CN112966735B - A supervised multi-set correlation feature fusion method based on spectral reconstruction - Google Patents
A supervised multi-set correlation feature fusion method based on spectral reconstruction Download PDFInfo
- Publication number
- CN112966735B CN112966735B CN202110235178.4A CN202110235178A CN112966735B CN 112966735 B CN112966735 B CN 112966735B CN 202110235178 A CN202110235178 A CN 202110235178A CN 112966735 B CN112966735 B CN 112966735B
- Authority
- CN
- China
- Prior art keywords
- matrix
- fractional
- group
- intra
- autocovariance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007500 overflow downdraw method Methods 0.000 title claims description 9
- 230000003595 spectral effect Effects 0.000 title claims description 9
- 239000011159 matrix material Substances 0.000 claims abstract description 113
- 238000000034 method Methods 0.000 claims abstract description 35
- 238000012549 training Methods 0.000 claims abstract description 30
- 238000012562 intraclass correlation Methods 0.000 claims abstract description 27
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 22
- 230000004927 fusion Effects 0.000 claims abstract description 15
- 239000013598 vector Substances 0.000 claims abstract description 10
- 238000005457 optimization Methods 0.000 claims abstract description 9
- 238000012360 testing method Methods 0.000 claims abstract description 9
- 238000001228 spectrum Methods 0.000 abstract 1
- 238000010219 correlation analysis Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008909 emotion recognition Effects 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/42—Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Artificial Intelligence (AREA)
- Algebra (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- Multimedia (AREA)
- Computing Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域Technical field
本发明涉及模式识别领域,特别涉及一种基于谱重建的监督多集相关特征融合方法。The invention relates to the field of pattern recognition, and in particular to a supervised multi-set related feature fusion method based on spectral reconstruction.
背景技术Background technique
典型相关分析(CCA)研究了两组数据之间的线性相关性。CCA可以将两组随机变量线性地投影到具有最大相关性的低维子空间中。研究人员使用CCA来同时降低两组特征向量(即两个视图)的维数以获得两个低维特征表示,然后将这两个低维特征表示进行有效融合,以形成判别特征,从而提高模式的分类准确性。由于CCA方法简单有效,其在盲源分离、计算机视觉和语音识别等方面有着广泛的应用。Canonical correlation analysis (CCA) studies the linear correlation between two sets of data. CCA can linearly project two sets of random variables into a low-dimensional subspace with maximum correlation. Researchers use CCA to simultaneously reduce the dimensions of two sets of feature vectors (i.e., two views) to obtain two low-dimensional feature representations, and then effectively fuse these two low-dimensional feature representations to form discriminative features, thereby improving the model classification accuracy. Because the CCA method is simple and effective, it has been widely used in blind source separation, computer vision and speech recognition.
典型相关分析是一种无监督的线性学习方法。然而,现实生活中存在两个视图之间的依赖关系无法简单地用线性来表示的情况。如果两个视图间存在非线性关系,在这种情况下仍然用CCA方法处理是不恰当的。核典型相关分析(KCCA)的提出有效地解决了非线性问题。KCCA是CCA的非线性扩展,在处理简单的非线性问题时有着较好的效果。当遇到较复杂的非线性问题时,深度典型相关分析(Deep CCA)可以更好地解决此类问题。Deep CCA将深度神经网络与CCA相结合,可以学习两个视图数据的复杂非线性关系。从非线性扩展的另一角度来看,可以将局部性思想纳入CCA,局部性保持典型相关分析(LPCCA)方法应运而生。LPCCA可以发现每个视图数据的局部流形结构,以此进行数据的可视化。Canonical correlation analysis is an unsupervised linear learning method. However, there are situations in real life where the dependency between two views cannot be simply expressed linearly. If there is a non-linear relationship between the two views, it is inappropriate to still use the CCA method in this case. The proposal of Kernel Canonical Correlation Analysis (KCCA) effectively solves nonlinear problems. KCCA is a nonlinear extension of CCA and has better results when dealing with simple nonlinear problems. When encountering more complex nonlinear problems, deep canonical correlation analysis (Deep CCA) can better solve such problems. Deep CCA combines deep neural networks with CCA to learn complex nonlinear relationships between two views of data. From another perspective of nonlinear expansion, the idea of locality can be incorporated into CCA, and the locality-preserving canonical correlation analysis (LPCCA) method came into being. LPCCA can discover the local manifold structure of each view data to visualize the data.
尽管CCA在一些模式识别问题上有着较好的识别效果,但它是一种无监督学习方法,并没有对类标签信息进行充分使用,这样不仅造成资源浪费,同时使得识别效果大打折扣。为了解决这个问题,研究人员考虑了样本的类间和类内信息,提出判别典型相关分析(DCCA)。DCCA方法使得相同类别样本特征之间的相关程度最大,而不同类别样本特征之间的相关程度最小,这样能够提高模式分类的准确性。Although CCA has good recognition results in some pattern recognition problems, it is an unsupervised learning method and does not make full use of class label information. This not only causes a waste of resources, but also greatly reduces the recognition effect. To solve this problem, researchers considered the inter-class and intra-class information of samples and proposed discriminant canonical correlation analysis (DCCA). The DCCA method maximizes the correlation between features of samples of the same category and minimizes the correlation between features of samples of different categories, which can improve the accuracy of pattern classification.
上述方法都是适用于分析两个视图间关系的方法,当存在三个或者三个以上视图时,上述方法的应用就有了局限性。多重集典型相关分析(MCCA)方法是CCA方法的多视图扩展。MCCA既保留了CCA的视图之间具有最大相关度的特性,又弥补了CCA不能应用于多个视图的不足,提高了CCA方法的识别性能。研究人员将MCCA与DCCA相结合,已提出判别多重集典型相关分析(DMCCA),实验证明这种方法在人脸识别、手写数字识别、情感识别等方面具有较好的识别性能。The above methods are all suitable for analyzing the relationship between two views. When there are three or more views, the application of the above methods has limitations. The multiset canonical correlation analysis (MCCA) method is a multi-view extension of the CCA method. MCCA not only retains the characteristic of maximum correlation between views of CCA, but also makes up for the shortcoming of CCA that cannot be applied to multiple views, improving the recognition performance of the CCA method. Researchers have combined MCCA with DCCA and have proposed discriminant multiset canonical correlation analysis (DMCCA). Experiments have proven that this method has good recognition performance in face recognition, handwritten digit recognition, emotion recognition, etc.
当存在噪声干扰或者训练样本较少时,CCA中的自协方差矩阵和互协方差矩阵就会偏离真实值,导致最后的识别效果较差。为了解决这个问题,研究人员将分数阶思想与CCA相结合,通过引入分数阶参数对自协方差矩阵和互协方差矩阵进行重构,提出分数阶嵌入的典型相关分析,从而削弱这种偏差带来的影响,提高了方法的识别性能。When there is noise interference or there are few training samples, the auto-covariance matrix and cross-covariance matrix in CCA will deviate from the true value, resulting in poor final recognition effect. In order to solve this problem, the researchers combined fractional-order ideas with CCA, reconstructed the auto-covariance matrix and cross-covariance matrix by introducing fractional-order parameters, and proposed a canonical correlation analysis of fractional-order embedding, thereby weakening this deviation band. The influence of this method improves the recognition performance of the method.
传统的典型相关分析主要研究两个视图间的相关性,是一种无监督学习方法,并没有考虑类标签信息,也不能直接处理多于两个视图的高维数据。Traditional canonical correlation analysis mainly studies the correlation between two views. It is an unsupervised learning method that does not consider class label information and cannot directly handle high-dimensional data with more than two views.
发明内容Contents of the invention
本发明的目的是克服现有技术缺陷,提供一种基于谱重建的监督多集相关特征融合方法(FDMCCA),能够有效处理多视图特征融合问题,同时分数阶参数的引入削弱了因噪声干扰和有限的训练样本带来的影响,提高了系统识别的准确率。The purpose of this invention is to overcome the shortcomings of the existing technology and provide a supervised multi-set correlation feature fusion method (FDMCCA) based on spectral reconstruction, which can effectively handle the multi-view feature fusion problem. At the same time, the introduction of fractional-order parameters weakens the problem of noise interference and The impact of limited training samples improves the accuracy of system recognition.
本发明的目的是这样实现的:一种基于谱重建的监督多集相关特征融合方法,包括以下步骤:The purpose of the present invention is achieved as follows: a supervised multi-set correlation feature fusion method based on spectral reconstruction, including the following steps:
步骤1)假定有P组训练样本,其每组样本的均值为0并且类别数目为c,如下:Step 1) Assume that there are P groups of training samples, the mean of each group of samples is 0 and the number of categories is c, as follows:
其中表示第i组中第j类的第k个样本,mi代表第i组数据集的特征维数,nj表示第j类样本数,定义训练样本集的投影方向为/> in represents the k-th sample of the j-th category in the i-th group, m i represents the feature dimension of the i-th group data set, n j represents the number of j-th category samples, and defines the projection direction of the training sample set as/>
步骤2)计算组间训练样本的类内相关矩阵和自协方差矩阵其中/>表示每个元素均为1的矩阵;Step 2) Calculate the intra-class correlation matrix of training samples between groups and autocovariance matrix Among them/> Represents a matrix in which each element is 1;
步骤3)对步骤2)得到的组间类内相关矩阵做奇异值分解得到左右奇异向量矩阵和奇异值矩阵,自协方差矩阵Cii做特征值分解,得到特征向量矩阵和特征值矩阵;Step 3) For the inter-group intra-class correlation matrix obtained in step 2) Perform singular value decomposition to obtain the left and right singular vector matrices and singular value matrices. Perform eigenvalue decomposition of the autocovariance matrix C ii to obtain the eigenvector matrix and eigenvalue matrix;
步骤4)选择合适的分数阶参数α和β,对步骤3)得到奇异值矩阵和特征值矩阵重新赋值,构建分数阶组间类内相关矩阵和分数阶自协方差矩阵/> Step 4) Select appropriate fractional order parameters α and β, reassign the singular value matrix and eigenvalue matrix obtained in step 3), and construct the intra-class correlation matrix between fractional order groups. and fractional-order autocovariance matrix/>
步骤5)构建FDMCCA的最优化模型为其中引入拉格朗日乘子法,得到广义特征值问题Eω=μFω,求出投影方向ω,其中μ为特征值,Step 5) Construct the optimization model of FDMCCA as in Introducing the Lagrange multiplier method, we obtain the generalized eigenvalue problem Eω = μFω, and find the projection direction ω, where μ is the eigenvalue,
步骤6)考虑到自协方差矩阵可能是奇异矩阵的情况,在步骤5)的基础上引入正则化参数η,建立正则化下的最优化模型为引入拉格朗日乘子法,得到如下广义特征值问题:Step 6) Considering that the autocovariance matrix may be a singular matrix, introduce the regularization parameter η based on step 5) and establish the optimization model under regularization as Introducing the Lagrange multiplier method, the following generalized eigenvalue problem is obtained:
其中是大小为mi×mi的单位矩阵,i=1,2,…,P;in is the identity matrix of size m i × m i , i=1,2,…,P;
步骤7)根据步骤6)中的广义特征值问题求解前d个最大特征值对应的特征向量,从而形成每组数据的投影矩阵Wi=[ωi1,ωi2,…,ωid],i=1,2,…,P,d≤min{m1,…,mP};Step 7) Solve the eigenvectors corresponding to the first d largest eigenvalues according to the generalized eigenvalue problem in step 6), thereby forming the projection matrix Wi for each set of data = [ω i1 ,ω i2 ,...,ω id ], i =1,2,…,P, d≤min{m 1 ,…,m P };
步骤8)利用每组数据的投影矩阵Wi,分别计算每组训练样本和测试样本的低维投影,然后采用串行特征融合策略形成最终用于分类的融合特征;并计算识别率。Step 8) Use the projection matrix Wi of each group of data to calculate the low-dimensional projection of each group of training samples and test samples respectively, and then use a serial feature fusion strategy to form the final fusion features for classification; and calculate the recognition rate.
进一步地,步骤3)所述的对组间类内相关矩阵做奇异值分解和自协方差矩阵Cii做特征值分解包含以下步骤:Further, the intra-class correlation matrix between pairs of groups described in step 3) Doing singular value decomposition and autocovariance matrix C ii to do eigenvalue decomposition includes the following steps:
步骤3-1)对组间类内相关矩阵做奇异值分解:Step 3-1) Compute the intra-class correlation matrix between groups Do singular value decomposition:
其中和/>分别是/>的左右奇异向量矩阵,/>是/>的奇异值组成的对角矩阵,并且/> in and/> They are/> The left and right singular vector matrices of ,/> Yes/> A diagonal matrix composed of singular values, and/>
步骤3-2)对自协方差矩阵Cii做特征值分解:Step 3-2) Perform eigenvalue decomposition of the autocovariance matrix C ii :
其中是Cii的特征向量矩阵,/>是Cii的特征值组成的对角矩阵,并且ri=rank(Cii)。in is the eigenvector matrix of C ii ,/> is a diagonal matrix composed of eigenvalues of C ii , and r i =rank(C ii ).
进一步地,步骤4)所述的构建分数阶组间类内相关矩阵和分数阶自协方差矩阵/>包含以下步骤:Further, constructing the fractional inter-group intra-class correlation matrix as described in step 4) and fractional-order autocovariance matrix/> Contains the following steps:
步骤4-1)假定α是分数并且满足0≤α≤1,定义分数阶组间类内相关矩阵为:Step 4-1) Assume α is a fraction and satisfies 0≤α≤1, define the intra-class correlation matrix between fractional-order groups for:
其中Uij和Vij以及rij在步骤3-1)中给出定义。in U ij and V ij and r ij are defined in step 3-1).
步骤4-2)假定β是分数并且满足0≤β≤1,定义分数阶自协方差矩阵为:Step 4-2) Assume that β is a fraction and satisfies 0≤β≤1, define the fractional autocovariance matrix for:
其中Qi和ri的定义在步骤3-2)中给出。in The definitions of Q i and r i are given in step 3-2).
与现有技术相比,本发明的有益效果在于:以典型相关分析为基础,将分数阶嵌入的典型相关分析(FECCA)和判别多重集典型相关分析(DMCCA)相结合,充分利用了类标签信息,能够处理大于两个视图的信息融合问题,可以应用于多视图特征融合,分数阶参数的引入削弱了因噪声干扰和有限的训练样本带来的影响,提高了人脸识别的准确率;当训练样本数较小时,本发明具有较好的识别效果;适用于维数约简和多个视图的特征融合;由于携带类标签信息,在同类方法中,本发明的识别效果优于其他方法。Compared with the existing technology, the beneficial effect of the present invention is that based on canonical correlation analysis, it combines fractional embedded canonical correlation analysis (FECCA) and discriminative multiset canonical correlation analysis (DMCCA), making full use of class labels information, can handle information fusion problems greater than two views, and can be applied to multi-view feature fusion. The introduction of fractional-order parameters weakens the impact of noise interference and limited training samples, improving the accuracy of face recognition; When the number of training samples is small, the present invention has a better recognition effect; it is suitable for dimensionality reduction and feature fusion of multiple views; because it carries class label information, among similar methods, the recognition effect of the present invention is better than other methods .
附图说明Description of drawings
图1本发明的流程图。Figure 1 is a flow chart of the present invention.
图2是本发明与其他方法的随着维度变化的折线图。Figure 2 is a line chart of the present invention and other methods as the dimensions change.
图3是本发明在不同训练样本数目下的识别率图。Figure 3 is a diagram of the recognition rate of the present invention under different numbers of training samples.
具体实施方式Detailed ways
如图1所示,一种基于谱重建的监督多集相关特征融合方法,其特征在于,包括以下步骤:As shown in Figure 1, a supervised multi-set correlation feature fusion method based on spectral reconstruction is characterized by including the following steps:
步骤1)假定有P组训练样本,其每组样本的均值为0并且类别数目为c,如下Step 1) Assume that there are P groups of training samples, the mean of each group of samples is 0 and the number of categories is c, as follows
其中表示第i组中第j类的第k个样本,mi代表第i组数据集的特征维数,nj表示第j类样本数,定义训练样本集的投影方向为/> in represents the k-th sample of the j-th category in the i-th group, m i represents the feature dimension of the i-th group data set, n j represents the number of j-th category samples, and defines the projection direction of the training sample set as/>
步骤2)计算组间训练样本的类内相关矩阵和自协方差矩阵其中/>表示每个元素均为1的矩阵;Step 2) Calculate the intra-class correlation matrix of training samples between groups and autocovariance matrix Among them/> Represents a matrix in which each element is 1;
步骤3)对步骤2)得到的组间类内相关矩阵做奇异值分解得到左右奇异向量矩阵和奇异值矩阵,自协方差矩阵Cii做特征值分解,得到特征向量矩阵和特征值矩阵;Step 3) For the inter-group intra-class correlation matrix obtained in step 2) Perform singular value decomposition to obtain the left and right singular vector matrices and singular value matrices. Perform eigenvalue decomposition of the autocovariance matrix C ii to obtain the eigenvector matrix and eigenvalue matrix;
步骤3-1)对组间类内相关矩阵做奇异值分解:Step 3-1) Compute the intra-class correlation matrix between groups Do singular value decomposition:
其中和/>分别是/>的左右奇异向量矩阵,/>是/>的奇异值组成的对角矩阵,并且/> in and/> They are/> The left and right singular vector matrices of ,/> Yes/> A diagonal matrix composed of singular values, and/>
步骤3-2)对自协方差矩阵Cii做特征值分解:Step 3-2) Perform eigenvalue decomposition of the autocovariance matrix C ii :
其中是Cii的特征向量矩阵,/>是Cii的特征值组成的对角矩阵,并且ri=rank(Cii)。in is the eigenvector matrix of C ii ,/> is a diagonal matrix composed of eigenvalues of C ii , and r i =rank(C ii ).
步骤4)选择合适的分数阶参数α和β,对步骤3)得到奇异值矩阵和特征值矩阵重新赋值,构建分数阶组间类内相关矩阵和分数阶自协方差矩阵/> Step 4) Select appropriate fractional order parameters α and β, reassign the singular value matrix and eigenvalue matrix obtained in step 3), and construct the intra-class correlation matrix between fractional order groups. and fractional-order autocovariance matrix/>
步骤4-1)假定α是分数并且满足0≤α≤1,定义分数阶组间类内相关矩阵为:Step 4-1) Assume α is a fraction and satisfies 0≤α≤1, define the intra-class correlation matrix between fractional-order groups for:
其中Uij和Vij以及rij在步骤3-1)中给出定义;in U ij and V ij and r ij are defined in step 3-1);
步骤4-2)假定β是分数并且满足0≤β≤1,定义分数阶自协方差矩阵为:Step 4-2) Assume that β is a fraction and satisfies 0≤β≤1, define the fractional autocovariance matrix for:
其中Qi和ri的定义在步骤3-2)中给出。in The definitions of Q i and r i are given in step 3-2).
步骤5)构建FDMCCA的最优化模型为其中引入拉格朗日乘子法,得到广义特征值问题Eω=μFω,求出投影方向ω,其中μ为特征值,Step 5) Construct the optimization model of FDMCCA as in Introducing the Lagrange multiplier method, we obtain the generalized eigenvalue problem Eω = μFω, and find the projection direction ω, where μ is the eigenvalue,
步骤6)考虑到自协方差矩阵可能是奇异矩阵的情况,在步骤5)的基础上引入正则化参数η,建立正则化下的最优化模型为引入拉格朗日乘子法,得到如下广义特征值问题:Step 6) Considering that the autocovariance matrix may be a singular matrix, introduce the regularization parameter η based on step 5) and establish the optimization model under regularization as Introducing the Lagrange multiplier method, the following generalized eigenvalue problem is obtained:
其中是大小为mi×mi的单位矩阵,i=1,2,…,P;in is the identity matrix of size m i × m i , i=1,2,…,P;
步骤7)根据步骤6)中的广义特征值问题求解前d个最大特征值对应的特征向量,从而形成每组数据的投影矩阵Wi=[ωi1,ωi2,…,ωid],i=1,2,…,P,d≤min{m1,…,mP};Step 7) Solve the eigenvectors corresponding to the first d largest eigenvalues according to the generalized eigenvalue problem in step 6), thereby forming the projection matrix Wi for each set of data = [ω i1 ,ω i2 ,...,ω id ], i =1,2,…,P, d≤min{m 1 ,…,m P };
步骤8)利用每组数据的投影矩阵Wi,分别计算每组训练样本和测试样本的低维投影,然后采用串行特征融合策略形成最终用于分类的融合特征;并计算识别率。Step 8) Use the projection matrix Wi of each group of data to calculate the low-dimensional projection of each group of training samples and test samples respectively, and then use a serial feature fusion strategy to form the final fusion features for classification; and calculate the recognition rate.
本发明可通过以下实施例进一步说明:以CMU-PIE人脸数据库为例,CMU-PIE人脸库包含68人的人脸图像,每张图像的尺寸是64×64。在本实验中,每人的前10幅图像做为训练集,后14幅图像做测试集。读取输入的人脸图像数据,形成三种不同的特征,即:特征1为原始图像数据、特征2为中值滤波后的图像数据、特征3为均值滤波后的图像数据。使用主成分分析约减每个特征的维度,形成最终的三组特征数据。The present invention can be further explained through the following embodiments: taking the CMU-PIE face database as an example, the CMU-PIE face database contains face images of 68 people, and the size of each image is 64×64. In this experiment, the first 10 images of each person were used as the training set, and the last 14 images were used as the test set. Read the input face image data and form three different features, namely: feature 1 is the original image data, feature 2 is the image data after median filtering, and feature 3 is the image data after mean filtering. Use principal component analysis to reduce the dimension of each feature to form the final three sets of feature data.
步骤1)构造三组均值为0的数据Xi,i=1,2,3,定义训练样本集的投影方向为 Step 1) Construct three groups of data Xi with mean value 0 , i=1, 2, 3, and define the projection direction of the training sample set as
步骤2)FDMCCA的目标是使得类内样本相关度最大的同时,类间样本的相关度达到最小。计算组间训练样本的类内相关矩阵和自协方差矩阵其中/>表示每个元素均为1的矩阵;Step 2) The goal of FDMCCA is to maximize the correlation of samples within a class while minimizing the correlation of samples between classes. Calculate the intra-class correlation matrix of training samples between groups and autocovariance matrix Among them/> Represents a matrix in which each element is 1;
步骤3)对步骤2)得到的组间类内相关矩阵做奇异值分解得到左右奇异向量矩阵和奇异值矩阵,自协方差矩阵Cii做特征值分解,得到特征向量矩阵和特征值矩阵;Step 3) For the inter-group intra-class correlation matrix obtained in step 2) Perform singular value decomposition to obtain the left and right singular vector matrices and singular value matrices. Perform eigenvalue decomposition of the autocovariance matrix C ii to obtain the eigenvector matrix and eigenvalue matrix;
步骤3-1)对组间类内相关矩阵做奇异值分解:Step 3-1) Compute the intra-class correlation matrix between groups Do singular value decomposition:
其中和/>分别是/>的左右奇异向量矩阵,是/>的奇异值组成的对角矩阵,并且/> in and/> They are/> The left and right singular vector matrices of Yes/> A diagonal matrix composed of singular values, and/>
步骤3-2)对自协方差矩阵Cii做特征值分解:Step 3-2) Perform eigenvalue decomposition of the autocovariance matrix C ii :
其中是Cii的特征向量矩阵,/>是Cii的特征值组成的对角矩阵,并且ri=rank(Cii)。in is the eigenvector matrix of C ii ,/> is a diagonal matrix composed of eigenvalues of C ii , and r i =rank(C ii ).
步骤4)定义分数阶参数α和β的取值范围是{0.1,0.2,…,1},选择合适的分数阶参数α和β,对步骤3)得到奇异值矩阵和特征值矩阵重新赋值,构建分数阶组间类内相关矩阵和分数阶自协方差矩阵/> Step 4) Define the value range of fractional order parameters α and β to be {0.1, 0.2,...,1}, select appropriate fractional order parameters α and β, and reassign the singular value matrix and eigenvalue matrix obtained in step 3). Constructing a fractional-order intra-class correlation matrix between groups and fractional-order autocovariance matrix/>
步骤4-1)假定α是分数并且满足0≤α≤1,定义分数阶组间类内相关矩阵为:Step 4-1) Assume α is a fraction and satisfies 0≤α≤1, define the intra-class correlation matrix between fractional-order groups for:
其中Uij和Vij以及rij在步骤3-1)中给出定义。in U ij and V ij and r ij are defined in step 3-1).
步骤4-2)假定β是分数并且满足0≤β≤1,定义分数阶自协方差矩阵为:Step 4-2) Assume that β is a fraction and satisfies 0≤β≤1, define the fractional autocovariance matrix for:
其中Qi和ri的定义在步骤3-2)中给出。in The definitions of Q i and r i are given in step 3-2).
步骤5)构建FDMCCA的最优化模型为其中引入拉格朗日乘子法,可以得到广义特征值问题Eω=μFω,继而求出投影方向ω,其中Step 5) Construct the optimization model of FDMCCA as in By introducing the Lagrange multiplier method, the generalized eigenvalue problem Eω = μFω can be obtained, and then the projection direction ω can be obtained, where
步骤6)考虑到自协方差矩阵可能是奇异矩阵的情况,在步骤5)的基础上引入正则化参数η,其中η取值范围是{10-5,10-4,…,10},建立正则化下的最优化模型为引入拉格朗日乘子法,可以得到如下广义特征值问题:Step 6) Considering that the autocovariance matrix may be a singular matrix, introduce the regularization parameter η on the basis of step 5), where the value range of eta is {10 -5 , 10 -4 ,...,10}, and establish The optimization model under regularization is Introducing the Lagrange multiplier method, the following generalized eigenvalue problem can be obtained:
步骤7)根据步骤6)中的广义特征值问题求得投影方向ω,计算测试样本在投影方向上的投影,采用串行特征融合策略,使用最近邻分类器进行分类,并计算识别率。根据步骤6)中的广义特征值问题求解前d个最大特征值对应的特征向量,从而形成每组数据的投影矩阵Wi=[ωi1,ωi2,…,ωid],i=1,2,3,d≤min{m1,m2,m3};Step 7) Obtain the projection direction ω according to the generalized eigenvalue problem in step 6), calculate the projection of the test sample in the projection direction, adopt a serial feature fusion strategy, use the nearest neighbor classifier for classification, and calculate the recognition rate. Solve the eigenvectors corresponding to the first d largest eigenvalues according to the generalized eigenvalue problem in step 6), thereby forming the projection matrix Wi = [ω i1 ,ω i2 ,...,ω id ] for each set of data, i=1, 2,3,d≤min{m 1 ,m 2 ,m 3 };
步骤8)利用每组数据的投影矩阵Wi,分别计算每组训练样本和测试样本的低维投影,然后采用串行特征融合策略形成最终用于分类的融合特征;并使用最近邻分类器进行分类,计算识别率。识别率结果如表1和图2所示(BASELINE是指串联三种特征后的分类结果)。从表1和图2可以看出,与其它方法相比,本发明所提出的FDMCCA方法效果较好。这是因为:与MCCA、CCA、BASELINE相比,FDMCCA是一种具有先验信息的监督学习方法,能够获得更好的识别效果。与DMCCA相比较,FDMCCA引入分数阶思想修正了因噪声干扰等因素带来的协方差偏差,提高了识别的准确性。Step 8) Using the projection matrix Wi of each group of data, calculate the low-dimensional projection of each group of training samples and test samples respectively, and then use a serial feature fusion strategy to form the final fusion feature for classification; and use the nearest neighbor classifier for Classify and calculate the recognition rate. The recognition rate results are shown in Table 1 and Figure 2 (BASELINE refers to the classification result after concatenating three features). It can be seen from Table 1 and Figure 2 that compared with other methods, the FDMCCA method proposed by the present invention is more effective. This is because: Compared with MCCA, CCA, and BASELINE, FDMCCA is a supervised learning method with prior information and can achieve better recognition results. Compared with DMCCA, FDMCCA introduces the fractional order idea to correct the covariance deviation caused by factors such as noise interference and improve the accuracy of identification.
表1 CMU-PIE数据集上的识别率Table 1 Recognition rate on CMU-PIE data set
为了检验训练样本数对识别率的影响,本发明固定分数阶参数α、β和正则化参数η,选取不同数量的图像分别做训练集和测试集,其识别率如图3所示。从图3中可以看出,在训练样本较少时,FDMCCA的效果较好。In order to test the impact of the number of training samples on the recognition rate, the present invention fixes the fractional parameters α, β and the regularization parameter η, and selects different numbers of images as training sets and test sets respectively. The recognition rate is shown in Figure 3. As can be seen from Figure 3, FDMCCA has better results when there are fewer training samples.
综上所述,本发明以CCA方法为基础,引入分数阶嵌入思想提出了基于谱重建的监督多集相关特征融合方法(FDMCCA)。该方法通过引入分数阶参数能够修正因噪声干扰和有限训练样本造成的类内相关矩阵以及自协方差矩阵的偏差。同时,该方法充分利用了类标签信息,并能处理大于两个视图的信息融合问题,应用范围更广,识别性能更好。In summary, the present invention is based on the CCA method and introduces the idea of fractional embedding to propose a supervised multi-set correlation feature fusion method (FDMCCA) based on spectral reconstruction. This method can correct the deviation of the intra-class correlation matrix and autocovariance matrix caused by noise interference and limited training samples by introducing fractional-order parameters. At the same time, this method makes full use of class label information and can handle information fusion problems larger than two views, with a wider application range and better recognition performance.
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。The present invention is not limited to the above embodiments. On the basis of the technical solutions disclosed in the present invention, those skilled in the art can make some substitutions and modifications to some of the technical features without any creative work according to the disclosed technical contents. Modifications, these substitutions and modifications are within the protection scope of the present invention.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011307376 | 2020-11-20 | ||
CN2020113073769 | 2020-11-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112966735A CN112966735A (en) | 2021-06-15 |
CN112966735B true CN112966735B (en) | 2023-09-12 |
Family
ID=76276287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110235178.4A Active CN112966735B (en) | 2020-11-20 | 2021-03-03 | A supervised multi-set correlation feature fusion method based on spectral reconstruction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112966735B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113887509B (en) * | 2021-10-25 | 2022-06-03 | 济南大学 | A Fast Multimodal Video Face Recognition Method Based on Image Collection |
CN114510966B (en) * | 2022-01-14 | 2023-04-28 | 电子科技大学 | End-to-end brain causal network construction method based on graph neural network |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109450499A (en) * | 2018-12-13 | 2019-03-08 | 电子科技大学 | A kind of robust Beamforming Method estimated based on steering vector and spatial power |
WO2020010602A1 (en) * | 2018-07-13 | 2020-01-16 | 深圳大学 | Face recognition and construction method and system based on non-linear non-negative matrix decomposition, and storage medium |
CN111611963A (en) * | 2020-05-29 | 2020-09-01 | 扬州大学 | A Face Recognition Method Based on Nearest Neighbor Preserving Canonical Correlation Analysis |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111194448B (en) * | 2017-10-13 | 2025-01-28 | 日本电信电话株式会社 | Pseudo data generating device, method and recording medium |
-
2021
- 2021-03-03 CN CN202110235178.4A patent/CN112966735B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020010602A1 (en) * | 2018-07-13 | 2020-01-16 | 深圳大学 | Face recognition and construction method and system based on non-linear non-negative matrix decomposition, and storage medium |
CN109450499A (en) * | 2018-12-13 | 2019-03-08 | 电子科技大学 | A kind of robust Beamforming Method estimated based on steering vector and spatial power |
CN111611963A (en) * | 2020-05-29 | 2020-09-01 | 扬州大学 | A Face Recognition Method Based on Nearest Neighbor Preserving Canonical Correlation Analysis |
Non-Patent Citations (1)
Title |
---|
基于随机矩阵理论决定多元GARCH模型最佳维度研究;惠晓峰;李冰娜;;运筹与管理(第04期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112966735A (en) | 2021-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109902590B (en) | Pedestrian re-identification method for deep multi-view characteristic distance learning | |
CN108304826A (en) | Facial expression recognizing method based on convolutional neural networks | |
CN102156871B (en) | Image classification method based on category correlated codebook and classifier voting strategy | |
CN104636732B (en) | A kind of pedestrian recognition method based on the deep belief network of sequence | |
CN105138998A (en) | Method and system for re-identifying pedestrian based on view angle self-adaptive subspace learning algorithm | |
CN106127240A (en) | A kind of classifying identification method of plant image collection based on nonlinear reconstruction model | |
CN111695456A (en) | Low-resolution face recognition method based on active discriminability cross-domain alignment | |
CN105023006B (en) | Face identification method based on enhanced nonparametric maximal margin criterion | |
CN107092931B (en) | Method for identifying dairy cow individuals | |
CN112966735B (en) | A supervised multi-set correlation feature fusion method based on spectral reconstruction | |
CN102142082A (en) | Virtual sample based kernel discrimination method for face recognition | |
CN107292225A (en) | A kind of face identification method | |
CN106096517A (en) | A kind of face identification method based on low-rank matrix Yu eigenface | |
CN103745205A (en) | Gait recognition method based on multi-linear mean component analysis | |
CN101667292B (en) | SAR Image Segmentation System and Segmentation Method Based on Immune Cloning and Projection Pursuit | |
CN104966075B (en) | A kind of face identification method and system differentiating feature based on two dimension | |
CN106056067A (en) | Corresponding relationship prediction-based low-resolution face recognition method | |
CN106067034A (en) | A kind of distribution network load curve clustering method based on higher dimensional matrix characteristic root | |
CN103218617A (en) | Multi-linear large space feature extraction method | |
CN107491729A (en) | The Handwritten Digit Recognition method of convolutional neural networks based on cosine similarity activation | |
CN110796022A (en) | A low-resolution face recognition method based on multi-manifold coupled mapping | |
CN106960185A (en) | The Pose-varied face recognition method of linear discriminant depth belief network | |
CN111695455A (en) | Low-resolution face recognition method based on coupling discrimination manifold alignment | |
CN108596245B (en) | A face recognition method based on multi-view collaborative complete discriminative subspace learning | |
CN110110673A (en) | A kind of face identification method based on two-way 2DPCA and cascade feedforward neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |