CN112954637B - Target positioning method under condition of uncertain anchor node position - Google Patents
Target positioning method under condition of uncertain anchor node position Download PDFInfo
- Publication number
- CN112954637B CN112954637B CN202110091536.9A CN202110091536A CN112954637B CN 112954637 B CN112954637 B CN 112954637B CN 202110091536 A CN202110091536 A CN 202110091536A CN 112954637 B CN112954637 B CN 112954637B
- Authority
- CN
- China
- Prior art keywords
- node
- target
- anchor node
- anchor
- nodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 239000013598 vector Substances 0.000 claims abstract description 51
- 238000005259 measurement Methods 0.000 claims description 69
- 238000004891 communication Methods 0.000 claims description 52
- 239000011159 matrix material Substances 0.000 claims description 44
- 238000005457 optimization Methods 0.000 claims description 18
- 239000000654 additive Substances 0.000 claims description 8
- 238000007476 Maximum Likelihood Methods 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 4
- 230000004931 aggregating effect Effects 0.000 claims description 4
- 230000008030 elimination Effects 0.000 claims description 3
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 230000005251 gamma ray Effects 0.000 claims description 2
- 230000002040 relaxant effect Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 230000001131 transforming effect Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/38—Services specially adapted for particular environments, situations or purposes for collecting sensor information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
The invention provides a target positioning method under the condition that the position of an anchor node is uncertain. After vectorization is carried out on the objective function, an anchor node error vector is eliminated by utilizing an S-process, meanwhile, a convex constraint is introduced, and finally, the problem is changed into a convex problem which can be solved through conversion and relaxation. The method can still accurately obtain the estimation of the target position when the positioning system is influenced by the environment and causes larger deviation between the real position of the anchor node and the measured position, and has stronger robustness and practicability.
Description
Technical Field
The invention relates to a target positioning method, belongs to the field of signal processing, and is suitable for a self-positioning system for positioning a plurality of target nodes by a plurality of anchor nodes in a wireless sensor network.
Background
The flexibility, broad coverage and ease of deployment characteristics of Wireless Sensor Networks (WSNs) have attracted considerable attention over the past few years. In general, a wireless sensor network is composed of a cluster of low-cost and low-power-consumption sensor nodes distributed in a certain spatial range, which can be used to perform common signal processing tasks, such as detection, positioning, target tracking and monitoring of target state changes. The target positioning is one of the most basic and important tasks in the wireless sensor network, and the acquisition of many physical quantities is premised on the definition of the node positions. Many types of sensor measurements may be used for target location, such as Received Signal Strength (RSS), angle of arrival (AOA), time of arrival (TOA), time difference of arrival (TDOA). In these types of metrology-value-based object location methods, TOA and TDOA-based object location schemes strike a good balance between location performance and computational complexity. The two positioning methods can effectively avoid deploying expensive sensors like the positioning scheme based on AOA, and can also effectively reduce larger positioning errors caused by the positioning method based on RSS.
In the TOA positioning problem, the problem that clocks of an anchor node and a target node to be positioned are not synchronous often exists, and two methods are mainly used for eliminating the influence of time asynchronism, namely, the TOA positioning problem is converted into the TDOA positioning problem; and secondly, using the two-way TOA, namely enabling the anchor node and the target node to carry out two-way information exchange, and solving the positioning problem by utilizing the time stamps corresponding to the anchor node and the target node. In addition, most of the conventional models assume that the position of the anchor node is accurately known, but in practical applications, this condition is difficult to achieve because there is always a certain error between the actual position of the anchor node and the measured position due to the influence of the environment. For example, even if the position of a water buoy node is obtained by using a GPS in advance, the node may drift due to the influence of ocean currents during the positioning process, so that the real position of the node deviates from the measured position. If some measures are not taken, the positioning performance is reduced.
And the difference value between the real position coordinates of the anchor nodes and the measured position coordinates of the anchor nodes is the error vector of the anchor nodes. At present, there are two methods for modeling the error vector of the anchor node, one is to assume that the vector follows a gaussian distribution with a mean value of zero, and the other is not to make any prior assumption on the vector, but only to assume that the maximum value of the modulus of the vector is known. In practical applications, the latter case is more practical because the maximum value of the error model of the anchor node under different environments is easier to estimate than the covariance matrix of the gaussian distribution. However, most of the existing target positioning methods do not consider that the position of the anchor node has errors due to environmental factors, or assume that the error vector of the position of the anchor node follows Gaussian distribution with zero mean. In practice, the statistical distribution of the error is often difficult to obtain, and the maximum value of the error vector mode of the anchor node is easier to obtain by estimation. In the existing method with the known maximum value of the error vector modulus, Xu et al propose a method in which a plurality of anchor nodes locate a single target node and only the known maximum value of the error vector modulus of the anchor nodes is assumed, however, this method only considers the location scene of a single node and needs to add a penalty term, and the penalty factor corresponding to the penalty term needs to be manually adjusted in the actual operation process, which increases the computational complexity and reduces the practicability.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention provides the target positioning method under the condition that the position of the anchor node is uncertain, only the maximum value of a module of an error vector of the known anchor node is needed, the statistical distribution of the known error is not needed in advance, the causticity degree required by prior information is weakened, meanwhile, a punishment item needing manual adjustment is not set, and the practicability is improved.
The technical scheme adopted by the invention for solving the technical problem comprises the following steps:
firstly, TOA measurement among nodes in a sensor network is obtained, and modeling is carried out on an anchor node error;
secondly, introducing an anchor node error term into original TOA measurement of communication between the anchor node and the target node;
thirdly, converting the error items of the anchor nodes, and eliminating error vectors of the anchor nodes by utilizing an S-process;
fourthly, converting the problem into a convex problem through conversion and relaxation of the objective function and the constraint condition;
and fifthly, solving the convex optimization problem to obtain the estimation of the target position.
The first step is to set M anchor nodes with known positions but errors and N target nodes to be positioned in the sensor network, wherein M is more than or equal to 3, and the real coordinates of the M anchor nodes are x1,x2,…,xMThe coordinates of N target nodes to be estimated are y1,y2,…,yN(ii) a Obtaining a TOA measurement set through communication between nodes, wherein the TOA measurement set comprises TOA measurement for communication between an anchor node and a target node and TOA measurement for communication between the target nodes; the TOA measurement expression obtained by the communication between the anchor node and the target node isWhere i, j represent anchor node numbered i and target node numbered j, respectively, c is signal propagation speed, tijRepresenting a time measurement, r, obtained by the anchor node i communicating with the target node jijRepresents the distance between anchor node i and target node j, eijAdditive white Gaussian noise, e, representing communication between anchor node i and target node jijObedience mean value of zero and variance of(ii) a gaussian distribution of; the TOA measurement expression obtained by mutual communication between the target nodes isWhere j and j 'represent target nodes numbered j and j', respectively, and j ≠ j ', t'jj'Represents a time measurement, r 'obtained by the mutual communication of the target node j and the target node j'jj'Representing the distance, e ', between the target node j and the target node j'jj'Representing additive white Gaussian noise, e 'of communication between target node j and target node j'jj'Obedience mean value of zero and variance of(ii) a gaussian distribution of; the relation between the distance between the anchor node and the target node and the node position is rij=||xi-xj||2(ii) a The relation between the distance between the target nodes and the node positions is r'jj'=||yj-yj'||2(ii) a The relation between the actual position of the anchor node and the measured position isIn the formulaIndicating measured anchor node position, ξiIs the anchor node error vector, ξiHas a maximum value equal to or less than a known constant epsilon.
In the second step, the relation between the real position and the measured position of the anchor node is further converted into a relation between the real position and the measured position of the anchor node by using a first-order Taylor expansionWhere o (| | ξ)i| |) represents the anchor node error vector modulo | | ξiThe high order infinitesimal amount of | l; order toThen the | δ is obtainedij| < epsilon, whereinRepresents the distance between the anchor node i and the target node j, and rijIn contrast, the coordinates of anchor node i used herein are the known anchor node locations with errors, δijAn error value representing a modulus between the anchor node i and the target node j; the TOA measurement for communication between the final anchor node and the target node is represented as
The third step adopts a maximum likelihood estimation method to estimate the position of the target, and X is setu=[y1,y2,…,yN]For a set of unknown target node coordinates, Xa=[x1,x2,…,xK]Is all anchor node coordinatesIs defined at the same time as dij=tij×c,d'jj'=t'jj'×c,dijAnd d'jj'Respectively measuring distance values with noise between an anchor node i and a target node j and between the target nodes j and j '(j ≠ j'); according to the existing conditions, the original objective function to be optimized is expressed asSubstituting the anchor node error item in the second step to obtain min-max suboptimal problemThrough vectorization of the objective function and elimination of the anchor node error vector by applying the S-process, the original sub-optimization problem is transformed intoWherein, λ and μ are constants introduced for transforming anchor node error vector, which is ≧ matrix positive definite, I is identity matrix, Tr (-) is trace of matrix in parentheses, d1=[d11,d12,…,dMN]TNoisy distance measurement for anchor node to target node communication, d2=[d'12,d'13,…,d'N,N-1]TNoisy distance measurements for communication between target nodes,aggregating all noisy distance measurements; definition ofFor true distance measurement of communication between anchor node and target node, r2=[r'12,r'13,…,r'N,N-1]TFor true distance measurements of communication between target nodes,for all of the set of true distance measurements,G=blkdiag(G1,G2),Γ=1(M+N-1)×Ndiag {. is a diagonal matrix, diagonal elements of the matrix are bracketed elements, blkdiag {. is a block diagonal matrix, 1(M+N-1)×NRepresenting a column vector having (M + N-1) xN elements all 1, gamma [ ·],r[·]Representing elements in a reference vector γ, r; defining intermediate variables simultaneouslyγjj'And a vector gamma1,γ2And a gamma-ray source,γ2=[γ12,γ13,…,γN,N-1]T,
wherein Y isu[w,v]Represents the reference matrix YuRow w, column v, w and v must be integers;
Yu[j,N+1:N+l]representation matrix YuAll elements of row j, columns N +1 to N + l, Yu[N+1:N+l,N+1:N+l]Representation matrix YuAll elements of rows N +1 to N + l, columns N +1 to N + l, Xu(: j) represents a matrix XuA column vector consisting of all elements of the jth column of (a).
The beneficial effects of the invention are: it is more realistic to assume that only the maximum of the modulus of the anchor node error vector is known. And after TOA measurement information among the anchor node, the target node and the target node is obtained, listing a target function and introducing an error amount of the anchor node. After vectorization is carried out on the objective function, an anchor node error vector is eliminated by utilizing an S-process, meanwhile, a convex constraint is introduced, and finally, the problem is changed into a convex problem which can be solved through conversion and relaxation. The method can still accurately obtain the estimation of the target position when the actual position of the anchor node and the measured position have larger deviation due to the influence of the environment on the positioning system, and has stronger robustness and practicability.
Drawings
Fig. 1 is a block diagram of a target positioning method in the case of an uncertain anchor node position.
FIG. 2 is a graph of method performance versus TOA measurement noise variance.
FIG. 3 is a graph of method performance versus maximum value of the anchor node error vector norm.
FIG. 4 is a graph of method performance versus anchor node number.
Fig. 5 is a graph of method performance versus the number of target nodes to be located.
Detailed Description
The present invention will be further described with reference to the following drawings and examples, which include, but are not limited to, the following examples.
Aiming at the problem that the anchor node position is influenced by the environment to cause errors with the measured position in the actual positioning problem, the positioning method based on the anchor node position with errors is provided. And selecting an l-dimensional positioning scene, wherein l is 2 or 3. And setting M anchor nodes with known positions but errors in the sensor network, wherein M is more than or equal to 3, and N nodes are target nodes to be positioned. The real coordinates of M anchor nodes with known positions are respectively set as x1,x2,…,xMThe coordinates of N target nodes to be estimated are y1,y2,…,yN。
The invention comprises the following main steps:
the first step is as follows: obtaining original TOA measurement, modeling anchor node error
A TOA measurement set is obtained by communication between nodes, and the set is composed of two parts, namely TOA measurement for communication between the anchor node and the target node and TOA measurement for communication between the target nodes. The TOA measurement expression obtained by the communication between the anchor node and the target node is as follows:
wherein i and j are positive integers which respectively represent a node numbered i and a node numbered j. c is the signal propagation velocity, tijRepresents a time measurement, r, obtained by the anchor node i and the target node j communicating with each otherijRepresents the distance between anchor node i and target node j, eijAdditive white Gaussian noise representing communication between anchor node i and target node j obeys a mean of zero and a variance ofGaussian distribution of (a).
The TOA measurement expression obtained by mutual communication between the target nodes is as follows:
where j and j 'represent target nodes numbered j and j', respectively, and j ≠ j ', t'jj'Represents a time measurement, r 'obtained by the mutual communication of the target node j and the target node j'jj'Representing the distance, e ', between the target node j and the target node j'jj'Additive white Gaussian noise representing communication between a target node j and the target node j, obeys a mean of zero and a variance ofGaussian distribution of (a).
The relationship between the distance between the anchor node and the target node and the node position is as follows:
rij=||xi-xj||2
i=1,2,…,M,j=1,2,…,N
wherein | | | purple hair2Representing the 2-norm of the vector.
Similarly, the relationship between the distance between the target node and the node position is as follows:
r'jj'=||yj-yj'||2
j=1,2,…,N,j'=1,2,…,N
due to the influence of environmental factors, an error exists between the measured anchor node position and the actual position of the anchor node, and the relationship between the actual position of the anchor node and the measured position is as follows:
in the formulaIndicating measured anchor node position, ξiIs an anchor node error vector whose maximum value of its modulus is less than a known constant epsilon, i.e.
||ξi||≤ε
The second step is that: anchor node error term is introduced into original TOA measurement of anchor node and target node communication
The relation between the real position of the anchor node and the measured position can be further converted into the following relation by using a first-order Taylor expansion formula:
i=1,2,…,M,j=1,2,…,N
where o (| | ξ)i| |) represents the anchor node error vector modulo | | ξiThe higher order of | is infinitesimally small.
Order to
Then it can be deduced that:
|δij|≤ε
whereinRepresents the distance between the anchor node i and the target node j, and rijIn contrast, the coordinates of anchor node i as used herein is the known anchor node location with error. Delta. for the preparation of a coatingijAn error value representing a modulus between the anchor node i and the target node j, and the symbol "|" is a sign of solving an absolute value.
The TOA measurement communicated between the final anchor node and the target node may be expressed as:
the third step: transforming anchor node error terms
The position of the target is estimated using maximum likelihood estimation. Let Xu=[y1,y2,…,yN]For a set of unknown target node coordinates, Xa=[x1,x2,…,xK]Is the set of coordinates for all anchor nodes. Simultaneously defining:
dij=tij×c,i=1,2,…,M,j=1,2,…,N
d'jj'=t'jj'×c,j=1,2,…,N,j'=1,2,…,N
dijand d'jj'The noisy distance measurements between anchor node i and target node j, and between target nodes j and j '(j ≠ j'), respectively.
According to existing conditions, the original objective function to be optimized can be expressed as:
substituting the anchor node error term in the second step can obtain a min-max suboptimal problem:
subject to
r'jj'=||yj-yj'||,j=1,2,…,M,j'=1,2,…,N
wherein min represents minimum, max represents maximum, and Σ represents summation. The subject to indicates "constrained to".
The sub-optimization problem is a non-linear and non-convex problem, and the objective function is in the form of element summation, and the objective function contains a node error term deltaijThis sub-optimization problem is very difficult to solve. Therefore, firstly, the objective function is vectorized, the vectorized objective function and the constraint conditions are given, then the error item of the anchor node is converted into a vector, and only one vector is processed to easily process a single element; after the vectorization is completed, an S-process (S-procedure) is used for eliminating an anchor node error vector, an anchor node error term is eliminated by introducing two constant variables, and the anchor node error term is converted into a convex constraint.
Through vectorization of the objective function and elimination of the anchor node error vector by applying the S-process, the original sub-optimization problem is transformed into:
wherein,the root of the square is expressed, lambda and mu are constants which are newly introduced for transforming the error vector of the anchor node, and are equal to or more than positive definite of the matrix, and I is an identity matrixTr (-) indicates finding the trace of the matrix inside the parenthesis. And d is1=[d11,d12,…,dMN]TNoisy distance measurement for communication of anchor node and target node, d2=[d'12,d'13,…,d'N,N-1]TNoisy distance measurements for communication between target nodes,aggregating all noisy distance measurements; definition ofA true distance measure, r, for communication between the anchor node and the target node2=[r'12,r'13,…,r'N,N-1]TFor true distance measurements of communication between target nodes,all the true distance measurements are aggregated.G=blkdiag(G1,G2),Γ=1(M+N-1)×N. Wherein diag {. is } represents a diagonal matrix, diagonal elements of the matrix are in parenthesis, blkdiag {. is } represents a block diagonal matrix, 1(M+N-1)×NRepresenting a column vector having (M + N-1) xN elements all 1, gamma [ ·],r[·]Representing the elements in the reference vector gamma, r. Defining intermediate variables simultaneouslyγjj'And a vector gamma1,γ2And γ:
the former similar processing only aims at the problem of single-node positioning, the current processing aims at the problem of multi-node positioning, the form of the processed objective function is different from that of other methods, and other similar methods always assume that the whole objective function is smaller than a constant mu, so that the first half Tr [ G (gamma) is dividedT-2drT)]And also put into the convex constraint obtained by the S-process, while the current processing method still keeps the first half part in the objective function and does not put into the constraint. This process reduces the degree of relaxation and optimizes the structure of the objective function compared to previous methods.
The fourth step: convert the problem into a convex problem
After the transformation in the third step, the error term of the anchor node is eliminated, but the problem is still not a solvable convex problem. The problem is then transformed into a convex problem by a series of transformations and relaxations of the objective function and constraints. The relaxation method used is a semi-positive definite relaxation method, and finally the objective function is transformed into a convex function and the constraints are transformed into convex constraints, thereby making the problem solvable.
To convert the problem into a convex one, an intermediate matrix Y is introducedu:
By the intermediate matrix and the variable gamma, X to be optimizeduEstablishing a connection and taking appropriate slack transforms all constraints into convex constraints, and the objective function is also a convex function, the problem is transformed intoA solvable convex problem.
The final form of the optimization problem is:
wherein, Yu[w,v]Represents the reference matrix YuRow w, column v, w and v must be integers; y isu[j,N+1:N+l]Representation matrix YuAll elements of row j, columns N +1 to N + l, Yu[N+1:N+l,N+1:N+l]Representation matrix YuAll elements of rows N +1 to N + l and columns N +1 to N + l, Xu(j) represents a matrix XuA column vector consisting of all elements of the jth column of (1).
In the previous similar algorithms, penalty terms are often added into an objective function, namely a very small positive number (penalty factor) is added to multiply all elements and/or traces of a certain matrix to be optimized, the method needs to manually select the penalty factors, the penalty factor is improperly selected, the performance of the algorithm is reduced, and therefore the practicability is not strong, and the penalty terms are not added in the method, so that the manual selection of the penalty factors is avoided, and the practicability is increased.
The fifth step: solving a convex optimization problem to obtain an estimate of the target position
And solving the convex optimization problem obtained in the fourth step by using a CVX convex optimization toolbox in the MATLAB so as to obtain the estimation of the target position.
The embodiment of the present invention considers the problem of positioning in two-dimensional space, and there are 4 anchor nodes with known positions and 3 target nodes to be positioned in one 1200M × 1200M area, i.e., M is 4 and N is 3. Let the real coordinates of 4 anchor nodes with known positions be x1,x2,x3,x4The coordinates of N target nodes to be estimated are y1,y2,y3。
The first step is as follows: obtaining original TOA measurement, modeling anchor node error
A TOA measurement set is obtained through communication between nodes. Wherein, the TOA measurement expression obtained by the communication between the anchor node and the target node is:
i and j are positive integers, which respectively represent a node numbered i and a node numbered j. c is the signal propagation velocity, tijRepresents a time measurement, r, obtained by the anchor node i and the target node j communicating with each otherijRepresents the distance between the anchor node i and the target node j, eijAdditive white Gaussian noise representing communication between anchor node i and target node j obeys a mean of zero and a variance ofGaussian distribution of (a).
The TOA measurement expression obtained by mutual communication between the target nodes is as follows:
where j and j 'represent target nodes numbered j and j', respectively, and j ≠ j ', t'jj'Represents a time measurement, r 'obtained by the mutual communication of the target node j and the target node j'jj'Representing the distance, e ', between the target node j and the target node j'jj'An additive white Gaussian noise representing the communication between the target node j and the target node j, which obeys a mean of zero and a variance ofGaussian distribution of (a).
The relationship between the distance between the anchor node and the target node and the node position is as follows:
rij=||xi-xj||2
i=1,2,3,4,j=1,2,3
wherein | | | calving2Representing the 2-norm of the vector.
Similarly, the relationship between the distance between the target node and the node position is as follows:
r'jj'=||yj-yj'||2,j=1,2,3,j'=1,2,3
due to the influence of environmental factors, an error exists between the measured anchor node position and the actual position of the anchor node, and the relationship between the actual position of the anchor node and the measured position is as follows:
in the formulaIndicating measured anchor node position, ξiIs an anchor node error vector whose maximum value of its modulus is less than a known constant epsilon, i.e.
||ξi||≤ε
Here, epsilon is set to 0.5 m.
The second step is that: anchor node error term is introduced into original TOA measurement of anchor node and target node communication
The relation between the real position of the anchor node and the measured position can be further converted into the following relation by using a first-order Taylor expansion formula:
i=1,2,3,4,j=1,2,3
wherein o (| | xi)i| |) represents the anchor node error vector modulo | | ξiThe higher order of | is an infinitesimal quantity.
Order to
Then there is
Namely that
|δij|≤ε
WhereinRepresents the distance between the anchor node i and the target node j, and rijIn contrast, the coordinates of anchor node i as used herein is the known anchor node location with error. Delta. for the preparation of a coatingijAn error value representing a modulus between the anchor node i and the target node j, and the symbol "|" is a sign of solving an absolute value.
The TOA measurement communicated between the final anchor node and the target node may be expressed as:
the third step: transforming anchor node error terms
The position of the target is estimated using maximum likelihood estimation. Let Xu=[y1,y2,y3]For a set of unknown target node coordinates, Xa=[x1,x2,x3,x4]Is the set of coordinates of all anchor nodes. Simultaneously defining:
dij=tij×c,i=1,2,3,4,j=1,2,3
d'jj'=t'jj'×c,j=1,2,3,j'=1,2,3
dijand d'jj'The noisy distance measurements between anchor node i and target node j, and between target nodes j and j '(j ≠ j'), respectively.
According to the existing conditions, the original objective function to be optimized can be represented as:
substituting the anchor node error term in the second step into the second step can obtain a min-max suboptimal problem:
subject to
r'jj'=||yj-yj'||,j=1,2,3,j'=1,2,3
wherein min represents minimum, max represents maximum, and Σ represents summation. subject to represents "constrained to".
Next, the objective function is vectorized. For a single TOA measurement, the anchor node error satisfies | δijIf | < epsilon, the error vector of the vectorized anchor node meets the following conditions:
wherein δ is [ δ ]11,δ12,…,δ43]TIs a set of anchor node modulo errors for M anchor nodes communicating with N target nodes,indicating the open square root. Likewise, define d1=[d11,d12,…,d43]TNoisy distance measurement for communication of anchor node and target node, d2=[d'12,d'13,…,d'32]TNoisy distance measurements for communication between target nodes,aggregating all noisy distance measurements; definition ofIs an anchor node andtrue distance measurement, r, of communication between target nodes2=[r'12,r'13,…,r3'2]TFor true distance measurements of communication between target nodes,all the true distance measurements are aggregated. Defining intermediate variables simultaneouslyγjj'And a vector gamma1,γ2And γ:
the original sub-optimization problem can be translated into:
subject to
γ[3(i-1)+j]=r2[3(i-1)+j],i=1,2,3,4,j=1,2,3
γ[12+3(j-1)+j']=r2[12+3(j-1)+j'],j=1,2,3,j'=1,2,3
r[12+3(i-1)+j]=||yj-yj'||,j=1,2,3,j'=1,2,3
whereinG=blkdiag(G1,G2),Γ=1(3+4-1)×3. Wherein diag {. DEG } represents a diagonal matrix, diagonal elements of the matrix are elements in braces, blkdiag {. DEG represents a block diagonal matrix, 1(3+4-1)×3Representing a column vector having 18 elements all of 1, gamma [ ·],r[·]Representing the elements in the reference vector gamma, r.
Eliminating max in min-max optimization problem by introducing constant factor μ, i.e. forThe following is true:
δTG1δ-2δTG1(d1-r1)≤μ
namely:
The above formula can be further expressed as:
by applying the S-process, the above recursive relationship is finally converted into a convex constraint:
namely:
where lambda and mu are newly introduced constants for transforming the anchor node error vector,indicating "presence" ≧ which indicates the matrix semi-positive definite.
Meanwhile, the objective function to be optimized may be converted into:
Tr[G(ΓγT-2drT)]+μ
in the formula, Tr (. cndot.) represents finding the trace of the matrix inside the parentheses.
The fourth step: convert the problem into a convex problem
After the transformation in the third step, the error term of the anchor node is eliminated, but the problem is still not a convex problem. The problem is then transformed into a convex problem by a series of transformations and relaxations of the objective function and constraints. The relaxation method used is a semi-positive definite relaxation method, and finally the objective function is transformed into a convex function and the constraints are transformed into convex constraints, thereby making the problem solvable.
To convert the problem into a convex one, an intermediate matrix Y is introducedu:
Then matrix YuThe relationship between the elements in (1) and the existing constraints is as follows:
i=1,2,3,4,j=1,2,3
γ[12+3(j-1)+j']=Yu[j,j]+Yu[j',j']-Yu[j,j']-Yu[j',j]
j=1,2,3,j'=1,2,3
wherein, Yu[j,j]Representing a reference matrix YuRow jth, column jth. The two constraints are converted into convex constraints. Meanwhile, relaxing the other two equality constraints into inequality constraints to obtain:
γ[3(i-1)+j]≥r2[3(i-1)+j],i=1,2,3,4,j=1,2,3
γ[12+3(j-1)+j']≥r2[12+3(j-1)+j'],j=1,2,3,j'=1,2,3
matrix YuThe other convex constraints hidden in (1) are:
yj=[Yu[j,4],Yu[j,5]]T,j=1,2,3
Yu≥03+2
thus, all constraints are converted into convex constraints, the objective function is also a convex function, and the problem is converted into a solvable convex problem.
The final form of the optimization problem is:
the fifth step: solving a convex optimization problem to obtain an estimate of the target position
The convex optimization problem resulting from the fourth step can be solved by the CVX toolbox of MATLAB, the tool being Sedumi. Programming under the MATLAB environment, and inputting an objective function and a constraint condition to obtain the estimation of the target position.
Claims (3)
1. A target positioning method under the condition that the position of an anchor node is uncertain is characterized by comprising the following steps:
firstly, TOA measurement among nodes in a sensor network is obtained, and modeling is carried out on anchor node errors;
the first step is set with the position of M in the sensor network known butThe target nodes are the anchor nodes with errors and N target nodes to be positioned, M is more than or equal to 3, and the real coordinates of the M anchor nodes are x1,x2,…,xMThe coordinates of N target nodes to be estimated are y1,y2,…,yN(ii) a Obtaining a TOA measurement set through communication between nodes, wherein the TOA measurement set comprises TOA measurement of communication between an anchor node and a target node and TOA measurement of communication between the target nodes; the TOA measurement expression obtained by the communication between the anchor node and the target node isWhere i, j represent anchor node numbered i and target node numbered j, respectively, c is signal propagation speed, tijRepresenting a time measurement, r, obtained by the anchor node i communicating with the target node jijRepresents the distance between anchor node i and target node j, eijAdditive white Gaussian noise, e, representing communication between anchor node i and target node jijObey mean of zero and variance of(ii) a gaussian distribution of; the TOA measurement expression obtained by mutual communication between the target nodes isWherein j and j 'represent target nodes numbered j and j', respectively, and j ≠ j ', t'jj'Represents a time measurement, r ', of a target node j and a target node j ' in communication with each other 'jj'Representing the distance, e ', between the target node j and the target node j'jj'Representing additive white Gaussian noise, e 'of communication between target node j and target node j'jj'Obey mean of zero and variance of(ii) a gaussian distribution of; the relation between the distance between the anchor node and the target node and the node position is rij=||xi-xj||2(ii) a Target node and target nodeThe relation between the distance between and the node position is r'jj'=||yj-yj'||2(ii) a The relation between the actual position of the anchor node and the measured position isIn the formulaIndicating measured anchor node position, ξiIs the anchor node error vector, ξiHas a maximum value equal to or less than a known constant epsilon.
Secondly, introducing an anchor node error term into original TOA measurement of communication between the anchor node and the target node;
thirdly, converting the error items of the anchor nodes, and eliminating error vectors of the anchor nodes by utilizing an S-process;
the third step adopts a maximum likelihood estimation method to estimate the position of the target, and X is setu=[y1,y2,…,yN]For a set of unknown target node coordinates, Xa=[x1,x2,…,xK]Is a set of coordinates of all anchor nodes, defining d simultaneouslyij=tij×c,d'jj'=t'jj'×c,dijAnd d'jj'Respectively measuring distance values with noise between an anchor node i and a target node j and between the target nodes j and j '(j ≠ j'); according to the existing conditions, the original objective function to be optimized is expressed asSubstituting the anchor node error item in the second step to obtain min-max suboptimal problemThrough vectorization of the objective function and elimination of the anchor node error vector by applying the S-process, the original sub-optimization problem is transformed intoWherein, lambda and mu are constants which are newly introduced for converting the error vector of the anchor node,indicating the positive definite matrix, I indicating the identity matrix, Tr (-) indicating the trace of the matrix inside the bracket, d1=[d11,d12,…,dMN]TNoisy distance measurement for anchor node to target node communication, d2=[d′12,d′13,…,d'N,N-1]TNoisy distance measurements for communication between target nodes,aggregating all noisy distance measurements; definition ofFor true distance measurement of communication between anchor node and target node, r2=[r′12,r′13,…,r'N,N-1]TFor true distance measurements of communication between target nodes,for all the sets of real distance measurements,G=blkdiag(G1,G2),Γ=1(M+N-1)×Ndiag {. is a diagonal matrix, diagonal elements of the matrix are bracketed elements, blkdiag {. is a block diagonal matrix, 1(M+N-1)×NRepresents a column vector having (M + N-1) x N elements all 1, gamma [ ·],r[·]Representing elements in a reference vector γ, r; defining intermediate variables simultaneouslyγjj'And toQuantity gamma1,γ2And a gamma-ray source,γ2=[γ12,γ13,…,γN,N-1]T,
fourthly, converting the problem into a convex problem by converting and relaxing the objective function and the constraint condition;
and fifthly, solving the convex optimization problem to obtain the estimation of the target position.
2. The method as claimed in claim 1, wherein the second step further transforms the relationship between the true position and the measured position of the anchor node into a relationship between the true position and the measured position of the anchor node using a first order Taylor expansionWherein o (| | xi)i| |) represents the anchor node error vector modulo | | ξiThe high order infinitesimal amount of | l; order toThen get | δij| ≦ epsilon, whereinRepresents the distance between the anchor node i and the target node j, and rijInstead, as used herein, the coordinates of anchor node i are the known locations of anchor nodes with errors, δijAn error value representing a modulus between anchor node i and target node j; the TOA measurement for the communication between the final anchor node and the target node is expressed as
3. The method for positioning the target of claim 1, wherein the fourth step introduces an intermediate matrixThe final form of the optimization problem is:
subject to
γ[(i-1)N+j]≥r2[(i-1)N+j]
γ[MN+(j-1)N+j']≥r2[MN+(j-1)N+j']
γ[MN+(j-1)N+j']=Yu[j,j]+Yu[j',j']-Yu[j,j']-Yu[j',j]
Xu(:,j)=Yu[j,N+1:N+l]
Yu[N+1:N+l,N+1:N+l]=Il
wherein Y isu[w,v]Representing a reference matrix YuRow w, column v, w and v must be integers; y isu[j,N+1:N+l]Representation matrix YuAll elements of row j, columns N +1 to N + l, Yu[N+1:N+l,N+1:N+l]Representation matrix YuAll elements of rows N +1 to N + l and columns N +1 to N + l, Xu(j) represents a matrix XuRow (j) ofA column vector composed of all elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110091536.9A CN112954637B (en) | 2021-01-23 | 2021-01-23 | Target positioning method under condition of uncertain anchor node position |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110091536.9A CN112954637B (en) | 2021-01-23 | 2021-01-23 | Target positioning method under condition of uncertain anchor node position |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112954637A CN112954637A (en) | 2021-06-11 |
CN112954637B true CN112954637B (en) | 2022-07-22 |
Family
ID=76236020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110091536.9A Active CN112954637B (en) | 2021-01-23 | 2021-01-23 | Target positioning method under condition of uncertain anchor node position |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112954637B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113923590B (en) * | 2021-09-24 | 2023-07-21 | 西北工业大学 | TOA positioning method under condition of uncertainty of anchor node position |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2015200274A1 (en) * | 2008-07-04 | 2015-02-12 | Commonwealth Scientific And Industrial Research Organisation | Wireless localisation system |
CN104684081A (en) * | 2015-02-10 | 2015-06-03 | 三峡大学 | Wireless sensor network node localization algorithm based on distance clustering selected anchor nodes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7457860B2 (en) * | 2003-10-09 | 2008-11-25 | Palo Alto Research Center, Incorporated | Node localization in communication networks |
FR3054886B1 (en) * | 2016-08-02 | 2018-08-24 | Thales Sa | GLOBAL SYSTEM AND METHOD FOR GLOBAL GEOLOCATION FROM MEASUREMENTS OF DISTANCES AND POSITIONS OF IMPREGNED ANCHORS |
CN109617662B (en) * | 2019-01-04 | 2020-05-12 | 浙江大学 | Joint resource optimization method based on underwater sound OFDM-NOMA system downlink |
-
2021
- 2021-01-23 CN CN202110091536.9A patent/CN112954637B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2015200274A1 (en) * | 2008-07-04 | 2015-02-12 | Commonwealth Scientific And Industrial Research Organisation | Wireless localisation system |
CN104684081A (en) * | 2015-02-10 | 2015-06-03 | 三峡大学 | Wireless sensor network node localization algorithm based on distance clustering selected anchor nodes |
Non-Patent Citations (3)
Title |
---|
"A range-angle based self-localization scheme for";Gao Jingjie;《IEEE》;20170622;全文 * |
"Anchor Calibration for Real-Time-Measurement";Peter Krapež;《IEEE》;20200629;全文 * |
"单锚节点水声网络高精度低开销初始化方法";高婧洁;《系统工程与电子技术》;20170228;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112954637A (en) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110673089B (en) | Positioning method based on arrival time under unknown line-of-sight and non-line-of-sight distribution condition | |
CN108668358B (en) | Arrival time-based cooperative positioning method applied to wireless sensor network | |
CN109471061B (en) | Received signal strength difference positioning method for robust processing model parameter error | |
CN106599368A (en) | FastSLAM method based on particle proposal distribution improvement and adaptive particle resampling | |
CN112284384A (en) | Cooperative positioning method of clustered multi-deep-sea submersible vehicle considering measurement abnormity | |
CN110658490B (en) | RSS (really simple syndication) and AOA (automatic optical inspection) based three-dimensional wireless sensor network non-cooperative positioning method | |
CN101221238A (en) | Dynamic deviation estimation method based on gauss average value mobile registration | |
CN109581281A (en) | Moving objects location method based on reaching time-difference and arrival rate difference | |
CN109975840B (en) | Positioning correction method for zero-setting antenna satellite navigation receiver | |
CN112954637B (en) | Target positioning method under condition of uncertain anchor node position | |
CN111157943A (en) | TOA-based sensor position error suppression method in asynchronous network | |
Efimov et al. | Artificial neural network based angle-of-arrival estimator | |
CN113923590B (en) | TOA positioning method under condition of uncertainty of anchor node position | |
CN110673088B (en) | Target positioning method based on arrival time in mixed line-of-sight and non-line-of-sight environment | |
CN111487586B (en) | Positioning precision improving method based on distributed passive positioning technology | |
CN110398702B (en) | Real-time online magnetic calibration method based on multi-sensor fusion | |
CN112346033A (en) | Single infrared sensor target orbit determination method aiming at measurement data with zero offset | |
CN111505575A (en) | Sensor selection method aiming at TDOA (time difference of arrival) location based on conversion TOA (time of arrival) model | |
CN113030853B (en) | RSS and AOA combined measurement-based multi-radiation source passive positioning method | |
CN114565020B (en) | Aircraft sensor signal fusion method based on deep belief network and extended Kalman filtering | |
CN112533284B (en) | Near-far field unified positioning method based on arrival angle | |
CN110850366B (en) | Positioning method based on received signal strength under mixed line-of-sight and non-line-of-sight environment | |
CN115469314A (en) | Uniform circular array steady underwater target azimuth tracking method and system | |
CN112835020B (en) | Rigid body positioning method for non-line-of-sight parameter estimation | |
CN111505576B (en) | Sensor selection method aiming at TDOA (time difference of arrival) location |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |