体在一定环境条件下,由于长时间或过度紧张的体力劳动或脑力劳动而引起的劳动效率趋于下降的状态。人在疲劳状态下工作或学习,可能会造成比较大的危害。比如,司机疲劳驾驶可能会造成交通事故。
为了避免上述危害,可以检测人体是否处于疲劳状态,如果人体处于疲劳状态,则及时发出提醒。目前,检测人体是否处于疲劳状态主要依靠脑电波。但是,检测脑电波的设备比较昂贵,而且使用也很不方便。
发明内容
基于此,有必要针对上述技术问题,提供一种能够降低检测成本,简化检测操作的基于人工智能的疲劳检测方法和装置。
本公开实施例提供了一种基于人工智能的疲劳检测方法,应用于终端,该方法包括:
获取目标对象的脉搏波数据;
对目标对象的脉搏波数据进行特征分析得到目标特征数据;目标特征数据包括目标对象的脉搏特征;
将目标特征数据发送到服务器,并接收服务器反馈的疲劳检测结果;疲劳检测结果为服务器根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测得到的,疲劳检测结果用于指示目标对象是否处于疲劳状态。
在其中一个实施例中,脉搏波数据包括脉搏波时域数据和脉搏波频域数据;上述对目标对象的脉搏波数据进行特征分析得到目标特征数据,包括:
对目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据;
对目标对象的脉搏波频域数据进行频域分析得到目标频域特征数据。
在其中一个实施例中,上述对目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据,包括以下至少一种:
根据目标对象的脉搏波时域数据计算多个RR间期的平均值得到间期平均值;
根据目标对象的脉搏波时域数据计算多个RR间期的标准差得到间期标准差;
根据目标对象的脉搏波时域数据计算多个RR间期的均方根得到间期均方根;
根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并计算多个差值的标准差得到差值标准差;
根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并将大于预设时长的差值确定为目标差值,计算目标差值的数量与RR间期的总数量之间的比值得到间期比值。
在其中一个实施例中,上述对目标对象的脉搏波频域数据进行频域分析得到目标频域特征数据,包括:
根据目标对象的脉搏波频域数据,确定幅值最大的脉搏波频域数据所对应的第一频率,并对第一频率进行加倍处理得到第二频率和第三频率;
将第一频率、第二频率和第三频率附近预设数量的脉搏波频域数据确定为目标频域特征数据。
本公开实施例提供了一种基于人工智能的疲劳检测方法,应用于服务器,该方法包括:
接收终端发送的目标特征数据;目标特征数据为终端在获取到目标对象的脉搏波数据后,对目标对象的脉搏波数据进行特征分析得到的;目标特征数据包括目标对象的脉搏特征;
根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测,得到疲劳检测结果;疲劳检测结果用于指示目标对象是否处于疲劳状态;
将疲劳检测结果反馈到终端。
在其中一个实施例中,在上述根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测,得到疲劳检测结果之前,该方法还包括:
获取样本集;样本集包括多个样本特征数据和各样本特征数据的标注;样本特征数据包括训练对象的脉搏特征;标注用于指示训练对象是否处于疲劳状态;
基于样本集进行神经网络模型的训练,得到疲劳检测模型。
在其中一个实施例中,上述获取样本集,包括:
获取多个训练对象的脉搏波数据和脑电波数据;
对于各训练对象,对训练对象的脉搏波数据进行特征分析得到样本特征数据,对训练对象的脑电波数据进行脑电波分析得到训练对象是否处于疲劳状态的标注;
根据多个训练对象的样本特征数据和标注得到样本集。
在其中一个实施例中,样本集包括训练样本集和测试样本集;上述基于样本集进行神经网络模型的训练,得到疲劳检测模型,包括:
将训练样本集中的样本特征数据输入到初始神经网络模型中进行训练,得到中间神经网络模型;
将测试样本集中的样本特征数据输入到中间神经网络模型中进行测试,得到中间神经网络模型的检测准确率;
若检测准确率小于预设阈值,则调整中间神经网络模型中的可调参数继续训练,直到检测准确率大于或等于预设阈值时停止训练,并将停止训练时的中间神经网络模型确定为疲劳检测模型。
本公开实施例提供了一种基于人工智能的疲劳检测装置,应用于终端,该装置包括:
脉搏波获取模块,用于获取目标对象的脉搏波数据;
特征分析模块,用于对目标对象的脉搏波数据进行特征分析得到目标特征数据;目标特征数据包括目标对象的脉搏特征;
结果接收模块,用于将目标特征数据发送到服务器,并接收服务器反馈的疲劳检测结果;疲劳检测结果为服务器根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测得到的,疲劳检测结果用于指示目标对象是否处于疲劳状态。
在其中一个实施例中,脉搏波数据包括脉搏波时域数据和脉搏波频域数据;上述特征分析模块包括:
时域分析子模块,用于对目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据;
频域分析子模块,用于对目标对象的脉搏波频域数据进行频域分析得到目标频域特征数据。
在其中一个实施例中,上述时域分析子模块,具体用于根据目标对象的脉搏波时域数据计算多个RR间期的平均值得到间期平均值;根据目标对象的脉搏波时域数据计算多个RR间期的标准差得到间期标准差;根据目标对象的脉搏波时域数据计算多个RR间期的均方根得到间期均方根;根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并计算多个差值的标准差得到差值标准差;根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并将大于预设时长的差值确定为目标差值,计算目标差值的数量与RR间期的总数量之间的比值得到间期比值。
在其中一个实施例中,上述频域分析子模块,具体用于根据目标对象的脉搏波频域数据,确定幅值最大的脉搏波频域数据所对应的第一频率,并对第一频率进行加倍处理得到第二频率和第三频率;将第一频率、第二频率和第三频率附近预设数量的脉搏波频域数据确定为目标频域特征数据。
本公开实施例提供了一种基于人工智能的疲劳检测装置,应用于服务器,该装置包括:
数据接收模块,用于接收终端发送的目标特征数据;目标特征数据为终端在获取到目标对象的脉搏波数据后,对目标对象的脉搏波数据进行特征分析得到的;目标特征数据包括目标对象的脉搏特征;
疲劳检测模块,用于根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测,得到疲劳检测结果;疲劳检测结果用于指示目标对象是否处于疲劳状态;
结果发送模块,用于将疲劳检测结果反馈到终端。
在其中一个实施例中,该装置还包括:
样本获取模块,用于获取样本集;样本集包括多个样本特征数据和各样本特征数据的标注;样本特征数据包括训练对象的脉搏特征;标注用于指示训练对象是否处于疲劳状态;
训练模块,用于基于样本集进行神经网络模型的训练,得到疲劳检测模型。
在其中一个实施例中,上述样本获取模块,具体用于获取多个训练对象的脉搏波数据和脑电波数据;对于各训练对象,对训练对象的脉搏波数据进行特征分析得到样本特征数据,对训练对象的脑电波数据进行脑电波分析得到训练对象是否处于疲劳状态的标注;根据多个训练对象的样本特征数据和标注得到样本集。
在其中一个实施例中,样本集包括训练样本集和测试样本集;上述训练模块,用于将训练样本集中的样本特征数据输入到初始神经网络模型中进行训练,得到中间神经网络模型;将测试样本集中的样本特征数据输入到中间神经网络模型中进行测试,得到中间神经网络模型的检测准确率;若检测准确率小于预设阈值,则调整中间神经网络模型中的可调参数继续训练,直到检测准确率大于或等于预设阈值时停止训练,并将停止训练时的中间神经网络模型确定为疲劳检测模型。
本公开实施例提供了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取目标对象的脉搏波数据;
对目标对象的脉搏波数据进行特征分析得到目标特征数据;目标特征数据包括目标对象的脉搏特征;
将目标特征数据发送到服务器,并接收服务器反馈的疲劳检测结果;疲劳检测结果为服务器根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测得到的,疲劳检测结果用于指示目标对象是否处于疲劳状态。
本公开实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取目标对象的脉搏波数据;
对目标对象的脉搏波数据进行特征分析得到目标特征数据;目标特征数据包括目标对象的脉搏特征;
将目标特征数据发送到服务器,并接收服务器反馈的疲劳检测结果;疲劳检测结果为服务器根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测得到的,疲劳检测结果用于指示目标对象是否处于疲劳状态。
上述基于人工智能的疲劳检测方法和装置,获取目标对象的脉搏波数据;对目标对象的脉搏波数据进行特征分析得到目标特征数据;将目标特征数据发送到服务器,并接收服务器反馈的疲劳检测结果。本公开实施例中,终端获取目标对象的脉搏波,并将体现目标对象脉搏特征的目标特征数据发送到服务器进行疲劳检测,与现有技术中利用脑电波进行疲劳检测相比,脉搏波采集设备相对便宜,利用脉搏波进行疲劳检测可以降低检测成本,同时简化检测操作。
附图说明
图1为一个实施例中基于人工智能的疲劳检测方法的应用环境图;
图2为一个实施例中基于人工智能的疲劳检测方法的流程示意图;
图3为一个实施例中对目标对象的脉搏波数据进行特征分析得到目标特征数据步骤的流程示意图;
图4为一个实施例中脉搏波频域数据的示意图;
图5为另一个实施例中基于人工智能的疲劳检测方法的流程示意图;
图6为另一个实施例中训练疲劳检测模型的流程示意图;
图7为又一个实施例中基于人工智能的疲劳检测方法的流程示意图;
图8为一个实施例中基于人工智能的疲劳检测装置的结构框图;
图9为另一个实施例中基于人工智能的疲劳检测装置的结构框图;
图10为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的基于人工智能的疲劳检测方法,可以应用于如图1所示的应用环境中。该应用环境包括终端102和服务器104;其中,终端102通过网络与服务器104进行通信。上述终端102可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑以及智能手环、智能手表等便携式可穿戴设备,服务器104可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一个实施例中,如图2所示,提供了一种基于人工智能的疲劳检测方法,以该方法应用于图1中的终端为例进行说明,包括以下步骤:
步骤201,获取目标对象的脉搏波数据。
其中,脉搏波是心脏的搏动沿动脉血管和血流向外周传播而形成的,脉搏波数据可以在一定程度上反映被测对象的身体状态。脉搏波数据包括脉搏波时域数据和脉搏波频域数据。
终端可以采集目标对象的脉搏波时域数据;也可以通过多种连接方式外接脉搏波采集设备,从脉搏波采集设备获取目标对象的脉搏波时域数据。之后,终端对脉搏波时域数据进行傅里叶变换得到脉搏波频域数据。
获取脉搏波时域数据可以是实时获取,也可以是按照预设周期获取。例如,终端每隔1分钟从外接的脉搏波采集设备获取一次目标对象的脉搏波时域数据。本公开实施例对预设周期不做限定。
上述连接方式可以包括串口、蓝牙和USB(Universal Serial Bus,通用串行总线)接口中的至少一种;上述脉搏波采集设备可以包括压力式的桡动脉脉搏波采集设备和光电式的指尖光电容积脉搏波采集设备中的至少一种。本公开实施例对此不做限定。
步骤202,对目标对象的脉搏波数据进行特征分析得到目标特征数据。
其中,目标特征数据包括目标对象的脉搏特征。
终端获取到目标对象的脉搏波数据后,对目标对象的脉搏波数据进行特征分析。比如,对目标对象的脉搏波数据进行时域分析和频域分析,得到目标特征数据。或者,将目标对象的脉搏波数据输入到预先训练的特征提取模型中,得到特征提取模型输出的目标特征数据。本公开实施例对分析方式不做限定,可以根据实际情况进行选取。
在其中一个实施例中,终端先对目标对象的脉搏波数据进行降噪处理和滤波处理,再对处理后的脉搏波数据进行特征分析。
步骤203,将目标特征数据发送到服务器,并接收服务器反馈的疲劳检测结果。
其中,疲劳检测结果为服务器根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测得到的,疲劳检测结果用于指示目标对象是否处于疲劳状态。
终端在得到目标特征数据之后,将目标特征数据发送到服务器。对应地,服务器接收终端发送的目标特征数据,并将目标特征数据输入到预先训练的疲劳检测模型中,得到疲劳检测模型输出的疲劳检测结果。
例如,终端将目标对象A的目标特征数据发送到服务器,服务器接收目标特征数据,并将目标特征数据输入到疲劳检测模型中,疲劳检测模型输出目标对象A未处于疲劳状态的疲劳检测结果。经过一段时间后,终端又将目标对象A的目标特征数据发送到服务器,服务器再将目标特征数据输入到疲劳检测模型中,疲劳检测模型输出目标对象A处于疲劳状态的疲劳检测结果。
服务器得到疲劳检测结果后,将疲劳检测结果反馈到终端。对应地,终端接收服务器反馈的疲劳检测结果。
上述基于人工智能的疲劳检测方法中,终端获取目标对象的脉搏波数据;对目标对象的脉搏波数据进行特征分析得到目标特征数据;将目标特征数据发送到服务器,并接收服务器反馈的疲劳检测结果。本公开实施例中,终端获取目标对象的脉搏波,并将体现目标对象脉搏特征的目标特征数据发送到服务器进行疲劳检测,与现有技术中利用脑电波进行疲劳检测相比,脉搏波采集设备相对便宜,利用脉搏波进行疲劳检测可以降低检测成本,同时简化检测操作。进一步地,降低检测成本后,可以扩展疲劳检测的应用范围。
在一个实施中,脉搏波数据包括脉搏波时域数据和脉搏波频域数据,如图3所示,上述对目标对象的脉搏波数据进行特征分析得到目标特征数据的步骤,可以包括:
步骤301,对目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据。
其中,目标时域特征数据包括RR间期、间期平均值NNVGR、间期标准差SDNN、间期均方根RMSSD、差值标准差SDSD、间期比值pNN50中的至少一种。RR间期为脉搏波中两个波峰之间的时长。
终端对目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据,可以包括以下至少一种:根据目标对象的脉搏波时域数据计算多个RR间期的平均值得到间期平均值NNVGR。根据目标对象的脉搏波时域数据计算多个RR间期的标准差得到间期标准差SDNN;根据目标对象的脉搏波时域数据计算多个RR间期的均方根得到间期均方根RMSSD;根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并计算多个差值的标准差得到差值标准差SDSD;根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并将大于预设时长的差值确定为目标差值,计算目标差值的数量与RR间期的总数量之间的比值得到间期比值pNN50。
例如,根据目标对象的脉搏波时域数据确定有9个RR间期,计算9个RR间期的平均值,即可得到间期平均值NNVGR。计算9个RR间期的标准差,即可得到间期标准差SDNN。计算第1个RR间期和第2个RR间期之间的均方根,计算第2个RR间期和第3个RR间期之间的均方根,以此类推,一直到计算第8个RR间期和第9个RR间期之间的均方根,得到7个间期均方根间期标准差SDNN。计算第1个RR间期和第2个RR间期之间的差值,计算第2个RR间期和第3个RR间期之间的差值,以此类推,一直到计算第8个RR间期和第9个RR间期之间的差值,得到7个差值;然后计算这7个差值的标准差得到差值标准差SDSD。预设时长为50ms,将上述计算出的7个差值中大于50ms的差值确定为目标差值,统计出目标差值的数量为3、RR间期的总数量为9,则计算目标差值的数量3与RR间期的总数量9之间的比值,得到间期比值pNN50。本公开实施例对预设时长不做限定。
步骤302,对目标对象的脉搏波频域数据进行频域分析得到目标频域特征数据。
终端根据目标对象的脉搏波频域数据,确定幅值最大的脉搏波频域数据所对应的第一频率,并对第一频率进行加倍处理得到第二频率和第三频率;之后,将第一频率、第二频率和第三频率附近预设数量的脉搏波频域数据确定为目标频域特征数据。
例如,目标对象的脉搏波频域数据如图4所示,其中,幅值最大的脉搏波频域数据所对应的第一频率为85Hz,85Hz的2倍为170Hz,85Hz的3倍为255Hz,则将170Hz确定为第二频率,将255Hz确定为第三频率。将第一频率对应的脉搏波频域数据X1和脉搏波频域数据X1左右各10个脉搏波频域数据确定为目标频域特征数据;将第二频率附近幅值最大的脉搏波频域数据X2和脉搏波频域数据X2左右各10个脉搏波频域数据也确定为目标频域特征数据;将第三频率附近幅值最大的脉搏波频域数据X3和脉搏波频域数据X3左右各10个脉搏波频域数据也确定为目标频域特征数据,一共得到63个目标频域特征数据。本公开实施例对预设数量不做限定。
上述步骤301和步骤302的顺序不受限定。
上述对目标对象的脉搏波数据进行特征分析得到目标特征数据的步骤中,终端对目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据;对目标对象的脉搏波频域数据进行频域分析得到目标频域特征数据。本公开实施例中,终端对脉搏波数据进行时域分析和频域分析,得到可以体现目标对象的脉搏特征的目标特征数据,以便后续可以根据目标特征数据进行疲劳检测。与现有技术中利用脑电波进行疲劳检测相比,本公开实施例利用脉搏波进行疲劳检测,可以降低检测成本,同时简化检测操作。
在一个实施例中,如图5所示,提供了一种基于人工智能的疲劳检测方法,以该方法应用于图1中的服务器为例进行说明,包括以下步骤:
步骤401,接收终端发送的目标特征数据。
其中,目标特征数据为终端在获取到目标对象的脉搏波数据后,对目标对象的脉搏波数据进行特征分析得到的;目标特征数据包括目标对象的脉搏特征。
终端可以采集目标对象的脉搏波数据,也可以从外接的脉搏波采集设备获取到目标对象的脉搏波数据。终端对目标对象的脉搏波数据进行特征分析得到目标特征数据后,将目标特征数据发送到服务器。对应地,服务器接收终端发送的目标特征数据。
步骤402,根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测,得到疲劳检测结果。
其中,疲劳检测结果用于指示目标对象是否处于疲劳状态。
服务器预先训练疲劳检测模型,在接收到目标特征数据之后,将目标特征数据输入到疲劳检测模型中,得到疲劳检测模型输出的疲劳检测结果。
步骤403,将疲劳检测结果反馈到终端。
服务器得到疲劳检测结果后,将疲劳检测结果发送到终端。对应地,终端接收服务器发送的疲劳检测结果。
在其中一个实施例中,服务器存储目标对象的目标特征数据和疲劳检测结果,以便后续查看。
上述基于人工智能的疲劳检测方法中,接收终端发送的目标特征数据;根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测,得到疲劳检测结果;将疲劳检测结果反馈到终端。本公开实施例中,服务器根据终端发送的体现目标对象脉搏特征的目标特征数据进行疲劳检测,与现有技术中利用脑电波进行疲劳检测相比,脉搏波采集设备相对便宜,利用脉搏波进行疲劳检测可以降低检测成本,同时简化检测操作。进一步地,降低检测成本后,可以扩展疲劳检测的应用范围。
在一个实施例中,如图6所示,在上述实施例的基础上,本公开实施例还可以包括训练疲劳检测模型的过程:
步骤501,获取样本集。
其中,样本集包括多个样本特征数据和各样本特征数据的标注;样本特征数据包括训练对象的脉搏特征;标注用于指示训练对象是否处于疲劳状态。
服务器获取多个训练对象的脉搏波数据和脑电波数据;对于各训练对象,对训练对象的脉搏波数据进行特征分析得到样本特征数据,对训练对象的脑电波数据进行脑电波分析得到训练对象是否处于疲劳状态的标注;根据多个训练对象的样本特征数据和标注得到样本集。
在其中一个实施例中,脉搏波数据包括脉搏波时域数据和脉搏波频域数据;脉搏波时域数据可以是服务器通过脉搏波采集设备获取到的,脉搏波频域数据可以是对脉搏波时域数据进行傅里叶变换得到的。服务器对训练对象的脉搏波数据进行特征分析,可以参考上述实施例中终端对目标对象的脉搏波数据进行特征分析的过程。
在其中一个实施例中,服务器对脉搏波数据进行特征分析前,对脉搏波数据进行降噪处理和滤波处理,再对处理后的脉搏波数据进行特征分析。
在其中一个实施例中,脑电波数据包括脑电波时域数据和脑电波频域数据;脑电波时域数据可以是服务器通过脑电波采集设备获取到的,脑电波频域数据可以是服务器对脑电波时域数据进行傅里叶变换得到的。服务器对训练对象的脑电波数据进行脑电波分析,可以包括:从训练对象的脑电波频域数据中得到Y波(31-100Hz)、β波(14至30Hz)、α波(8至13Hz)、θ波(4至7Hz)、δ波(1至3Hz);分别计算每种波在脑电波频域数据中的能量占比,并将每种波对应的能量占比确定为脑电波频域特征数据。之后,服务器根据脑电波频域特征数据计算eSense指数。
eSense指数用于描述被测对象的专注度和放松度,计算专注度的公式如公式(1)所示:
Pa=(mY+nβ+tα)×100 (1)
其中,Pa表示专注度,Y、β、α分别表示Y波、β波、α波的能量占比,m、n、t分别表示Y波、β波、α波的权重。
计算放松度的公式为Pm=(xθ+yδ+zα)×100
其中,Pm表示放松度,θ、δ、α分别表示θ波、δ波、α波的能量占比,x、y、z分别表示θ波、δ波、α波的权重。
上述Y波、β波、α波、θ波、δ波的权重可以通过层次分析法获得。
服务器根据eSense指数确定训练对象是否处于疲劳状态:如果Pa+Pm≤100,则确定训练对象处于疲劳状态;如果Pa+Pm>100,则确定训练对象未处于疲劳状态。
在其中一个实例中,服务器对脑电波数据进行分析前,对脑电波数据进行降噪处理和滤波处理,再对处理后的脑电波数据进行分析。
步骤502,基于样本集进行神经网络模型的训练,得到疲劳检测模型。
其中,神经网络模型的激活函数可以采用线性整流函数(Rectified LinearUnit,ReLU)函数,神经网络模型的学习率可以设置为0.01,神经网络模型可以包括输入层、至少两个隐藏层和输出层,每层包括12个神经元。本公开实施例对神经网络模型的结构不做限定。
样本集包括训练样本集和测试样本集,其中,训练样本集和测试样本集中的样本特征数据的比例可以是8:2。本公开实施例对此不做限定。训练过程可以包括以下步骤:服务器将训练样本集中的样本特征数据输入到初始神经网络模型中进行训练,得到中间神经网络模型;将测试样本集中的样本特征数据输入到中间神经网络模型中进行测试,得到中间神经网络模型的检测准确率;若检测准确率小于预设阈值,则调整中间神经网络模型中的可调参数继续训练,直到检测准确率大于或等于预设阈值时停止训练,并将停止训练时的中间神经网络模型确定为疲劳检测模型。
例如,预设阈值为98%,如果服务器确定检测准确率小于98%,则调整中间神经网络模型中的可调参数继续训练,一直到服务器确定检测准确率大于或等于98%时停止训练。
在其中一个实施例中,服务器接收多个终端发送的目标特征数据,并根据多个目标特征数据更新疲劳检测模型。
上述训练疲劳检测模型的过程中,服务器获取样本集;基于样本集进行神经网络模型的训练,得到疲劳检测模型。本公开实施例中,服务器利用体现脉搏特征的样本特征数据和根据脑电波数据得到的是否处于疲劳状态的标注进行疲劳检测模型的训练,训练出的疲劳检测模型可以将疲劳检测从利用脑电波转换为利用脉搏波,不仅可以保证检测准确性,而且还可以降低检测成本、简化检测操作。
在一个实施例中,如图7所示,提供了一种基于人工智能的疲劳检测方法,包括以下步骤:
步骤601,终端获取目标对象的脉搏波数据。
步骤602,终端对目标对象的脉搏波数据进行特征分析得到目标特征数据。
其中,目标特征数据包括目标对象的脉搏特征。
在其中一个实施例中,终端对目标特征数据进行图形化展示。
步骤603,终端将目标特征数据发送到服务器。
步骤604,服务器接收终端发送的目标特征数据。
步骤605,服务器根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测,得到疲劳检测结果。
其中,疲劳检测结果用于指示目标对象是否处于疲劳状态。
步骤606,服务器将疲劳检测结果反馈到终端。
步骤607,终端接收服务器反馈的疲劳检测结果。
在其中一个实施例中,终端对疲劳检测结果进行图形化展示。
步骤608,终端确定疲劳检测结果符合预设报警条件,输出报警信息。
其中,预设报警条件可以包括:连续获取到目标对象处于疲劳状态的疲劳检测结果。例如,每隔1分钟接收到一个服务器发送的目标对象处于疲劳状态的疲劳检测结果。
终端确定疲劳检测结果符合预设报警条件后,可以输出语音报警信息,也可以输出振动报警信息。报警信息可以是持续输出直到用户触发停止报警,也可以是只输出一次。本公开实施例对报警方式不做限定。
上述公开实施例中,终端与服务器交互进行疲劳检测,与现有技术中利用脑电波进行疲劳检测相比,脉搏波采集设备相对便宜,利用脉搏波进行疲劳检测可以降低检测成本,同时简化检测操作。进一步地,降低检测成本后,可以扩展疲劳检测的应用范围。
应该理解的是,虽然图2至图7的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2至图7中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图8所示,提供了一种基于人工智能的疲劳检测装置,应用于终端,该装置包括:
脉搏波获取模块701,用于获取目标对象的脉搏波数据;
特征分析模块702,用于对目标对象的脉搏波数据进行特征分析得到目标特征数据;目标特征数据包括目标对象的脉搏特征;
结果接收模块703,用于将目标特征数据发送到服务器,并接收服务器反馈的疲劳检测结果;疲劳检测结果为服务器根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测得到的,疲劳检测结果用于指示目标对象是否处于疲劳状态。
在其中一个实施例中,脉搏波数据包括脉搏波时域数据和脉搏波频域数据;上述特征分析模块702包括:
时域分析子模块,用于对目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据;
频域分析子模块,用于对目标对象的脉搏波频域数据进行频域分析得到目标频域特征数据。
在其中一个实施例中,上述时域分析子模块,具体用于根据目标对象的脉搏波时域数据计算多个RR间期的平均值得到间期平均值;根据目标对象的脉搏波时域数据计算多个RR间期的标准差得到间期标准差;根据目标对象的脉搏波时域数据计算多个RR间期的均方根得到间期均方根;根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并计算多个差值的标准差得到差值标准差;根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并将大于预设时长的差值确定为目标差值,计算目标差值的数量与RR间期的总数量之间的比值得到间期比值。
在其中一个实施例中,上述频域分析子模块,具体用于根据目标对象的脉搏波频域数据,确定幅值最大的脉搏波频域数据所对应的第一频率,并对第一频率进行加倍处理得到第二频率和第三频率;将第一频率、第二频率和第三频率附近预设数量的脉搏波频域数据确定为目标频域特征数据。
在一个实施例中,如图9所示,提供了一种基于人工智能的疲劳检测装置,应用于服务器,该装置包括:
数据接收模块801,用于接收终端发送的目标特征数据;目标特征数据为终端在获取到目标对象的脉搏波数据后,对目标对象的脉搏波数据进行特征分析得到的;目标特征数据包括目标对象的脉搏特征;
疲劳检测模块802,用于根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测,得到疲劳检测结果;疲劳检测结果用于指示目标对象是否处于疲劳状态;
结果发送模块803,用于将疲劳检测结果反馈到终端。
在其中一个实施例中,该装置还包括:
样本获取模块,用于获取样本集;样本集包括多个样本特征数据和各样本特征数据的标注;样本特征数据包括训练对象的脉搏特征;标注用于指示训练对象是否处于疲劳状态;
训练模块,用于基于样本集进行神经网络模型的训练,得到疲劳检测模型。
在其中一个实施例中,上述样本获取模块,具体用于获取多个训练对象的脉搏波数据和脑电波数据;对于各训练对象,对训练对象的脉搏波数据进行特征分析得到样本特征数据,对训练对象的脑电波数据进行脑电波分析得到训练对象是否处于疲劳状态的标注;根据多个训练对象的样本特征数据和标注得到样本集。
在其中一个实施例中,样本集包括训练样本集和测试样本集;上述训练模块,用于将训练样本集中的样本特征数据输入到初始神经网络模型中进行训练,得到中间神经网络模型;将测试样本集中的样本特征数据输入到中间神经网络模型中进行测试,得到中间神经网络模型的检测准确率;若检测准确率小于预设阈值,则调整中间神经网络模型中的可调参数继续训练,直到检测准确率大于或等于预设阈值时停止训练,并将停止训练时的中间神经网络模型确定为疲劳检测模型。
关于基于人工智能的疲劳检测装置的具体限定可以参见上文中对于基于人工智能的疲劳检测方法的限定,在此不再赘述。上述基于人工智能的疲劳检测装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图10所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种基于人工智能的疲劳检测方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图10中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
获取目标对象的脉搏波数据;
对目标对象的脉搏波数据进行特征分析得到目标特征数据;目标特征数据包括目标对象的脉搏特征;
将目标特征数据发送到服务器,并接收服务器反馈的疲劳检测结果;疲劳检测结果为服务器根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测得到的,疲劳检测结果用于指示目标对象是否处于疲劳状态。
在一个实施例中,脉搏波数据包括脉搏波时域数据和脉搏波频域数据;处理器执行计算机程序时还实现以下步骤:
对目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据;
对目标对象的脉搏波频域数据进行频域分析得到目标频域特征数据。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
根据目标对象的脉搏波时域数据计算多个RR间期的平均值得到间期平均值;
根据目标对象的脉搏波时域数据计算多个RR间期的标准差得到间期标准差;
根据目标对象的脉搏波时域数据计算多个RR间期的均方根得到间期均方根;
根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并计算多个差值的标准差得到差值标准差;
根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并将大于预设时长的差值确定为目标差值,计算目标差值的数量与RR间期的总数量之间的比值得到间期比值。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
根据目标对象的脉搏波频域数据,确定幅值最大的脉搏波频域数据所对应的第一频率,并对第一频率进行加倍处理得到第二频率和第三频率;
将第一频率、第二频率和第三频率附近预设数量的脉搏波频域数据确定为目标频域特征数据。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取目标对象的脉搏波数据;
对目标对象的脉搏波数据进行特征分析得到目标特征数据;目标特征数据包括目标对象的脉搏特征;
将目标特征数据发送到服务器,并接收服务器反馈的疲劳检测结果;疲劳检测结果为服务器根据预先训练的疲劳检测模型和目标特征数据进行疲劳检测得到的,疲劳检测结果用于指示目标对象是否处于疲劳状态。
在一个实施例中,脉搏波数据包括脉搏波时域数据和脉搏波频域数据;计算机程序被处理器执行时还实现以下步骤:
对目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据;
对目标对象的脉搏波频域数据进行频域分析得到目标频域特征数据。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
根据目标对象的脉搏波时域数据计算多个RR间期的平均值得到间期平均值;
根据目标对象的脉搏波时域数据计算多个RR间期的标准差得到间期标准差;
根据目标对象的脉搏波时域数据计算多个RR间期的均方根得到间期均方根;
根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并计算多个差值的标准差得到差值标准差;
根据目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并将大于预设时长的差值确定为目标差值,计算目标差值的数量与RR间期的总数量之间的比值得到间期比值。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
根据目标对象的脉搏波频域数据,确定幅值最大的脉搏波频域数据所对应的第一频率,并对第一频率进行加倍处理得到第二频率和第三频率;
将第一频率、第二频率和第三频率附近预设数量的脉搏波频域数据确定为目标频域特征数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (4)

1.一种基于人工智能的疲劳检测方法,其特征在于,应用于终端,所述方法包括:
获取目标对象的脉搏波数据;所述脉搏波数据包括脉搏波时域数据和脉搏波频域数据;
对所述目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据;
对所述目标对象的脉搏波频域数据进行频域分析得到目标频域特征数据;
将所述目标时域特征数据和所述目标频域特征数据发送到服务器,并接收所述服务器反馈的疲劳检测结果;所述疲劳检测结果为所述服务器根据预先训练的疲劳检测模型和所述目标时域特征数据以及所述目标频域特征数据进行疲劳检测得到的,所述疲劳检测结果用于指示所述目标对象是否处于疲劳状态;
所述对所述目标对象的脉搏波频域数据进行频域分析得到目标频域特征数据,包括:
根据所述目标对象的脉搏波频域数据,确定幅值最大的脉搏波频域数据所对应的第一频率,并对所述第一频率进行加倍处理得到第二频率和第三频率;
将所述第一频率、所述第二频率和所述第三频率附近预设数量的脉搏波频域数据确定为所述目标频域特征数据。
2.根据权利要求1所述的方法,其特征在于,所述对所述目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据,包括以下至少一种:
根据所述目标对象的脉搏波时域数据计算多个RR间期的平均值得到间期平均值;
根据所述目标对象的脉搏波时域数据计算多个RR间期的标准差得到间期标准差;
根据所述目标对象的脉搏波时域数据计算多个RR间期的均方根得到间期均方根;
根据所述目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并计算多个所述差值的标准差得到差值标准差;
根据所述目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并将大于预设时长的差值确定为目标差值,计算所述目标差值的数量与所述RR间期的总数量之间的比值得到间期比值。
3.一种基于人工智能的疲劳检测装置,其特征在于,应用于终端,所述装置包括:
脉搏波获取模块,用于获取目标对象的脉搏波数据;所述脉搏波数据包括脉搏波时域数据和脉搏波频域数据;
时域分析子模块,用于对所述目标对象的脉搏波时域数据进行时域分析得到目标时域特征数据;
频域分析子模块,用于对所述目标对象的脉搏波频域数据进行频域分析得到目标频域特征数据;
结果接收模块,用于将所述目标时域特征数据和所述目标频域特征数据发送到服务器,并接收所述服务器反馈的疲劳检测结果;所述疲劳检测结果为所述服务器根据预先训练的疲劳检测模型和所述目标时域特征数据以及所述目标频域特征数据进行疲劳检测得到的,所述疲劳检测结果用于指示所述目标对象是否处于疲劳状态;
所述频域分析子模块,具体用于根据所述目标对象的脉搏波频域数据,确定幅值最大的脉搏波频域数据所对应的第一频率,并对所述第一频率进行加倍处理得到第二频率和第三频率;将所述第一频率、所述第二频率和所述第三频率附近预设数量的脉搏波频域数据确定为所述目标频域特征数据。
4.根据权利要求3所述的装置,其特征在于,
所述时域分析子模块,具体用于根据所述目标对象的脉搏波时域数据计算多个RR间期的平均值得到间期平均值;根据所述目标对象的脉搏波时域数据计算多个RR间期的标准差得到间期标准差;根据所述目标对象的脉搏波时域数据计算多个RR间期的均方根得到间期均方根;根据所述目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并计算多个所述差值的标准差得到差值标准差;根据所述目标对象的脉搏波时域数据计算每相邻两个RR间期的差值,并将大于预设时长的差值确定为目标差值,计算所述目标差值的数量与所述RR间期的总数量之间的比值得到间期比值。
CN202110309824.7A 2021-03-23 2021-03-23 基于人工智能的疲劳检测方法和装置 Active CN112971749B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110309824.7A CN112971749B (zh) 2021-03-23 2021-03-23 基于人工智能的疲劳检测方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110309824.7A CN112971749B (zh) 2021-03-23 2021-03-23 基于人工智能的疲劳检测方法和装置

Publications (2)

Publication Number Publication Date
CN112971749A CN112971749A (zh) 2021-06-18
CN112971749B true CN112971749B (zh) 2023-10-17

Family

ID=76333212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110309824.7A Active CN112971749B (zh) 2021-03-23 2021-03-23 基于人工智能的疲劳检测方法和装置

Country Status (1)

Country Link
CN (1) CN112971749B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106585444A (zh) * 2015-10-14 2017-04-26 南京金同润医疗科技有限公司 一种防疲劳汽车坐垫及其防疲劳方法
CN106599821A (zh) * 2016-12-07 2017-04-26 中国民用航空总局第二研究所 基于bp神经网络的管制员疲劳检测方法及系统
CN108852377A (zh) * 2018-04-13 2018-11-23 中国科学院苏州生物医学工程技术研究所 基于多生理参数的人体运动性疲劳监测系统
CN112617772A (zh) * 2021-01-05 2021-04-09 上海工程技术大学 一种基于脉搏波信号的驾驶疲劳识别方法及系统
CN112957018A (zh) * 2021-03-23 2021-06-15 童心堂健康科技(北京)有限公司 基于人工智能的心脏状态检测方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106585444A (zh) * 2015-10-14 2017-04-26 南京金同润医疗科技有限公司 一种防疲劳汽车坐垫及其防疲劳方法
CN106599821A (zh) * 2016-12-07 2017-04-26 中国民用航空总局第二研究所 基于bp神经网络的管制员疲劳检测方法及系统
CN108852377A (zh) * 2018-04-13 2018-11-23 中国科学院苏州生物医学工程技术研究所 基于多生理参数的人体运动性疲劳监测系统
CN112617772A (zh) * 2021-01-05 2021-04-09 上海工程技术大学 一种基于脉搏波信号的驾驶疲劳识别方法及系统
CN112957018A (zh) * 2021-03-23 2021-06-15 童心堂健康科技(北京)有限公司 基于人工智能的心脏状态检测方法和装置

Also Published As

Publication number Publication date
CN112971749A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
EP2698112B1 (en) Real-time stress determination of an individual
CN109460752B (zh) 一种情绪分析方法、装置、电子设备及存储介质
KR20190050725A (ko) 모바일 단말을 이용한 맥파 신호 및 스트레스 측정 방법 및 장치
CN104274191B (zh) 一种心理测评方法及其系统
CN109674456B (zh) 血压估计设备和方法以及可穿戴装置
CN108888277B (zh) 心理测试方法、系统及终端设备
US11317840B2 (en) Method for real time analyzing stress using deep neural network algorithm
US11311198B2 (en) System and method for determining psychological stress of a person
US20220373646A1 (en) Joint estimation of respiratory and heart rates using ultra-wideband radar
CN112957018A (zh) 基于人工智能的心脏状态检测方法和装置
Ninh et al. An improved subject-independent stress detection model applied to consumer-grade wearable devices
CN112971749B (zh) 基于人工智能的疲劳检测方法和装置
US20210085259A1 (en) Apparatus and method for estimating bio-information
CN116327133A (zh) 一种多生理指标检测方法、装置及相关设备
CN116687409A (zh) 一种基于数字孪生和深度学习的情绪识别方法及系统
CN116473556A (zh) 一种基于多位点皮肤生理响应的情感计算方法及系统
Chourasia et al. Foetal phonocardiographic signal denoising based on non-negative matrix factorization
Xie et al. Identifying strong stress and weak stress through blood volume pulse
US20210375473A1 (en) Systems and methods for hypertension monitoring
CN110192872B (zh) 压力评估校准方法、装置及存储介质
Ekiz et al. Long short-term memory network based unobtrusive workload monitoring with consumer grade smartwatches
RU2704547C1 (ru) Способ удаленного сбора и групповой обработки психофизиологических реакций при предъявлении различной информации
Progonov et al. Heartbeat-based authentication on smartwatches in various usage contexts
US20200221963A1 (en) Apparatus and method for estimating bio-information
KR102254740B1 (ko) 스마트 신호 인식기 및 이를 생성하는 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant