CN112966362A - 一种土壤电离过程的建模方法 - Google Patents

一种土壤电离过程的建模方法 Download PDF

Info

Publication number
CN112966362A
CN112966362A CN202110125566.7A CN202110125566A CN112966362A CN 112966362 A CN112966362 A CN 112966362A CN 202110125566 A CN202110125566 A CN 202110125566A CN 112966362 A CN112966362 A CN 112966362A
Authority
CN
China
Prior art keywords
soil
resistivity
field intensity
ionization
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110125566.7A
Other languages
English (en)
Other versions
CN112966362B (zh
Inventor
李纯
鲁海亮
文习山
李元杰
陈嘉豪
王维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202110125566.7A priority Critical patent/CN112966362B/zh
Publication of CN112966362A publication Critical patent/CN112966362A/zh
Application granted granted Critical
Publication of CN112966362B publication Critical patent/CN112966362B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明公开了一种土壤电离过程的建模方法,当土壤的电场强度增大到临界场强Ec后,其电阻率开始下降,当电场强度小于维持电场Ew后,土壤电阻率开始恢复。根据土壤电离的程度可将其分为电离饱和区和电离未饱和区,电离饱和区的土壤,电阻率下降到剩余电阻率后维持不变,直到进入恢复过程;电离未饱和区的土壤,在电阻率下降到达剩余电阻率之前,电场已经降低到Ew以下,提前进入恢复过程。本发明的土壤电离过程的建模方法,同时考虑了电场强度对电阻率变化速度的影响以及电阻率变化的过渡时间,对接地体在冲击电流下的电压暂态计算具有参考意义。

Description

一种土壤电离过程的建模方法
技术领域
本发明属于高电压技术领域,具体涉及一种土壤电离过程的建模方法。
背景技术
接地装置起着保障设备和人身安全的重要作用,而雷电流下的接地体电压响应特性与工频情况存在较大区别。由于雷电流幅值较大,当雷电流流过接地导体时,会在土壤中形成较高的电场强度,使土壤发生电离,降低土壤的电阻率。
目前的电磁场数值计算方法中,主要用有限元和时域有限差分来对土壤电离进行建模。在有限元方法中,土壤电阻率都是与电场直接相关,当土壤电场从E1变化到E2后,此时土壤的电阻率仅取决于E2,未考虑E1到E2之间的中间过程。若电场从零瞬间达到放电场强时,土壤电阻率也会瞬间变成金属电阻率,未考虑土壤变化的过渡时间。而在时域有限差分方法中,土壤电场仅决定了电阻率的下降时刻,而与电阻率的下降速度无关。以上两种土壤电离的建模方法都与实际情况存在区别。
发明内容
本发明的目的在于,提供一种土壤电离过程的建模方法,对土壤电阻率的变化过程动态建模。
本发明提供一种土壤电离过程的建模方法,土壤电离过程包括3个阶段:不变阶段、下降阶段和恢复阶段;
(1)不变阶段
土壤的电场强度一直小于临界场强Ec时,土壤未发生电离,土壤电阻率ρ(t)始终不变:
ρ(t)=ρ0
式中,ρ0表示土壤初始电阻率;
(2)下降阶段
土壤的电场强度增大到临界场强Ec后,土壤电阻率ρ(t)开始下降;根据土壤电离的程度将土壤分为电离饱和区和电离未饱和区:对于电离饱和区的土壤,土壤电阻率一直下降到剩余电阻率,然后维持不变,直到土壤的电场强度小于维持场强Ew时进入恢复阶段;对于电离未饱和区的土壤,土壤电阻率一直下降,直到土壤的电场强度小于维持场强Ew时进入恢复阶段;
设实时土壤电阻率与土壤初始电阻率的比值为k(t),由下式模拟土壤电阻率的下降过程:
Figure BDA0002923897980000021
Figure BDA0002923897980000022
式中,Δt表示计算采用的时间步长,E(t)表示实时的电场强度,α,Ea和m都是电阻率下降速度相关常数;
(3)恢复阶段
土壤的电场强度降低到维持场强Ew以下时,土壤电阻率ρ(t)开始恢复,由下式模拟土壤电阻率的恢复过程:
Figure BDA0002923897980000023
式中,ρi表示电离未饱和区的土壤的电阻率下降过程中的最小土壤电阻率,τ2表示与土壤电阻率恢复速度有关的常数,t2表示土壤的电场强度下降到Ew以下的时刻。
进一步地,通过下降阶段中的土壤电阻率与剩余电阻率的对比,将土壤分为电离饱和区和电离未饱和区。
本发明的有益效果是:本发明的土壤电离过程的建模方法,同时考虑了电场强度对电阻率变化速度的影响以及电阻率变化的过渡时间,对接地体在冲击电流下的电压暂态计算具有参考意义。
附图说明
图1是本发明的土壤电阻率动态变化曲线图。
图2是本发明实施例的计算模型示意图。
图3是本发明实施例的计算结果和测量结果的对比图。
图中:1-均匀土壤,2-接地体,3-电流极,4-电压参考极,5-冲击源。
具体实施方式
下面将结合附图对本发明作进一步的说明:
本发明公开了一种土壤电离过程的建模方法,当土壤的电场强度增大到临界场强Ec后,其电阻率开始下降,当电场强度小于维持电场Ew后,土壤电阻率开始恢复。根据土壤电离的程度可将其分为电离饱和区和电离未饱和区,电离饱和区的土壤,电阻率下降到剩余电阻率后维持不变,直到进入恢复过程;电离未饱和区的土壤,在电阻率下降到达剩余电阻率之前,电场已经降低到Ew以下,提前进入恢复过程。
本发明实施例的土壤电离过程的建模方法,如图1所示,包括3个阶段:不变阶段、下降阶段和恢复阶段;
(1)不变阶段
土壤的电场强度一直小于临界场强Ec时,土壤未发生电离,土壤电阻率ρ(t)始终不变:
ρ(t)=ρ0
式中,ρ0表示土壤初始电阻率。
(2)下降阶段
土壤的电场强度增大到临界场强Ec后,土壤电阻率ρ(t)开始下降;根据土壤电离的程度将土壤分为电离饱和区和电离未饱和区:对于电离饱和区的土壤,土壤电阻率一直下降到剩余电阻率,然后维持不变,直到土壤的电场强度小于维持场强Ew时进入恢复阶段;对于电离未饱和区的土壤,土壤电阻率一直下降,直到土壤的电场强度小于维持场强Ew时进入恢复阶段;
设实时土壤电阻率与土壤初始电阻率的比值为k(t),由下式模拟土壤电阻率的下降过程:
Figure BDA0002923897980000031
Figure BDA0002923897980000032
式中,Δt表示计算采用的时间步长,E(t)表示实时的电场强度,α,Ea和m都是电阻率下降速度相关常数。
进一步地,通过下降阶段中的土壤电阻率与剩余电阻率的对比,将土壤分为电离饱和区和电离未饱和区。下降阶段中的土壤电阻率达到剩余电阻率,则为电离饱和区。
(3)恢复阶段
土壤的电场强度降低到维持场强Ew以下时,土壤电阻率ρ(t)开始恢复,由下式模拟土壤电阻率的恢复过程:
Figure BDA0002923897980000033
式中,ρi表示电离未饱和区的土壤的电阻率下降过程中的最小土壤电阻率,τ2表示与土壤电阻率恢复速度有关的常数,t2表示土壤的电场强度下降到Ew以下的时刻。
为了验证本发明的土壤电离过程的建模方法的准确性,以下以时域有限差分方法为例,对本发明进行说明:
如图2所示,半径为25mm的1m垂直导体埋在土壤电阻率为43.5Ω·m的均匀土壤1中,形成接地体2,接地体2为注流对象。冲击源5、接地体2、以及距离接地体10m远的电流极3共同构成注流回路,冲击源5的电流幅值为30.8kA。同时将距离接地体10m远的电压参考极4作为地电位引至接地体处,作为接地体对地电压的参考电位。注流回路和电压测量回路的角度为90°。
设定时域有限差分的计算空间大小为20m×22m×12m,网格尺寸为0.1m×0.1m×0.1m。采用二阶廖氏吸收边界,通过令导体的轴向电场为0,修改导体四周的介质参数,来模拟埋地金属导体。
在计算中,设定网格的土壤电阻率变化过程如下:
(1)土壤中的电场强度一直小于120kV/m,即土壤未发生电离,电阻率不发生变化:
ρ(t)=43.5Ω·m
(2)土壤电场达到60kV/m后,土壤电阻率开始下降,假设实时土壤电阻率与初始电阻率的比值为k(t),利用下式来模拟土壤电阻率的下降过程:
Figure BDA0002923897980000041
取Ea=50kV/m,当电离饱和区的土壤的电场强度小于60kV/m或电离未饱和区的土壤土壤电阻率下降到2Ω·m时,土壤电阻率不再继续减小。
(3)土壤已发生电离,当电场强度降低到60kV/m以下时,土壤电阻率开始恢复,ρi为衰减过程中的最小土壤电阻率,τ2是与恢复速度有关的常数,取4.5μs,t2为电场降到Ew以下的时刻。
Figure BDA0002923897980000042
基于上述电离模型计算得到的接地体电压波形与测量电压波形的如图3所示。电压波形具有两个波峰,其对应的幅值偏差分别为0.4%和3%。接地体的电压取决与接地体周围的土壤电阻率和注入的电流大小,同时针对土壤电阻率的研究目的,就是为了能够准确计算接地体在冲击电流下的电压响应。由此可知,本发明提出的土壤电离模型可以满足需求。
综上所述,本发明的土壤电离过程的建模方法,考虑了土壤电阻率变化的过渡时间,土壤电阻率与电场强度没有直接的对应关系,土壤电场达到临界场强后,电阻率开始下降,且电阻率下降速度与电场瞬时值动态相关,电场的变化过程会影响电阻率的变化结果。
本领域的技术人员容易理解,以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种土壤电离过程的建模方法,其特征在于,土壤电离过程包括3个阶段:不变阶段、下降阶段和恢复阶段;
(1)不变阶段
土壤的电场强度一直小于临界场强Ec时,土壤未发生电离,土壤电阻率ρ(t)始终不变:
ρ(t)=ρ0
式中,ρ0表示土壤初始电阻率;
(2)下降阶段
土壤的电场强度增大到临界场强Ec后,土壤电阻率ρ(t)开始下降;根据土壤电离的程度将土壤分为电离饱和区和电离未饱和区:对于电离饱和区的土壤,土壤电阻率一直下降到剩余电阻率,然后维持不变,直到土壤的电场强度小于维持场强Ew时进入恢复阶段;对于电离未饱和区的土壤,土壤电阻率一直下降,直到土壤的电场强度小于维持场强Ew时进入恢复阶段;
设实时土壤电阻率与土壤初始电阻率的比值为k(t),由下式模拟土壤电阻率的下降过程:
Figure FDA0002923897970000011
Figure FDA0002923897970000012
式中,Δt表示计算采用的时间步长,E(t)表示实时的电场强度,α,Ea和m都是电阻率下降速度相关常数;
(3)恢复阶段
土壤的电场强度降低到维持场强Ew以下时,土壤电阻率ρ(t)开始恢复,由下式模拟土壤电阻率的恢复过程:
Figure FDA0002923897970000013
式中,ρi表示电离未饱和区的土壤的电阻率下降过程中的最小土壤电阻率,τ2表示与土壤电阻率恢复速度有关的常数,t2表示土壤的电场强度下降到Ew以下的时刻。
2.根据权利要求1所述的土壤电离过程的建模方法,其特征在于,通过下降阶段中的土壤电阻率与剩余电阻率的对比,将土壤分为电离饱和区和电离未饱和区。
CN202110125566.7A 2021-01-29 2021-01-29 一种土壤电离过程的建模方法 Active CN112966362B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110125566.7A CN112966362B (zh) 2021-01-29 2021-01-29 一种土壤电离过程的建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110125566.7A CN112966362B (zh) 2021-01-29 2021-01-29 一种土壤电离过程的建模方法

Publications (2)

Publication Number Publication Date
CN112966362A true CN112966362A (zh) 2021-06-15
CN112966362B CN112966362B (zh) 2022-05-24

Family

ID=76273506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110125566.7A Active CN112966362B (zh) 2021-01-29 2021-01-29 一种土壤电离过程的建模方法

Country Status (1)

Country Link
CN (1) CN112966362B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4796654A (en) * 1986-04-15 1989-01-10 Simpson Bobby R Soil moisture control system and method
CN105403797A (zh) * 2015-12-23 2016-03-16 成都信息工程大学 基于欧姆定律的土壤电离临界电场强度的估计方法
CN109188092A (zh) * 2018-08-13 2019-01-11 西南交通大学 一种不同温度下土壤动态电阻特性试验方法
CN109188090A (zh) * 2018-08-13 2019-01-11 西南交通大学 垂直分层土壤中不同湿度土壤电阻非线性的试验方法
CN111597734A (zh) * 2020-06-03 2020-08-28 湖南经研电力设计有限公司 双层土壤中接地装置的仿真模型建立方法及验证方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4796654A (en) * 1986-04-15 1989-01-10 Simpson Bobby R Soil moisture control system and method
CN105403797A (zh) * 2015-12-23 2016-03-16 成都信息工程大学 基于欧姆定律的土壤电离临界电场强度的估计方法
CN109188092A (zh) * 2018-08-13 2019-01-11 西南交通大学 一种不同温度下土壤动态电阻特性试验方法
CN109188090A (zh) * 2018-08-13 2019-01-11 西南交通大学 垂直分层土壤中不同湿度土壤电阻非线性的试验方法
CN111597734A (zh) * 2020-06-03 2020-08-28 湖南经研电力设计有限公司 双层土壤中接地装置的仿真模型建立方法及验证方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAILIANG LU等: "Research on Soil Resistivity Modeling Method of DC Grounding Electrode", 《IEEE》 *
袁涛等: "土壤电离动态过程对接地装置冲击散流的影响分析", 《高电压技术》 *

Also Published As

Publication number Publication date
CN112966362B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
CN106815441B (zh) 一种计及动车组弓网多次离线燃弧的牵引网压的计算方法
CN106443381A (zh) 动态电弧模型构建方法与系统
CN103714239B (zh) 雷击大地时低压线路绝缘子雷电感应电压计算方法
JP6469740B2 (ja) 接地抵抗測定方法
CN102841280A (zh) 500kV同塔四回路输电线雷击跳闸率仿真方法
CN105184070A (zh) 一种基于电压积分法计算伏秒特性曲线的分段拟合方法
CN104392055B (zh) 组合式复合材料杆塔防雷优化设计方法
CN111597697B (zh) 特高压同塔双回线路避雷器布置优化方法
Lee et al. The plasma focus—numerical experiments, insights and applications
CN112966362B (zh) 一种土壤电离过程的建模方法
Mokhtari et al. Integration of energy balance of soil ionization in CIGRE grounding electrode resistance model
Kumara et al. Charging of polymeric surfaces by positive impulse corona
Kang et al. Breakdown characteristics and mechanisms of Short needle–plate Air gap in high-speed airflow
CA2888299C (en) Method and control unit for operating a plasma generation apparatus
Wang et al. Arc grounding model and simulation in non-effectively grounded system
CN105186440A (zh) 基于机电暂态方法的继电保护定值整定方法
Silakhuddin et al. Optimization of ion source head position in the central region of DECY-13 cyclotron
CN111398707B (zh) 三角塔通信基站系统的雷电流分流特性计算方法
CN105262046A (zh) 基于机电暂态方法的继电保护定值整定方法
CN113794198A (zh) 抑制宽频振荡的方法、装置、终端及存储介质
Shi et al. A numerical analysis model for inception and propagation of positive upward leader from UHV DC transmission lines
CN112345903A (zh) 一种用于工频叠加冲击电压的电压发生装置及方法
Wang et al. Characteristics of upward leader emerging from a single-phase conductor with different voltage class
Lin et al. Simulation and experimental study on the effect of wind on grounding wire corona discharge process under thundercloud electric field
Yang et al. Experimental Verification of the Lightning Fractal Model Based on Rod-Rod Air Gaps

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant