CN112952861B - Additional virtual double-PSS control method for active support type new energy unit - Google Patents
Additional virtual double-PSS control method for active support type new energy unit Download PDFInfo
- Publication number
- CN112952861B CN112952861B CN202110331007.1A CN202110331007A CN112952861B CN 112952861 B CN112952861 B CN 112952861B CN 202110331007 A CN202110331007 A CN 202110331007A CN 112952861 B CN112952861 B CN 112952861B
- Authority
- CN
- China
- Prior art keywords
- pss
- virtual
- formula
- vsc
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000005284 excitation Effects 0.000 claims abstract description 63
- 238000013016 damping Methods 0.000 claims abstract description 36
- 238000005457 optimization Methods 0.000 claims abstract description 15
- 230000001360 synchronised effect Effects 0.000 claims description 17
- 230000009977 dual effect Effects 0.000 claims description 15
- 230000001052 transient effect Effects 0.000 claims description 10
- 238000012938 design process Methods 0.000 claims description 6
- 230000014509 gene expression Effects 0.000 claims description 4
- 230000033228 biological regulation Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 3
- 230000010355 oscillation Effects 0.000 abstract description 14
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 22
- 238000004088 simulation Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
技术领域technical field
本发明属于新一代能源电力系统机电振荡技术领域,具体涉及面向主动支撑型新能源机组的附加虚拟双PSS控制方法。The invention belongs to the technical field of electromechanical oscillation of a new generation energy power system, and in particular relates to an additional virtual dual PSS control method for actively supported new energy units.
背景技术Background technique
目前,化石能源的过度使用加剧了环境污染,引发了温室效应等一系列问题,对此迫切需要改良现有能源结构,大力发展清洁能源取代化石能源。大规模新能源场站集中接入电网是新一代电力系统的典型特征。然而高比例新能源并网运行将取代依靠旋转大轴提供惯量支撑的传统机组,导致系统整体刚性惯量下降,影响了电力系统安全运行及电能可靠供应。对此,主动支撑型新能源机组能模拟传统发电机输出特性,为系统提供柔性惯量,提高系统的抗扰动能力。由于主动支撑型新能源机组模拟了传统同步发电机的机电暂态特性,传统同步发电机的功率振荡问题也被引入到主动支撑型新能源机组。At present, the excessive use of fossil energy has aggravated environmental pollution and caused a series of problems such as the greenhouse effect. Therefore, it is urgent to improve the existing energy structure and vigorously develop clean energy to replace fossil energy. The centralized connection of large-scale new energy stations to the power grid is a typical feature of the new generation power system. However, a high proportion of new energy grid-connected operation will replace the traditional units that rely on the rotating shaft to provide inertia support, resulting in a decrease in the overall rigid inertia of the system, affecting the safe operation of the power system and the reliable supply of electric energy. In this regard, the active support type new energy unit can simulate the output characteristics of traditional generators, provide flexible inertia for the system, and improve the anti-disturbance ability of the system. Since the active support type new energy unit simulates the electromechanical transient characteristics of the traditional synchronous generator, the power oscillation problem of the traditional synchronous generator is also introduced into the active support type new energy unit.
发明内容Contents of the invention
本发明的目的是提供面向主动支撑型新能源机组的附加虚拟双PSS控制方法,解决了新一代电力系统中主动支撑型新能源机组并网所产生的功率振荡问题。The purpose of the present invention is to provide an additional virtual double PSS control method for actively supported new energy units, which solves the power oscillation problem caused by the grid connection of actively supported new energy units in the new generation power system.
本发明所采用的技术方案是,面向主动支撑型新能源机组的附加虚拟双PSS控制方法,具体按照以下步骤实施:The technical solution adopted in the present invention is an additional virtual double PSS control method for actively supported new energy units, which is specifically implemented according to the following steps:
步骤1、建立主动支撑型VSC无穷大系统线性化模型;
步骤2、设计主动支撑型VSC虚拟双PSS;
步骤3、对主动支撑型VSC虚拟双PSS参数优化。
本发明的特点还在于:The present invention is also characterized in that:
步骤1具体过程为:The specific process of
步骤1.1、构建主动支撑型VSC机电暂态模型;Step 1.1, constructing the electromechanical transient model of the actively supported VSC;
步骤1.2、推导主动支撑型VSC的Heffron-Phillips模型。Step 1.2. Deriving the Heffron-Phillips model of the actively supported VSC.
步骤1.1具体过程为:The specific process of step 1.1 is:
根据同步发电机的二阶转子运动方程、一阶励磁回路方程及励磁调压方程,构建主动支撑型VSC机电暂态模型:According to the second-order rotor motion equation, first-order excitation circuit equation and excitation voltage regulation equation of the synchronous generator, the electromechanical transient model of the actively supported VSC is constructed:
式(1)中:Pm为机械功率,Pe为电磁功率,H为虚拟惯量,D为阻尼系数,δ为发电机功角,Δω为额定转速与实际转速的偏差,Eq′为暂态电动势,Eq为空载电动势,Efd为强制空载电动势,Efd′为自动电压调节器输出的励磁电动势,ΔUt为逆变器端电压偏差值,KA为自动电压调节器的增益,TA为自动电压调节器的时间常数,Td0′为同步发电机励磁绕组的时间常数,ω0为额定角频率,dω/dt为角频率的变化率,dδ/dt为功角的变化率;In formula (1): P m is the mechanical power, P e is the electromagnetic power, H is the virtual inertia, D is the damping coefficient, δ is the power angle of the generator, Δω is the deviation between the rated speed and the actual speed, E q ′ is the temporary State electromotive force, E q is the no-load electromotive force, E fd is the forced no-load electromotive force, E fd ′ is the excitation electromotive force output by the automatic voltage regulator, ΔU t is the voltage deviation value of the inverter terminal, K A is the automatic voltage regulator Gain, T A is the time constant of the automatic voltage regulator, T d0 ′ is the time constant of the excitation winding of the synchronous generator, ω 0 is the rated angular frequency, dω/dt is the change rate of the angular frequency, dδ/dt is the change rate of the power angle rate of change;
在式(1)中,电磁功率Pe和空载电动势Eq表达式为:In formula (1), the expressions of electromagnetic power P e and no-load electromotive force E q are:
式(2)中:Ud、Uq为无穷大母线电压Ub的d轴分量和q轴分量,Id、Iq为线路电流It的d轴分量和q轴分量,X′d为直轴瞬变电抗,Xd为直轴同步电抗。In formula (2): U d , U q are the d-axis component and q-axis component of the infinite bus voltage U b , I d , I q are the d-axis component and q-axis component of the line current I t , X′ d is the direct axis transient reactance, X d is the direct axis synchronous reactance.
步骤1.2具体过程为:The specific process of step 1.2 is:
构建主动支撑型VSC的虚拟阻抗模型为:The virtual impedance model for constructing the actively supported VSC is:
式(3)中Utd、Utq为VSC端电压Ut的d轴分量和q轴分量;U td and U tq in formula (3) are the d-axis component and q-axis component of VSC terminal voltage U t ;
主动支撑型VSC无穷大系统输电线路的电压方程为:The voltage equation of the transmission line of the actively supported VSC infinite system is:
Ut=jXtIt+Ub (4)U t =jX t I t +U b (4)
式(4)中,Xt为线路电抗,It为线路电流,Ub为无穷大母线电压,Ut为逆变器端电压;In formula (4), X t is the line reactance, I t is the line current, U b is the infinite bus voltage, U t is the inverter terminal voltage;
由公式(1)-(4)获得:Obtained by formula (1)-(4):
由式(5)在稳态运行点处线性化,并化简,得:By linearizing equation (5) at the steady-state operating point and simplifying it, we get:
其中系数K1~K6是与系统结构、参数、运行工况有关的常数;Among them, the coefficients K 1 ~ K 6 are constants related to the system structure, parameters and operating conditions;
将式(6)带入式(1)中,得主动支撑型VSC的Heffron-Phillips模型:Putting formula (6) into formula (1), the Heffron-Phillips model of actively supported VSC is obtained:
步骤2中设计主动支撑型VSC虚拟双PSS包括设计同步电机的电磁转矩的虚拟励磁PSS和虚拟角度PSS,具体过程为:In
根据主动支撑型VSC的Heffron-Phillips模型构建虚拟PSS;Construct virtual PSS according to the Heffron-Phillips model of actively supported VSC;
虚拟励磁PSS设计过程为:The virtual excitation PSS design process is as follows:
将Δω作为控制信号,使该控制信号经过传递函数G′pss(s)后反馈到励磁回路,产生附加电磁转矩ΔT′pss;Δω is used as the control signal, so that the control signal is fed back to the excitation circuit after the transfer function G' pss (s), and an additional electromagnetic torque ΔT' pss is generated;
则虚拟励磁PSS提供的附加电磁转矩ΔT′pss为:Then the additional electromagnetic torque ΔT′ pss provided by the virtual excitation PSS is:
虚拟角度PSS设计过程为:The virtual angle PSS design process is:
引入功角Δδ的修正量Δδpss作为附加控制,其中Δδpss=G″pss(s)·Δω,使得修正后的功角Δδ=Δδpss+Δδ0,在励磁回路中产生附加电磁转矩ΔT″pss,虚拟角度PSS的附加电磁转矩ΔT″pss为:The correction amount Δδ pss of the power angle Δδ is introduced as an additional control, where Δδ pss = G″ pss (s) Δω, so that the corrected power angle Δδ = Δδ pss + Δδ 0 , and an additional electromagnetic torque ΔT is generated in the excitation circuit " pss , the additional electromagnetic torque ΔT " pss of virtual angle PSS is:
步骤3具体过程为:对主动支撑型VSC虚拟双PSS中的虚拟励磁PSS参数和虚拟角度PSS参数进行优化;The specific process of
对虚拟励磁PSS参数优化:Optimization of virtual excitation PSS parameters:
设控制信号Δω相位修正后的值为Δupss,即Δupss=Δω*G′pss(s),Δupss到ΔT′pss的传递函数为F′pss(s),公式如下:Suppose the value of the control signal Δω phase correction is Δu pss , that is, Δu pss = Δω*G′ pss (s), the transfer function from Δu pss to ΔT′ pss is F′ pss (s), the formula is as follows:
设虚拟励磁PSS提供的阻尼系数为D′pss,即Let the damping coefficient provided by the virtual excitation PSS be D′ pss , that is
D′pss=G′pss(s)F′pss(s) (14)D' pss = G' pss (s) F' pss (s) (14)
将F′pss(s)、G′pss(s)表示成如下形式:Express F′ pss (s) and G′ pss (s) as follows:
式中,为传递函数F′pss(s)的相位角,γ′为传递函数G′pss(s)的相位角;In the formula, Be the phase angle of transfer function F' pss (s), γ ' is the phase angle of transfer function G' pss (s);
根据相位补偿法,有According to the phase compensation method, there are
式中,T′pssd为虚拟励磁PSS提供的附加阻尼转矩,T′psss为虚拟励磁PSS提供的附加同步转矩;In the formula, T′ pssd is the additional damping torque provided by the virtual excitation PSS, and T′ psss is the additional synchronous torque provided by the virtual excitation PSS;
即which is
设置传递函数G′pss(s)为比例环节和超前滞后环节,表示为:Set the transfer function G′ pss (s) as a proportional link and a lead-lag link, expressed as:
式中,T1~T4均表示超前滞后环节的时间常数,K′1,K′2为虚拟励磁PSS的参数整定值;In the formula, T 1 ~ T 4 all represent the time constant of the lead-lag link, K′ 1 and K′ 2 are the parameter setting values of the virtual excitation PSS;
假设虚拟励磁PSS提供正的阻尼转矩,由(16)可得:Assuming that the virtual excitation PSS provides a positive damping torque, it can be obtained from (16):
给定T1、T3的值,根据式(19)求出T2,T4,K′1,K′2,根据式(15)、(18)获得参数优化后的传递函数G′pss(s);Given the values of T 1 and T 3 , calculate T 2 , T 4 , K′ 1 , K′ 2 according to formula (19), and obtain the transfer function G′ pss after parameter optimization according to formula (15) and (18) (s);
对虚拟角度PSS参数优化:Optimization of virtual angle PSS parameters:
假设虚拟角度PSS提供正的纯阻尼转矩,ΔT″pss为虚拟角度PSS所提供的电磁转矩,功角Δδ的修正量Δδpss为虚拟角度PSS的输出稳定控制信号,虚拟角度PSS所提供的电磁转矩为ΔT″pss,F″pss(s)为从Δδpss到ΔT″pss的传递函数,则有:Assuming that the virtual angle PSS provides positive pure damping torque, ΔT″ pss is the electromagnetic torque provided by the virtual angle PSS, the correction amount Δδ pss of the power angle Δδ is the output stability control signal of the virtual angle PSS, and the value provided by the virtual angle PSS The electromagnetic torque is ΔT″ pss , and F″ pss (s) is the transfer function from Δδpss to ΔT″ pss , then:
ΔT″pss=F″pss(s)Δδpss (21)ΔT″ pss = F″ pss (s) Δδ pss (21)
令传递函数G″pss(s)的相位补偿传递函数F″pss(s)的相位,设置传递函数G″pss(s)为比例环节和超前滞后环节,表示为:Let the phase compensation of the transfer function G″ pss (s) be the phase of the transfer function F″ pss (s), set the transfer function G″ pss (s) as a proportional link and a lead-lag link, expressed as:
式中,T′1~T′4均表示超前滞后环节的时间常数,K″1,K″2为虚拟角度PSS的参数整定值;In the formula, T′ 1 ~ T′ 4 all represent the time constant of the lead-lag link, K″ 1 and K″ 2 are the parameter setting values of the virtual angle PSS;
同理虚拟励磁PSS,可得Similarly, the virtual excitation PSS can be obtained
式中,为传递函数F″pss(s)的相位角,γ″为传递函数G″pss(s)的相位角;In the formula, Be the phase angle of transfer function F " pss (s), γ " be the phase angle of transfer function G " pss (s);
给定T′1、T′3的值,根据式(23)求出T′2,T′4,K′1,K′2,根据式(22)得到参数优化后的传递函数G″pss(s)。Given the values of T′ 1 and T′ 3 , calculate T′ 2 , T′ 4 , K′ 1 , K′ 2 according to formula (23), and obtain the transfer function G″ pss after parameter optimization according to formula (22) (s).
本发明有益效果是:The beneficial effects of the present invention are:
本发明面向主动支撑型新能源机组的附加虚拟双PSS控制方法,提出的附加虚拟双PSS控制方法,当系统受干扰产生功率振荡时,通过虚拟双PSS控制策略,能提供一个附加的阻尼转矩,从而抑制功率振荡,提高新一代能源电力系统的抗扰动能力。The invention is oriented to the additional virtual dual PSS control method of the active support type new energy unit, and the proposed additional virtual dual PSS control method can provide an additional damping torque through the virtual dual PSS control strategy when the system is disturbed and generates power oscillation , so as to suppress power oscillation and improve the anti-disturbance ability of the new generation energy power system.
附图说明Description of drawings
图1为本发明的主动支撑型新能源机组机电暂态模型框图;Fig. 1 is a block diagram of the electromechanical transient model of the active support type new energy unit of the present invention;
图2为本发明的主动支撑型VSC无穷大系统图;Fig. 2 is the active support type VSC infinity system diagram of the present invention;
图3是本发明的主动支撑型VSC的Heffron-Phillips模型;Fig. 3 is the Heffron-Phillips model of active support type VSC of the present invention;
图4为本发明的从Δδ到ΔTe的传递函数框图;Fig. 4 is the transfer function block diagram from Δδ to ΔT e of the present invention;
图5为本发明的主动支撑型VSC无穷大电磁转矩矢量图;Fig. 5 is the infinite electromagnetic torque vector diagram of active support type VSC of the present invention;
图6为本发明的附加虚拟励磁PSS的阻尼控制框图;Fig. 6 is the damping control block diagram of the additional virtual excitation PSS of the present invention;
图7为本发明的从Δupss到ΔT′pss的传递函数框图;Fig. 7 is the transfer function block diagram from Δu pss to ΔT' pss of the present invention;
图8为本发明的引入虚拟励磁PSS的电磁转矩矢量图;Fig. 8 is the electromagnetic torque vector diagram of introducing virtual excitation PSS of the present invention;
图9为本发明的附加虚拟角度PSS的阻尼控制框图;Fig. 9 is the damping control block diagram of additional virtual angle PSS of the present invention;
图10为本发明的从Δδpss到ΔT″pss的传递函数框图;Fig. 10 is the transfer function block diagram from Δδ pss to ΔT " pss of the present invention;
图11为本发明的引入虚拟角度PSS的电磁转矩矢量图;Fig. 11 is the electromagnetic torque vector diagram introducing virtual angle PSS of the present invention;
图12为本发明的附加双PSS的阻尼控制框图;Fig. 12 is the damping control block diagram of the additional double PSS of the present invention;
图13为本发明的主动支撑型VSC无穷大系统频率响应波形;Fig. 13 is the active support type VSC infinite system frequency response waveform of the present invention;
图14为本发明的主动支撑型VSC无穷大系统功率响应波形。Fig. 14 is the power response waveform of the active support type VSC infinite system of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明面向主动支撑型新能源机组的附加虚拟双PSS控制方法,具体按照以下步骤实施:The present invention is oriented to an additional virtual double PSS control method for active support type new energy units, which is specifically implemented according to the following steps:
步骤1、为分析电力系统功率振荡问题,建立主动支撑型VSC无穷大系统线性化模型;步骤1具体过程为:
步骤1.1、根据同步发电机的二阶转子运动方程、一阶励磁回路方程及励磁调压方程获得主动支撑型VSC机电暂态模型,其控制框图如图1所示,公式如下:Step 1.1. According to the second-order rotor motion equation of the synchronous generator, the first-order excitation circuit equation and the excitation voltage regulation equation, the active support type VSC electromechanical transient model is obtained. The control block diagram is shown in Figure 1, and the formula is as follows:
式(1)中:Pm为机械功率,Pe为电磁功率,H为虚拟惯量,D为阻尼系数,δ为发电机功角,Δω为额定转速与实际转速的偏差,Eq′为暂态电动势,Eq为空载电动势,Efd为强制空载电动势,Efd′为自动电压调节器输出的励磁电动势,ΔUt为逆变器端电压偏差值,KA为自动电压调节器的增益,TA为自动电压调节器的时间常数,Td0′为同步发电机励磁绕组的时间常数,ω0为额定角频率,dω/dt为角频率的变化率,dδ/dt为功角的变化率;In formula (1): P m is the mechanical power, P e is the electromagnetic power, H is the virtual inertia, D is the damping coefficient, δ is the power angle of the generator, Δω is the deviation between the rated speed and the actual speed, E q ′ is the temporary State electromotive force, E q is the no-load electromotive force, E fd is the forced no-load electromotive force, E fd ′ is the excitation electromotive force output by the automatic voltage regulator, ΔU t is the voltage deviation value of the inverter terminal, K A is the automatic voltage regulator Gain, T A is the time constant of the automatic voltage regulator, T d0 ′ is the time constant of the excitation winding of the synchronous generator, ω 0 is the rated angular frequency, dω/dt is the change rate of the angular frequency, dδ/dt is the change rate of the power angle rate of change;
在式(1)中,电磁功率Pe和空载电动势Eq表达式为:In formula (1), the expressions of electromagnetic power P e and no-load electromotive force E q are:
式(2)中:Ud、Uq为无穷大母线电压Ub的d轴分量和q轴分量,Id、Iq为线路电流It的d轴分量和q轴分量,X′d为直轴瞬变电抗,Xd为直轴同步电抗。In formula (2): U d , U q are the d-axis component and q-axis component of the infinite bus voltage U b , I d , I q are the d-axis component and q-axis component of the line current I t , X′ d is the direct axis transient reactance, X d is the direct axis synchronous reactance.
步骤1.2、构建主动支撑型VSC的虚拟阻抗模型为:Step 1.2, constructing the virtual impedance model of the actively supported VSC is:
式(3)中Utd、Utq为VSC端电压Ut的d轴分量和q轴分量;U td and U tq in formula (3) are the d-axis component and q-axis component of VSC terminal voltage U t ;
主动支撑型VSC无穷大系统如图2所示,其输电线路的电压方程为:The actively supported VSC infinite system is shown in Figure 2, and the voltage equation of its transmission line is:
Ut=jXtIt+Ub (4)U t =jX t I t +U b (4)
式(4)中,Xt为线路电抗,It为线路电流,Ub为无穷大母线电压,Ut为逆变器端电压;In formula (4), X t is the line reactance, I t is the line current, U b is the infinite bus voltage, U t is the inverter terminal voltage;
由公式(1)-(4)获得:Obtained by formula (1)-(4):
由式(5)在稳态运行点处线性化,并化简,得:By linearizing equation (5) at the steady-state operating point and simplifying it, we get:
其中系数K1~K6是与系统结构、参数、运行工况有关的常数;Among them, the coefficients K 1 ~ K 6 are constants related to the system structure, parameters and operating conditions;
将式(6)带入式(1)中,得主动支撑型VSC的Heffron-Phillips模型如图3所示:Putting formula (6) into formula (1), the Heffron-Phillips model of actively supported VSC is shown in Figure 3:
主动支撑型VSC无穷大系统的状态空间表达式为:The state space expression of the actively supported VSC infinite system is:
步骤2、为减少由负阻尼转矩引起的功率振荡问题,提高系统鲁棒性,设计主动支撑型VSC虚拟双PSS;设计主动支撑型VSC虚拟双PSS包括设计同步电机的电磁转矩的虚拟励磁PSS和虚拟角度PSS,
图4为从Δδ到ΔTe的传递函数框图,由图4可以求得,主动支撑型VSC提供的电磁转矩为Figure 4 is a block diagram of the transfer function from Δδ to ΔT e , which can be obtained from Figure 4, the electromagnetic torque provided by the actively supported VSC is
根据式(9)可以画出主动支撑型VSC电磁转矩矢量图,如图5所示。由于图4中K4支路不产生负阻尼转矩,为简化分析,图5暂未考虑K4支路的影响。可以看出在快速响应、高放大倍数的快速励磁系统环境下,其合成转矩ΔTe位于矢量图的第四象限,阻尼转矩ΔTd为负数,易引起功率振荡问题,降低系统稳定性。According to formula (9), the electromagnetic torque vector diagram of the actively supported VSC can be drawn, as shown in Fig. 5. Since the K4 branch in Fig. 4 does not produce negative damping torque, in order to simplify the analysis, Fig. 5 does not consider the influence of the K4 branch. It can be seen that in the environment of fast excitation system with fast response and high magnification, the synthetic torque ΔT e is located in the fourth quadrant of the vector diagram, and the damping torque ΔT d is negative, which easily causes power oscillation and reduces system stability.
因此,本发明通过附加虚拟励磁PSS和虚拟角度PSS来提供附加阻尼转矩,抑制功率振荡。Therefore, the present invention provides additional damping torque by adding virtual excitation PSS and virtual angle PSS to suppress power oscillation.
具体过程为:The specific process is:
根据主动支撑型VSC的Heffron-Phillips模型构建虚拟PSS;Construct virtual PSS according to the Heffron-Phillips model of actively supported VSC;
虚拟励磁PSS设计过程为:The virtual excitation PSS design process is as follows:
附加虚拟励磁PSS的控制框图如图6所示,将Δω作为控制信号,使该控制信号经过传递函数G′pss(s)后反馈到励磁回路,产生附加电磁转矩ΔT′pss;The control block diagram of the additional virtual excitation PSS is as shown in Figure 6, and Δω is used as the control signal, so that the control signal is fed back to the excitation circuit through the transfer function G' pss (s), and the additional electromagnetic torque ΔT' pss is generated;
根据图7可知,虚拟励磁PSS提供的附加电磁转矩ΔT′pss为:According to Fig. 7, the additional electromagnetic torque ΔT′ pss provided by the virtual excitation PSS is:
根据式(10)可以画出电磁转矩ΔT′pss矢量图,为简化分析,暂设G′pss(s)为常系数,在参数优化环节再着重考虑G′pss(s)参数,电磁转矩ΔT′pss矢量图如图8所示。According to formula (10), the electromagnetic torque ΔT′ pss vector diagram can be drawn. To simplify the analysis, temporarily set G′ pss (s) as a constant coefficient, and then focus on considering the G′ pss (s) parameter in the parameter optimization link. The moment ΔT′ pss vector diagram is shown in Fig. 8 .
根据图8可知,虚拟励磁PSS提供的附加电磁转矩ΔT′pss在第一象限,能提供一个正的阻尼转矩ΔT′d,减小了系统原有的负阻尼转矩。According to Fig. 8, the additional electromagnetic torque ΔT′ pss provided by the virtual excitation PSS can provide a positive damping torque ΔT′ d in the first quadrant, which reduces the original negative damping torque of the system.
虚拟角度PSS设计过程为:The virtual angle PSS design process is:
由于虚拟励磁PSS提供的阻尼转矩有限,当G′pss(s)取值过大可能影响系统稳定。因此,本发明通过设计角度虚拟PSS,使其能够在励磁PSS基础上额外提供附加阻尼转矩。Due to the limited damping torque provided by the virtual excitation PSS, when the value of G′ pss (s) is too large, it may affect the stability of the system. Therefore, the present invention can provide an additional damping torque on the basis of the excitation PSS by designing the angle virtual PSS.
附加虚拟角度PSS的控制框图如图9所示。在系统整体控制框架中引入功角Δδ的修正量Δδpss作为附加控制,其中Δδpss=G″pss(s)·Δω,使得修正后的功角Δδ=Δδpss+Δδ0,在励磁回路中产生附加电磁转矩ΔT″pss,如图10所示,虚拟角度PSS的附加电磁转矩ΔT″pss为:The control block diagram of the additional virtual angle PSS is shown in Figure 9. In the overall control framework of the system, the correction amount Δδ pss of the power angle Δδ is introduced as an additional control, where Δδ pss = G″ pss (s) Δω, so that the corrected power angle Δδ = Δδ pss + Δδ 0 , in the excitation circuit Produce additional electromagnetic torque ΔT " pss , as shown in Figure 10, the additional electromagnetic torque ΔT " pss of virtual angle PSS is:
根据式(11)可以画出电磁转矩ΔT″pss矢量图,为简化分析,暂设G″pss(s)为常系数,忽略K4支路的影响,在参数优化环节再着重考虑G″pss(s)参数,电磁转矩ΔT″pss矢量图如图11所示。According to formula (11), the electromagnetic torque ΔT″ pss vector diagram can be drawn. To simplify the analysis, temporarily set G″ pss (s) as a constant coefficient, ignore the influence of the K4 branch, and then focus on G″ in the parameter optimization link The pss (s) parameter and the electromagnetic torque ΔT″ pss vector diagram are shown in Figure 11.
根据图11可知,虚拟角度PSS提供的附加电磁转矩ΔT″pss在第一象限,能提供一个正的阻尼转矩ΔT″d,减小了系统原有的负阻尼转矩。According to Fig. 11, the additional electromagnetic torque ΔT″ pss provided by the virtual angle PSS is in the first quadrant, which can provide a positive damping torque ΔT″ d and reduce the original negative damping torque of the system.
综上所述,虚拟双PSS控制框图如图12所示,虚拟双PSS提供的总电磁力矩ΔTe *为To sum up, the control block diagram of the virtual dual PSS is shown in Fig. 12, and the total electromagnetic torque ΔT e * provided by the virtual dual PSS is
ΔTe *=ΔTe+ΔTp′ss+ΔT″pss (12)ΔT e * = ΔT e +ΔT p ′ ss + ΔT″ pss (12)
通过附加虚拟双PSS控制,能极大提高系统阻尼力矩,改善系统稳定性。By adding virtual dual PSS control, the system damping torque can be greatly increased and the system stability can be improved.
步骤3、为改善系统的振荡模式,提高虚拟双PSS可控性,对主动支撑型VSC虚拟双PSS参数优化。步骤3具体过程为:
对主动支撑型VSC虚拟双PSS中的虚拟励磁PSS参数和虚拟角度PSS参数进行优化;Optimize the virtual excitation PSS parameters and virtual angle PSS parameters in the virtual dual PSS of active support VSC;
上文为简化分析,暂设传递函数G′pss(s)、G″pss(s)为常系数,为了使虚拟双PSS能提供正的纯阻尼转矩,下面对虚拟双PSS参数进行优化。In order to simplify the analysis above, the transfer functions G′ pss (s) and G″ pss (s) are temporarily set as constant coefficients. In order to make the virtual double PSS provide positive pure damping torque, the parameters of the virtual double PSS are optimized below .
对虚拟励磁PSS参数优化:Optimization of virtual excitation PSS parameters:
设控制信号Δω相位修正后的值为Δupss,为了使虚拟励磁PSS能提供正的纯阻尼转矩,需要传递函数G′pss(s)的相位能够补偿Δupss到ΔT′pss的传递函数的相位,即Δupss=Δω*G′pss(s),Δupss到ΔT′pss的传递函数为F′pss(s),公式如下:Assuming that the value of the control signal Δω phase correction is Δu pss , in order to enable the virtual excitation PSS to provide positive pure damping torque, the phase of the transfer function G′ pss (s) needs to be able to compensate the transfer function from Δu pss to ΔT′ pss Phase, namely Δu pss = Δω*G′ pss (s), the transfer function from Δu pss to ΔT′ pss is F′ pss (s), the formula is as follows:
设虚拟励磁PSS提供的阻尼系数为D′pss,即Let the damping coefficient provided by the virtual excitation PSS be D′ pss , that is
D′pss=G′pss(s)F′pss(s) (14)D' pss = G' pss (s) F' pss (s) (14)
将F′pss(s)、G′pss(s)表示成如下形式:Express F′ pss (s) and G′ pss (s) as follows:
式中,为传递函数F′pss(s)的相位角,γ′为传递函数G′pss(s)的相位角;In the formula, Be the phase angle of transfer function F' pss (s), γ ' is the phase angle of transfer function G' pss (s);
根据相位补偿法,有According to the phase compensation method, there are
式中,T′pssd为虚拟励磁PSS提供的附加阻尼转矩,T′psss为虚拟励磁PSS提供的附加同步转矩;In the formula, T′ pssd is the additional damping torque provided by the virtual excitation PSS, and T′ psss is the additional synchronous torque provided by the virtual excitation PSS;
即which is
设置传递函数G′pss(s)为比例环节和超前滞后环节,表示为:Set the transfer function G′ pss (s) as a proportional link and a lead-lag link, expressed as:
式中,T1~T4均表示超前滞后环节的时间常数,K′1,K′2为虚拟励磁PSS的参数整定值;In the formula, T 1 ~ T 4 all represent the time constant of the lead-lag link, K′ 1 and K′ 2 are the parameter setting values of the virtual excitation PSS;
假设虚拟励磁PSS提供正的阻尼转矩,由(16)可得:Assuming that the virtual excitation PSS provides a positive damping torque, it can be obtained from (16):
给定T1、T3的值,根据式(19)求出T2,T4,K′1,K′2,根据式(15)、(18)获得参数优化后的传递函数G′pss(s);Given the values of T 1 and T 3 , calculate T 2 , T 4 , K′ 1 , K′ 2 according to formula (19), and obtain the transfer function G′ pss after parameter optimization according to formula (15) and (18) (s);
对虚拟角度PSS参数优化:Optimization of virtual angle PSS parameters:
假设虚拟角度PSS提供正的纯阻尼转矩,ΔT″pss为虚拟角度PSS所提供的电磁转矩,功角Δδ的修正量Δδpss为虚拟角度PSS的输出稳定控制信号,虚拟角度PSS所提供的电磁转矩为ΔT″pss,F″pss(s)为从Δδpss到ΔT″pss的传递函数,则有:Assuming that the virtual angle PSS provides positive pure damping torque, ΔT″ pss is the electromagnetic torque provided by the virtual angle PSS, the correction amount Δδ pss of the power angle Δδ is the output stability control signal of the virtual angle PSS, and the value provided by the virtual angle PSS The electromagnetic torque is ΔT″ pss , and F″ pss (s) is the transfer function from Δδpss to ΔT″ pss , then:
ΔT″pss=F″pss(s)Δδpss (21)ΔT″ pss = F″ pss (s) Δδ pss (21)
为了使虚拟角度PSS能提供正的纯阻尼转矩,需要令传递函数G″pss(s)的相位补偿传递函数F″pss(s)的相位,设置传递函数G″pss(s)为比例环节和超前滞后环节,表示为:In order to make the virtual angle PSS provide a positive pure damping torque, it is necessary to make the phase of the transfer function G″ pss (s) compensate the phase of the transfer function F″ pss (s), and set the transfer function G″ pss (s) as a proportional link and the lead-lag link, expressed as:
式中,T′1~T′4均表示超前滞后环节的时间常数,K″1,K″2为虚拟角度PSS的参数整定值;In the formula, T′ 1 ~ T′ 4 all represent the time constant of the lead-lag link, K″ 1 and K″ 2 are the parameter setting values of the virtual angle PSS;
同理虚拟励磁PSS,可得Similarly, the virtual excitation PSS can be obtained
式中,为传递函数F″pss(s)的相位角,γ″为传递函数G″pss(s)的相位角;In the formula, Be the phase angle of transfer function F " pss (s), γ " be the phase angle of transfer function G " pss (s);
给定T′1、T′3的值,根据式(23)求出T′2,T′4,K′1,K′2,根据式(22)得到参数优化后的传递函数G″pss(s)。Given the values of T′ 1 and T′ 3 , calculate T′ 2 , T′ 4 , K′ 1 , K′ 2 according to formula (23), and obtain the transfer function G″ pss after parameter optimization according to formula (22) (s).
最后,在DIgSILENT/PoweFactory仿真软件中搭建单机无穷大电网仿真算例,在t=200s时设定系统功率扰动,图10为系统频率响应波形,图11为变流器输出功率波形。可以明显看出,通过引入虚拟励磁PSS可降低系统频率与功率的振荡幅度,引入虚拟角度PSS可以进一步改善系统的阻尼特性。Finally, a single-machine infinite power grid simulation example is built in the DIgSILENT/PoweFactory simulation software, and the system power disturbance is set at t=200s. Figure 10 shows the system frequency response waveform, and Figure 11 shows the converter output power waveform. It can be clearly seen that the oscillation amplitude of system frequency and power can be reduced by introducing virtual excitation PSS, and the damping characteristics of the system can be further improved by introducing virtual angle PSS.
通过上述方式,本发明面向主动支撑型新能源机组的附加虚拟双PSS控制方法,通过在控制回路中加入虚拟双PSS环节,用于补偿虚拟励磁调节器的阻尼转矩改善阻尼特性,可以有效抑制功率振荡,提高系统稳定性。通过仿真验证了所提方法的准确性与合理性。Through the above method, the invention’s additional virtual double PSS control method for actively supported new energy units can effectively suppress Power oscillation to improve system stability. The accuracy and rationality of the proposed method are verified by simulation.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110331007.1A CN112952861B (en) | 2021-03-29 | 2021-03-29 | Additional virtual double-PSS control method for active support type new energy unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110331007.1A CN112952861B (en) | 2021-03-29 | 2021-03-29 | Additional virtual double-PSS control method for active support type new energy unit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112952861A CN112952861A (en) | 2021-06-11 |
CN112952861B true CN112952861B (en) | 2022-11-22 |
Family
ID=76227051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110331007.1A Expired - Fee Related CN112952861B (en) | 2021-03-29 | 2021-03-29 | Additional virtual double-PSS control method for active support type new energy unit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112952861B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105449699A (en) * | 2016-01-11 | 2016-03-30 | 东北电力大学 | Nonlinear fractional order auto disturbance rejection damping control method of doubly fed induction generators |
CN107346892A (en) * | 2017-04-24 | 2017-11-14 | 国家电网公司 | PSS design methods based on the input hierarchical control of wide area multi signal |
CN109149665A (en) * | 2017-06-28 | 2019-01-04 | 中国电力科学研究院 | Multi-rate simulating method and system for flexible direct current AC network associative simulation |
CN109683037A (en) * | 2018-12-08 | 2019-04-26 | 国网辽宁省电力有限公司电力科学研究院 | A kind of power system stabilizer, PSS test method based on CoCo-80 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104659802B (en) * | 2015-03-11 | 2016-10-05 | 云南电网有限责任公司电网规划研究中心 | A VSC-HVDC AC Voltage-Frequency Coordinated Control Method for Improving AC System Transient Stability |
CN106712055B (en) * | 2015-11-12 | 2019-07-19 | 中国电力科学研究院 | A Power System Stabilizer Configuration Method Coordinated with Low Excitation Limiting Function |
CN106451421B (en) * | 2016-09-27 | 2019-01-04 | 南方电网科学研究院有限责任公司 | Modeling and ring-opening method for electromagnetic ring network-containing alternating current-direct current power grid |
CN108011390B (en) * | 2017-12-11 | 2019-10-08 | 华中科技大学 | A kind of back-to-back flexible HVDC transmission system and bicyclic additional frequency control method |
CN108199391B (en) * | 2018-01-10 | 2018-12-07 | 云南电网有限责任公司电力科学研究院 | A kind of control method for coordinating of generator UEL and PSS |
WO2020173549A1 (en) * | 2019-02-26 | 2020-09-03 | Abb Power Grids Switzerland Ag | Statcom arrangement comprising energy storage |
CN110661273A (en) * | 2019-08-20 | 2020-01-07 | 中国电力科学研究院有限公司 | A damping control method and system for suppressing low frequency oscillation and subsynchronous oscillation |
CN110970893A (en) * | 2019-11-23 | 2020-04-07 | 国网辽宁省电力有限公司电力科学研究院 | Method for adaptively optimizing and regulating network inertia level based on active support type VSC |
-
2021
- 2021-03-29 CN CN202110331007.1A patent/CN112952861B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105449699A (en) * | 2016-01-11 | 2016-03-30 | 东北电力大学 | Nonlinear fractional order auto disturbance rejection damping control method of doubly fed induction generators |
CN107346892A (en) * | 2017-04-24 | 2017-11-14 | 国家电网公司 | PSS design methods based on the input hierarchical control of wide area multi signal |
CN109149665A (en) * | 2017-06-28 | 2019-01-04 | 中国电力科学研究院 | Multi-rate simulating method and system for flexible direct current AC network associative simulation |
CN109683037A (en) * | 2018-12-08 | 2019-04-26 | 国网辽宁省电力有限公司电力科学研究院 | A kind of power system stabilizer, PSS test method based on CoCo-80 |
Also Published As
Publication number | Publication date |
---|---|
CN112952861A (en) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115313524B (en) | Photovoltaic power generation grid-connected control method and system based on network-building type converter | |
CN111342484B (en) | Dynamic characteristic analysis method of direct-drive wind power generation system under conventional control strategy | |
CN105896570B (en) | Virtual synchronous Generator Damping winding analogy method based on the compensation of steady frequency difference | |
CN108199396B (en) | Virtual excitation closed-loop control system for energy storage inverter and its design method | |
CN112751346B (en) | Design method of DFIG-PSS controller based on virtual impedance | |
CN110518601A (en) | Wind-electricity integration low-frequency oscillation suppression method based on broadband and improvement Active Disturbance Rejection Control | |
CN110797883A (en) | Wind power plant flexible direct grid-connected system subsynchronous oscillation suppression method based on impedance method | |
CN110611321B (en) | A design method of virtual power system stabilizer for compensating the negative damping characteristics of virtual synchronous machine | |
CN106786673B (en) | The suppressing method and device of double-fed blower compensated transmission system subsynchronous resonance | |
CN111478365B (en) | A method and system for optimizing the control parameters of a virtual synchronous machine for a direct-drive wind turbine | |
CN106786674B (en) | Subsynchronous resonance suppression method and device for double-fed fan-series compensated transmission system | |
CN107732939A (en) | Suppression sub-synchronous oscillation control method based on voltage source type converter uneoupled control | |
CN115882762A (en) | Frequency optimization control method of grid-connected wind power system | |
CN111049178A (en) | A stable control analysis method for direct-drive permanent magnet wind turbine connected to the grid via VSC-HVDC | |
CN106533289A (en) | Non-linear voltage control method and system | |
CN116169689A (en) | Damping optimization control method based on virtual synchronous generator | |
CN114566962A (en) | Synchronous frequency resonance suppression method for distributed energy grid-connected system | |
CN112952861B (en) | Additional virtual double-PSS control method for active support type new energy unit | |
CN109004680B (en) | Wind power plant power control method and system based on energy storage inverter | |
CN117674183A (en) | Frequency dynamic response optimization method based on grid-connected inverter | |
CN114792055B (en) | Asynchronous motor equivalent inertia evaluation method based on transient reactance post-potential | |
CN110336299A (en) | A Distribution Network Reconfiguration Method Considering Small Interference and Stability of Integrated Energy System | |
Yang et al. | Adaptive passivity-based control of a TCSC for the power system damping improvement of a PMSG based offshore wind farm | |
CN109301867B (en) | Virtual synchronous motor control method for simulating diesel generator set | |
CN116260190A (en) | A small-signal modeling method for virtual synchronous machines considering the characteristics of direct-drive fans |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20221122 |