CN112949500A - 一种基于空间特征编码改进的YOLOv3车道线检测方法 - Google Patents

一种基于空间特征编码改进的YOLOv3车道线检测方法 Download PDF

Info

Publication number
CN112949500A
CN112949500A CN202110242266.7A CN202110242266A CN112949500A CN 112949500 A CN112949500 A CN 112949500A CN 202110242266 A CN202110242266 A CN 202110242266A CN 112949500 A CN112949500 A CN 112949500A
Authority
CN
China
Prior art keywords
feature
spatial
lane line
features
coding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110242266.7A
Other languages
English (en)
Inventor
徐成
李佳宾
刘宏哲
徐冰心
潘卫国
代松银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Union University
Original Assignee
Beijing Union University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Union University filed Critical Beijing Union University
Priority to CN202110242266.7A priority Critical patent/CN112949500A/zh
Publication of CN112949500A publication Critical patent/CN112949500A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于空间特征编码改进的YOLOv3车道线检测方法,包括:首先对输入图像进行尺寸重塑,将其统一归一化为416×416尺寸的图像;然后将图像输入改进后的Darknet‑53网络进行特征提取;在不同的Residual层获取三种不同尺度的特征;在获取第一个尺度特征后,采取16倍上采样将特征与前层融合,输入后续网络模型提取第二尺度特征,将其进行8倍上采样与前层特征融合,输入后续网络得到第三尺度特征;将是三种不同尺度特征分别输入空间特征编码模型进行空间语义信息提取,得到编码后的特征;将特征输入YOLO层进行车道线检测,最后输出检测标注后的图像。借鉴ResNet跳跃连接特征,并采取空间特征编码对网络进行改进,使得网络可以高效准确的预测边缘车道线。

Description

一种基于空间特征编码改进的YOLOv3车道线检测方法
技术领域
本发明涉及深度学习无人驾驶领域,一种基于空间特征编码改进的YOLOv3车道线检测方法。
背景技术
随着科技的飞速发展与时代的变迁,人工智能已经越来越接近我们的生活,且人工智能可以为人们的生活带来诸多便捷,计算机视觉一直作为人工智能之中比较火热的一个领域,而智能驾驶主要依靠的核心技术即为基于计算机视觉的多种技术,其中车道线检测就是一个较为核心的领域。只有在准确快速地检测车道线的前提下,智能车才可以决定具体要走哪一条路线,因此设计一个快速准确检测车道线的算法系统十分必要。
传统的卷积神经网络速度较慢,且在车道线数量较多或者模糊、遮挡等情况下无法检测,YOLO算法实现了将检测问题转化为回归问题,可以较好的将检测目标与背景进行区分,而后改进的YOLOV2算法精简了算法结构,并显著提高了准确率,并具有一定的普适性;再一次改进后的YOLOV3算法既具有精确的检测率,又具有较高的速度,在目标检测领域具有较高的地位,然而YOLOV3算法也存在一些问题,如过多的卷积层会使得小目标特征难以检测,并且在这些检测算法之中,都没有充分利用车道线的空间位置信息,这导致在子任务增加的情况下,网络训练十分复杂,特别是在车道线数量较多时,位于侧面的车道线往往会因为光线、摄像头角度等问题变的模糊,使得检测任务变得困难;考虑到以上的难题,为了充分利用车道线图片中的高级语义信息从而掌握车道线的空间信息,本系统利用了一种空间特征编码技术进行对YOLOV3算法的改进,将特征图进行横向切割为多个片,将每一片进行一个卷积操作,并将上下的多个片之间进行纵向连接,通过这种方式实现对车道线空间连续特征的获取与分析,对图片的空间信息进行充分利用,从而做到对于边缘模糊的车道线也能够分析其高级语义信息,实现了在保持检测速度的同时进一步提升精度并能够充分利用空间信息检测边缘车道线。
发明内容
为解决上述问题,本发明实例提供了一种基于空间特征编码改进的YOLOv3车道线检测方法,目的是在保证当前检测速度的前提下增加检测准确率并实现检测图像边缘车道线的能力,包括以下形成步骤:
步骤一,将图像进行预处理,重塑大小变为416×416宽高的统一尺寸图像;
步骤二,将预处理后的图像输入特征提取网络提取特征,首先得到第一个尺度特征图;
步骤三,将特征图进行16倍上采样,与前层特征进行融合,之后将融合特征继续进行卷积,得到第二尺度特征;
步骤四,将第二尺度特征进行8倍上采样,与前层特征融合,将融合特征继续输入后续特征提取网络,得到第三尺度特征;
步骤五,将三种不同尺度特征分别进行空间特征编码,得到编码处理后的特征图;
步骤六,将新的特征图输入YOLO层进行车道线检测;
步骤七,将检测图像进行标注以及非极大抑制处理,计算损失函数;
步骤八,将得到的结果图像保存并输出;
优选的,在步骤一中,将图片尺寸放缩为416×416尺度,这一尺度在实验当中具有较高的检测准确率与速度,是同时兼顾速度与精度的一个较为高效的尺度规模;
优选的,在步骤二中,网络采用改进的Darknet-53网络,为了避免卷积深度过大的退化问题,将五次上采样更改为两次,减少网络深度,交替使用1×1以及3×3卷积核进行卷积,并引用类似ResNet的残差结构模块实现特征的映射与融合,使得计算量减少而特征提取更高效,并且具备较强的深度训练低误差能力,网络中卷积实现包括卷积、BatchNormalization以及Leaky ReLU三部分,以上模块共同构成基础特征提取的部分;
优选的,步骤三、四中的上采样均使用双线性插值的方法,使得算法精确且运算量较小;
优选的,步骤五中空间特征编码结构包括自顶向下和自底向上两个方向的特征传递,包括以下形成步骤:
步骤一,将三维张量进行横向按行分割,一个高度为H的张量分割为H片,自顶向下标记为1,2,H片;
步骤二,按照自顶向下的方式,从第1片开始运算,将第1片进行卷积操作,后接ReLU非线性激活函数,得到处理过后的第1片空间特征;
步骤三,将步骤二中得到的特征按对应元素相加到第2片中,实现对第2片的更新,此时第2片得到第1片的空间特征信息;
步骤四,重复步骤二、三,直到第H片更新完毕,此时完成自顶向下的特征传递;
步骤五,将顺序翻转,按照自底向上的顺序,对第H片进行卷积以及ReLU操作,得到第H片的空间特征,并将特征传递给第H-1片;
步骤六,重复步骤五,直到第1片更新完毕,此时完成自底向上的特征传递;
步骤七,将以上步骤结果获得的H片特征进行拼接,得到一个高度为H的三维张量,此即为经过空间特征编码后的特征图;
优选的,使用logistic regression的方式进行车道线检测而非传统的softmax,实现对多标签对象的检测,检测公式如下:
bx=σ(tx)+cx
by=σ(ty)+cy
Figure BDA0002962636880000031
Figure BDA0002962636880000032
Pr(object)*IOU(b,object)=σ(t0)
其中,cx,cy表示grid cell的偏移量,其数值为grid cell左上角坐标,ph,pw为预设的anchor锚框大小,而tx,ty,th,tw为YOLO卷积模型中的4个预测值,其中σ(z)的计算公式为:
Figure BDA0002962636880000033
优选的,使用三项求和损失函数,从anchor置信度、anchor位置偏移、anchor预测误差三个方面进行综合误差分析,损失函数公式如下:
loss=lbox+lobj+lcls
Figure BDA0002962636880000041
Figure BDA0002962636880000042
Figure BDA0002962636880000043
其中,B为YOLO每个网格中预测的边界框个数,C为整个算法的总分类数,S为图像划分系数,p为对应类别的预测概率,c=0,1,…C为类别序号,i=0,1,…S2为网格序号,j=0,1,…B为边框序号,xi为第i个网格中的边界框中心点横坐标,yi为第i个网格中边界框中心点纵坐标,ωi为第i个网格中边界框的宽度,hi为第i个网格中的边界框的高度,λcoord为权重系数,λnoobj为权重惩罚系数,λcalss为分类权重系数;
优选的,空间特征编码使用自顶向下和自底向上两中方式,使得不同层之间的特征充分传递融合;
优选的,本发明采用空间编码处理特征,使得原有的特征能够附加空间特征,实现对隐藏层高级语义信息的利用,探索车道线空间连续性特征,能够实现对边缘车道线的准确检测。
与现有技术相比,本发明实例中采用空间特征编码技术对YOLOv3进行改进,将提取到的特征进行空间特征编码,提取分析图像中的空间语义信息,使得传统算法难以解决的边缘车道线检测问题得以解决,并取得较为优秀的效果。且在anchor计算之中采用K-means++技术并使用IOU代替传统欧氏距离进行聚类,使得参数更为精确,受随机性影响较低。在网络之中进行残差网络的改进以及卷积层后归一化的操作使得网络可以进行更为复杂的深度训练而误差较低,具有较强的鲁棒性。
附图说明
图1为本发明的一种基于空间特征编码改进的YOLOv3车道线检测方法的形成步骤的整体流程图;
图2为本发明的一种基于空间特征编码改进的YOLOv3车道线检测方法的形成步骤中的Residual Block模块;
图3为本发明的一种基于空间特征编码改进的YOLOv3车道线检测方法的形成步骤中的卷积细节模块;
图4为本发明的一种基于空间特征编码改进的YOLOv3车道线检测方法的形成步骤中的特征融合模块;
图5为本发明的一种基于空间特征编码改进的YOLOv3车道线检测方法的形成步骤中的空间特征编码模块;
图6、7为本发明的一种基于空间特征编码改进的YOLOv3车道线检测方法的结果展示。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中模型方案进行完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种基于空间特征编码改进的YOLOv3车道线检测方法,该发明实例形成步骤为:
步骤一,将图像进行预处理,重塑大小变为416×416宽高的统一尺寸图像;
步骤二,将预处理后的图像输入特征提取网络提取特征,采取Darknet-53网络进行特征提取,网络共53个卷积层,分为三个尺度的特征图提取过程,并且在卷积操作之中附加Batch Normalization归一化以及Leaky ReLU非线性激活操作,并结合使用残差结构Residual Block,。首先使用多层1×1卷积核,步长为1对图像进行卷积,再使用3×3卷积核,步长为2进行进一步卷积,卷积核的数量逐渐增加至512,在网络第79层首先获得一个13×13×512的特征张量;
其中残差结构Residual Block如图2所示,卷积操作附加细节如图3所示,使用残差结构与归一化处理可以使得模型具备深度复杂训练的能力,且将数据重新分布,增加模型的泛化能力。
步骤三,将上一步特征图进行16倍上采样,与网络第61层的卷积所得到的特征进行融合,之后将融合特征继续进行3×3卷积,卷积核数量为728,在网络第91层获得26×26×728尺度的特征图;
特征融合结构与过程如下图4所示,特征融合即将尺度不同的特征图关联起来,本发明之中的特征融合使用双线性插值上采样的技术先将低维度特征图进行上采样使得其与高维度特征尺寸一致,再经过3×3卷积核进行卷积操作,并同时对高维度特征图采取尺度相同的3×3卷积核进行操作以保证两个特征尺度相同,之后将两个特征图进行融合,在使用卷积时卷积核的种类较多,在尝试过5×5,7×7等尺寸的卷积核之后,实验证明使用3×3卷积尺寸效果最优越。
步骤四,将步骤三所得特征进行8倍上采样,与网络第36层特征融合,将融合特征继续输入后续特征提取网络,在网络第103层获得52×52×384尺度的特征图;
步骤五,将三种不同尺度特征分别进行空间特征编码,得到编码处理后的特征图;空间特征编码结构与过程如下图5所示;传统车道线检测算法很难检测边缘车道线特别是当车道线数量过多且边缘较为模糊之时,究其原因是没有有效利用图像的空间结构信息与车道线的连续性信息,因此本发明采用空间特征编码的方式处理提取特征,使得其能够充分利用车道线空间连续性特征以及图像的高级语义信息;
步骤六,将新的特征图输入YOLO层进行车道线检测,在检测的过程中使用logistic regression的方式进行车道线检测而非传统的softmax,实现对多标签对象的检测,检测公式如下:
bx=σ(tx)+cx
by=σ(ty)+cy
Figure BDA0002962636880000071
Figure BDA0002962636880000072
Pr(object)*IOU(b,object)=σ(t0)
其中,cx,cy表示grid cell的偏移量,其数值为grid cell左上角坐标,ph,pw为预设的anchor锚框大小,而tx,ty,th,tw为YOLO卷积模型中的4个预测值,其中σ(z)的计算公式为:
Figure BDA0002962636880000073
步骤七,将检测图像进行标注以及非极大抑制处理,计算损失函数,使用三项求和损失函数,从anchor置信度、anchor位置偏移、anchor预测误差三个方面进行综合误差分析,损失函数公式如下:
loss=lbox+lobj+lcls
Figure BDA0002962636880000074
Figure BDA0002962636880000075
Figure BDA0002962636880000076
其中,B为YOLO每个网格中预测的边界框个数,C为整个算法的总分类数,S为图像划分系数,p为对应类别的预测概率,c=0,1,…C为类别序号,i=0,1,…S2为网格序号,j=0,1,…B为边框序号,xi为第i个网格中的边界框中心点横坐标,yi为第i个网格中边界框中心点纵坐标,ωi为第i个网格中边界框的宽度,hi为第i个网格中的边界框的高度,λcoord为权重系数,λnoobj为权重惩罚系数,λcalss为分类权重系数;
步骤八,将得到的结果图像保存并输出;
其中在步骤五空间特征编码的具体过程包括以下步骤:
步骤一,将三维张量进行横向按行分割,一个高度为H的张量分割为H片,自顶向下标记为1,2,H片;
步骤二,按照自顶向下的方式,从第1片开始运算,将第1片进行卷积操作,后接ReLU非线性激活函数,得到处理过后的第1片空间特征;
步骤三,将步骤二中得到的特征按对应元素相加到第2片中,实现对第2片的更新,此时第2片得到第1片的空间特征信息;
步骤四,重复步骤二、三,直到第H片更新完毕,此时完成自顶向下的特征传递;
步骤五,将顺序翻转,按照自底向上的顺序,对第H片进行卷积以及ReLU操作,得到第H片的空间特征,并将特征传递给第H-1片;
步骤六,重复步骤五,直到第1片更新完毕,此时完成自底向上的特征传递;
步骤七,将以上步骤结果获得的H片特征进行拼接,得到一个高度为H的三维张量,此即为经过空间特征编码后的特征图;
本发明采用空间编码处理特征,使用自顶向下和自底向上两中方式,使得不同层之间的特征充分传递融合,使得原有的特征能够附加空间特征,实现对隐藏层高级语义信息的利用,探索车道线空间连续性特征,能够实现对边缘车道线的准确检测。
通过使用通用测试数据的实际测试,本发明实例的平均像素交叠率达到了72.5%,mAP值达到了95%,相比传统YOLOv3提升约12%,处理速度达到45fps,并且能够准确检测出边缘车道线,克服了传统算法中难以检测多车道线中边缘的问题,并具有实时检测的能力,可以运用在智能驾驶领域之中。实际效果如下图6、7所示
综上所述,本发明实例中的一种基于空间特征编码改进的YOLOv3车道线检测方法,首先将输入图像进行预处理,然后输入Darknet-53网络进行特征提取,先获得13×13尺度的特征,将其进行16倍上采样与前层特征融合,再进行卷积得到26×26尺度的特征图,对其进行8倍上采样并与前层特征融合,再进行卷积得到52×52尺度特征图,将三种尺度的特征图分别进行空间特征编码使其利用空间特征信息,将处理后的特征图输入YOLO层使用logistic regression进行车道线检测并输出经过检测标注的图像。本发明实例采用空间特征编码对YOLOv3算法进行改进,使得改进后的算法即具备YOLOv3的快速高效检测特征,又可以使用空间特征编码对于隐藏层高级语义信息的利用实现对较多条车道线以及边缘模糊车道线的检测。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

1.一种基于空间特征编码改进的YOLOv3车道线检测方法,其特征在于,包括特征提取模块以及空间特征编码模块,包括以下形成步骤:
步骤一,将图像进行预处理,重塑大小变为416×416宽高的统一尺寸图像;
步骤二,将预处理后的图像输入特征提取网络提取特征,首先得到第一个尺度特征图;
步骤三,将特征图进行16倍上采样,与前层特征进行融合,之后将融合特征继续进行卷积,得到第二尺度特征;
步骤四,将第二尺度特征进行8倍上采样,与前层特征融合,将融合特征继续输入后续特征提取网络,得到第三尺度特征;
步骤五,将三种不同尺度特征分别进行空间特征编码,得到编码处理后的特征图;
步骤六,将新的特征图输入YOLO层进行车道线检测;
步骤七,将检测图像进行标注以及非极大抑制处理,计算损失函数;
步骤八,将得到的结果图像保存并输出。
2.根据权利要求1所述的一种基于空间特征编码改进的YOLOv3车道线检测方法,其特征在于,在步骤一中,将图片尺寸放缩为416×416尺度兼顾速度与精度。
3.根据权利要求1所述的一种基于空间特征编码改进的YOLOv3车道线检测方法,其特征在于,在步骤二中,网络采用改进的Darknet-53网络,为了避免卷积深度过大的退化问题,将五次上采样更改为两次,减少网络深度,交替使用1×1以及3×3卷积核进行卷积,并引用类似ResNet的残差结构模块实现特征的映射与融合,使得计算量减少而特征提取更高效,并且具备较强的深度训练低误差能力,网络中卷积实现包括卷积、BatchNormalization以及Leaky ReLU三部分,以上模块共同构成基础特征提取的部分。
4.根据权利要求1所述的一种基于空间特征编码改进的YOLOv3车道线检测方法,其特征在于,步骤三、四中的上采样均使用双线性插值的方法,使得算法精确且运算量小。
5.根据权利要求1所述的一种基于空间特征编码改进的YOLOv3车道线检测方法,其特征在于,空间特征编码结构包括自顶向下和自底向上两个方向的特征传递,包括以下形成步骤:
步骤11,将三维张量进行横向按行分割,一个高度为H的张量分割为H片,自顶向下标记为1,2,H片;
步骤12,按照自顶向下的方式,从第1片开始运算,将第1片进行卷积操作,后接ReLU非线性激活函数,得到处理过后的第1片空间特征;
步骤13,将步骤12中得到的特征按对应元素相加到第2片中,实现对第2片的更新,此时第2片得到第1片的空间特征信息;
步骤14,重复步骤12、13,直到第H片更新完毕,此时完成自顶向下的特征传递;
步骤15,将顺序翻转,按照自底向上的顺序,对第H片进行卷积以及ReLU操作,得到第H片的空间特征,并将特征传递给第H-1片;
步骤16,重复步骤15,直到第1片更新完毕,此时完成自底向上的特征传递;
步骤17,将以上步骤结果获得的H片特征进行拼接,得到一个高度为H的三维张量,此即为经过空间特征编码后的特征图。
6.根据权利要求1所述的一种基于空间特征编码改进的YOLOv3车道线检测方法,其特征在于,使用logistic regression的方式进行车道线检测而非传统的softmax,实现对多标签对象的检测,检测公式如下:
bx=σ(tx)+cx
by=σ(ty)+cy
Figure FDA0002962636870000021
Figure FDA0002962636870000022
Pr(object)*IOU(b,object)=σ(t0)
其中,cx,cy表示grid cell的偏移量,其数值为grid cell左上角坐标,ph,pw为预设的anchor锚框大小,而tx,ty,th,tw为YOLO卷积模型中的4个预测值,其中σ(z)的计算公式为:
Figure FDA0002962636870000023
Figure FDA0002962636870000034
7.根据权利要求1所述的一种基于空间特征编码改进的YOLOv3车道线检测方法,其特征在于,使用三项求和损失函数,从anchor置信度、anchor位置偏移、anchor预测误差三个方面进行综合误差分析,损失函数公式如下:
loss=lbox+lobj+lcls
Figure FDA0002962636870000031
Figure FDA0002962636870000032
Figure FDA0002962636870000033
其中,B为YOLO每个网格中预测的边界框个数,C为整个算法的总分类数,S为图像划分系数,p为对应类别的预测概率,c=0,1,…C为类别序号,i=0,1,…S2为网格序号,j=0,1,…B为边框序号,xi为第i个网格中的边界框中心点横坐标,yi为第i个网格中边界框中心点纵坐标,ωi为第i个网格中边界框的宽度,hi为第i个网格中的边界框的高度,λcoord为权重系数,λnoobj为权重惩罚系数,λcalss为分类权重系数。
8.根据权利要求5所述的一种基于空间特征编码改进的YOLOv3车道线检测方法,其特征在于,空间特征编码使用自顶向下和自底向上两中方式,使得不同层之间的特征充分传递融合。
9.根据权利要求5所述的一种基于空间特征编码改进的YOLOv3车道线检测方法,其特征在于,采用空间编码处理特征,使得原有的特征能够附加空间特征,实现对隐藏层高级语义信息的利用,探索车道线空间连续性特征,能够实现对边缘车道线的准确检测。
CN202110242266.7A 2021-03-04 2021-03-04 一种基于空间特征编码改进的YOLOv3车道线检测方法 Pending CN112949500A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110242266.7A CN112949500A (zh) 2021-03-04 2021-03-04 一种基于空间特征编码改进的YOLOv3车道线检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110242266.7A CN112949500A (zh) 2021-03-04 2021-03-04 一种基于空间特征编码改进的YOLOv3车道线检测方法

Publications (1)

Publication Number Publication Date
CN112949500A true CN112949500A (zh) 2021-06-11

Family

ID=76247783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110242266.7A Pending CN112949500A (zh) 2021-03-04 2021-03-04 一种基于空间特征编码改进的YOLOv3车道线检测方法

Country Status (1)

Country Link
CN (1) CN112949500A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113822888A (zh) * 2021-11-23 2021-12-21 中导光电设备股份有限公司 一种基于液晶屏幕检测区域的自动划分方法和系统
CN115294545A (zh) * 2022-09-06 2022-11-04 中诚华隆计算机技术有限公司 一种基于深度学习的复杂路面车道识别方法及芯片

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190057507A1 (en) * 2017-08-18 2019-02-21 Samsung Electronics Co., Ltd. System and method for semantic segmentation of images
CN109815886A (zh) * 2019-01-21 2019-05-28 南京邮电大学 一种基于改进YOLOv3的行人和车辆检测方法及系统
CN110111366A (zh) * 2019-05-06 2019-08-09 北京理工大学 一种基于多级损失量的端到端光流估计方法
CN110728200A (zh) * 2019-09-23 2020-01-24 武汉大学 一种基于深度学习的实时行人检测方法及系统
CN110796168A (zh) * 2019-09-26 2020-02-14 江苏大学 一种基于改进YOLOv3的车辆检测方法
CN111008562A (zh) * 2019-10-31 2020-04-14 北京城建设计发展集团股份有限公司 一种特征图深度融合的人车目标检测方法
CN111209921A (zh) * 2020-01-07 2020-05-29 南京邮电大学 基于改进的YOLOv3网络的车牌检测模型及构建方法
CN111652129A (zh) * 2020-06-02 2020-09-11 北京联合大学 一种基于语义分割和多特征融合的车辆前障碍物检测方法
AU2020102091A4 (en) * 2019-10-17 2020-10-08 Wuhan University Of Science And Technology Intelligent steel slag detection method and system based on convolutional neural network
CN111898432A (zh) * 2020-06-24 2020-11-06 南京理工大学 一种基于改进YOLOv3算法的行人检测系统及方法
AU2020103613A4 (en) * 2020-11-23 2021-02-04 Agricultural Information and Rural Economic Research Institute of Sichuan Academy of Agricultural Sciences Cnn and transfer learning based disease intelligent identification method and system
CN112364721A (zh) * 2020-10-23 2021-02-12 西安科锐盛创新科技有限公司 一种道面异物检测方法
CN112380921A (zh) * 2020-10-23 2021-02-19 西安科锐盛创新科技有限公司 一种基于车联网的道路检测方法
CN112434672A (zh) * 2020-12-18 2021-03-02 天津大学 一种基于改进YOLOv3的海上人体目标检测方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190057507A1 (en) * 2017-08-18 2019-02-21 Samsung Electronics Co., Ltd. System and method for semantic segmentation of images
CN109815886A (zh) * 2019-01-21 2019-05-28 南京邮电大学 一种基于改进YOLOv3的行人和车辆检测方法及系统
CN110111366A (zh) * 2019-05-06 2019-08-09 北京理工大学 一种基于多级损失量的端到端光流估计方法
CN110728200A (zh) * 2019-09-23 2020-01-24 武汉大学 一种基于深度学习的实时行人检测方法及系统
CN110796168A (zh) * 2019-09-26 2020-02-14 江苏大学 一种基于改进YOLOv3的车辆检测方法
AU2020102091A4 (en) * 2019-10-17 2020-10-08 Wuhan University Of Science And Technology Intelligent steel slag detection method and system based on convolutional neural network
CN111008562A (zh) * 2019-10-31 2020-04-14 北京城建设计发展集团股份有限公司 一种特征图深度融合的人车目标检测方法
CN111209921A (zh) * 2020-01-07 2020-05-29 南京邮电大学 基于改进的YOLOv3网络的车牌检测模型及构建方法
CN111652129A (zh) * 2020-06-02 2020-09-11 北京联合大学 一种基于语义分割和多特征融合的车辆前障碍物检测方法
CN111898432A (zh) * 2020-06-24 2020-11-06 南京理工大学 一种基于改进YOLOv3算法的行人检测系统及方法
CN112364721A (zh) * 2020-10-23 2021-02-12 西安科锐盛创新科技有限公司 一种道面异物检测方法
CN112380921A (zh) * 2020-10-23 2021-02-19 西安科锐盛创新科技有限公司 一种基于车联网的道路检测方法
AU2020103613A4 (en) * 2020-11-23 2021-02-04 Agricultural Information and Rural Economic Research Institute of Sichuan Academy of Agricultural Sciences Cnn and transfer learning based disease intelligent identification method and system
CN112434672A (zh) * 2020-12-18 2021-03-02 天津大学 一种基于改进YOLOv3的海上人体目标检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
庞彦伟;修宇璇;: "基于边缘特征融合和跨连接的车道线语义分割神经网络", 天津大学学报(自然科学与工程技术版) *
赵爽;黄怀玉;胡一鸣;娄小平;王欣刚;: "基于深度学习的无人机航拍车辆检测", 计算机应用 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113822888A (zh) * 2021-11-23 2021-12-21 中导光电设备股份有限公司 一种基于液晶屏幕检测区域的自动划分方法和系统
CN115294545A (zh) * 2022-09-06 2022-11-04 中诚华隆计算机技术有限公司 一种基于深度学习的复杂路面车道识别方法及芯片

Similar Documents

Publication Publication Date Title
CN111201451B (zh) 基于场景的激光数据和雷达数据进行场景中的对象检测的方法及装置
CN111310574B (zh) 一种车载视觉实时多目标多任务联合感知方法和装置
Badki et al. Bi3d: Stereo depth estimation via binary classifications
JP7057580B2 (ja) 新しい機械学習のモデルの構築方法、その装置、及びそのモデルが搭載された汎用モバイル端末装置、及びそのプログラム
Gosala et al. Bird’s-eye-view panoptic segmentation using monocular frontal view images
CN108416394A (zh) 基于卷积神经网络的多目标检测模型构建方法
CN104599275A (zh) 基于概率图模型的非参数化的rgb-d场景理解方法
Cai et al. Multi-AUV collaborative target recognition based on transfer-reinforcement learning
CN113095152B (zh) 一种基于回归的车道线检测方法及系统
JP6998560B2 (ja) 異なる空間における距離のモデルの構築方法、その装置、及びそのプログラム、及びそのモデルを構成したプログラムが搭載された汎用モバイル端末装置
CN112949500A (zh) 一种基于空间特征编码改进的YOLOv3车道线检测方法
CN112926696A (zh) 一种基于注意力图的可解释局部迁移互学习方法
CN111339967B (zh) 一种基于多视域图卷积网络的行人检测方法
CN116342942A (zh) 基于多级域适应弱监督学习的跨域目标检测方法
CN115482518A (zh) 一种面向交通场景的可扩展多任务视觉感知方法
CN116563682A (zh) 一种基于深度霍夫网络的注意力方案和条带卷积语义线检测的方法
CN112488983A (zh) 缺陷识别网络的获得方法、缺陷识别方法和等级确定方法
CN117037119A (zh) 基于改进YOLOv8的道路目标检测方法及系统
CN113160117A (zh) 一种自动驾驶场景下的三维点云目标检测方法
CN116630917A (zh) 一种车道线检测方法
CN106650814A (zh) 一种基于车载单目视觉室外道路自适应分类器生成方法
CN111666988A (zh) 一种基于多层信息融合的目标检测算法
JP6998562B2 (ja) 異なる空間におけるファジィ事象確率測度のモデルの構築方法、その装置、及びそのプログラム、及びそのブログラムが搭載された汎用モバイル端末装置
CN115294548A (zh) 一种基于行方向上位置选择和分类方法的车道线检测方法
CN112668643B (zh) 一种基于格式塔法则的半监督显著性检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination