CN112924905B - 一种基于梯度电压高频振荡的变压器绕组绝缘评估方法 - Google Patents

一种基于梯度电压高频振荡的变压器绕组绝缘评估方法 Download PDF

Info

Publication number
CN112924905B
CN112924905B CN202110141194.7A CN202110141194A CN112924905B CN 112924905 B CN112924905 B CN 112924905B CN 202110141194 A CN202110141194 A CN 202110141194A CN 112924905 B CN112924905 B CN 112924905B
Authority
CN
China
Prior art keywords
matrix
signal
transformer
voltage
frequency oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110141194.7A
Other languages
English (en)
Other versions
CN112924905A (zh
Inventor
周利军
吴振宇
周猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202110141194.7A priority Critical patent/CN112924905B/zh
Publication of CN112924905A publication Critical patent/CN112924905A/zh
Application granted granted Critical
Publication of CN112924905B publication Critical patent/CN112924905B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation

Abstract

本发明公开了一种基于梯度电压高频振荡的变压器绕组绝缘评估方法,首先对试验变压器绕组进行试验,获取梯度电压下10组高频振荡信号;根据测试数据构造梯度电压矩阵H,通过权重方阵Gp分解H获得近似信号特征矩阵Zp,细节信号特征矩阵Zpq;然后计算近似信号矩阵平均对数误差绝对和识别变压器绝缘状态;通过细节信号矩阵的特征系数fi pq计算权重化后的特征参数Wi;计算绝缘状态判断系数Q,根据绝缘状态表判断绝缘故障程度。本发明方法通过对变压器进行高压试验测试梯度电压下高频振荡信号,通过权重矩阵对原始信号进行分解,丰富了高频振荡信号的特征,并近似信号矩阵和细节信号矩阵的相应特征,识别变压器绝缘状态与故障程度。

Description

一种基于梯度电压高频振荡的变压器绕组绝缘评估方法
技术领域
本发明涉及电力设备绝缘状态检测领域,尤其涉及一种基于梯度电压高频振荡的变压器绕组绝缘评估方法。
背景技术
电力变压器是电力系统的重要设备之一,它的运行状态直接影响系统的可靠性和安全性,一旦发生事故将造成重大经济损失甚至灾难性后果。此外,电力变压器的复杂恶劣运行环境使其发生故障的机率增大,其中绕组绝缘故障是变压器最常见的故障。因此,及时准确检测出变压器绕组绝缘状态是亟需解决的技术问题。
高频振荡方法是一种变压器绕组状态评估的全新测试方法,在绕组一端施加高压直流激励,通过电子开关实现高压直流信号的暂态变化,基于变压器的电容、电感等效参数共同耦合作用在绕组末端测量高频振荡信号用于绕组绝缘状态的分析。因此,高频振荡信号的特征与绕组的电气结构密切相关,可以反映变压器绕组绝缘状态。
变压器绕组绝缘在不同高压幅值下呈现不同状态,同时高频振荡信号是变压器等效参数共同耦合作用产生的非平稳信号,包含许多不同的频率,这些频率分量与绕组绝缘状态密切相关,有着丰富的信息。本文基于测试梯度电压的高频振荡信号,通过权重方阵分解出近似信号和细节信号,有效提取不同频率成分的特征判断绕组绝缘状态。因此,本发明能够更加可靠、有效地对变压器绝缘性能进行评估。
发明内容
一种基于梯度电压高频振荡的变压器绕组绝缘评估方法,试验研究平台主要包括:信号采集系统1、电压幅值调节旋钮2、高压直流电源3;电源连接开关9、信号采集连接开关7;信号输入套管10、信号输出套管8;箱体4、绕组5、铁心6;其特征在于结合各梯度电压的高频振荡信号构造矩阵,通过权重方阵分解出近似信号和细节信号提取相关特征,具体包括以下步骤:
步骤一:测量试验变压器绕组梯度电压下的高频振荡信号,包括:
(1)测量变压器绕组的高频振荡信号,闭合信号采集连接开关7使变压器绕组输出套管8与数据采集系统相连,闭合电源连接开关9使变压器绕组输入套管10与外部高频高压直流电源3连接,旋转电压幅值调节旋钮2,使高频高压电源系统在额定功率下升高电压至电压U1,待电压稳定之后,断开电源连接开关绕组输入端高压直流系统,输出套管8通过数据采集装置11测量绕组高频振荡信号X1(t)(X1(r)=[x1 x2......xN]),采集数据点N个,其中U为额定电压;
Figure GDA0003499888120000021
(2)重复步骤(1),旋转电压幅值调节旋钮2使电压升至梯度电压Ui,共采集10组变压器绕组10组高频振荡信号
步骤二:变压器绕组梯度电压高频振荡信号特征提取,包括:
(1)根据测试10组梯度电压变压器绕组高频振荡信号构造电压矩阵HH=[X1X2……X10]
(2)根据p阶权重方阵Gp对电压矩阵进行特征提取,获得近似信号特征矩阵Zp,细节信号特征矩阵Zpq
Figure GDA0003499888120000022
Figure GDA0003499888120000023
式中Gp(i,j)(p∈[1,10])是权重方阵,σ是宽度参数取1.5,Gp是p阶权重方阵,
(3)通过q阶权重方阵Gq对近似信号特征矩阵Zp进行特征提取,计算细节信号特征矩阵Zpq
Figure GDA0003499888120000024
式中Gq是q阶权重方阵
步骤三:进行试验变压器绝缘状态评估,包括:
(1)计算测量高压振荡曲线变压器绝缘正常的近似信号矩阵对数误差绝对和ASLEP
Figure GDA0003499888120000025
ALSEP=sum(ASP)
式中ASP是P阶近似信号特征矩阵每列的对数误差绝对和,Zp(:,j)和zp(:,j)是测试信号和正常信号的P阶近似信号特征矩阵第j列数据
(2)若平均近似信号矩阵对数误差绝对和AASLE>0.95,则变压器绝缘状态正常,否则需要通过对细节近似信号矩阵Zpq提取特征进一步分析;
Figure GDA0003499888120000026
(3)计算各细节信号特征矩阵Zpq的协同系数f1 pq、反差系数
Figure GDA0003499888120000027
非相似性
Figure GDA0003499888120000028
对数熵
Figure GDA0003499888120000029
均值
Figure GDA00034998881200000210
和方差
Figure GDA00034998881200000211
Figure GDA00034998881200000212
Figure GDA0003499888120000031
Figure GDA0003499888120000032
(4)根据细节信号矩阵特征系数fi pq权重化后的特征参数Wi,计算绝缘状态判断系数Q,根据以下表各判断变压器绝缘状态
Figure GDA0003499888120000033
Figure GDA0003499888120000034
式中
Figure GDA0003499888120000035
是变压器正常时的特征参数,
Figure GDA0003499888120000036
是变压器检测时的特征参数;
(5)当Q>1时,变压器绝缘状态属于严重破损;当0.6<Q≤1,变压器绝缘状态属于明显破损;当0<Q≤0.6时,变压器属于轻微破损”。
本发明提出一种基于梯度电压高频振荡的变压器绕组绝缘评估方法,其核心基于梯度电压高频振荡信号构造的矩阵,通过权重方阵分解近似信号和细节信号,实现对变压器绝缘状态的评估。本发明能够更加可靠、有效地对变压器绝缘性能进行评估。
附图说明
图1为本发明变压器梯度电压高频振荡试验接线图
图2为本发明方法所采用的流程框图。
具体实施方式
以下结合附图和具体实施例对本发明作进一步的详细说明:
如图1所示,变压器梯度电压高频振荡试验研究平台,主要包括:信号采集系统1、电压幅值调节旋钮2、高压直流电源3;电源连接开关9、信号采集连接开关7;信号输入套管10、信号输出套管8;箱体4、绕组5、铁心6;绕组首端通过输入套管10引出箱体,同时通过电源连接开关9与高压直流带能源3连接;绕组末端通过输出套管8引出箱体,同时通过信号采集连接开关7与信号采集系统1连接;
图2是基于梯度电压高频振荡的变压器绕组绝缘评估方法,其特征在于结合各梯度电压的高频振荡信号构造矩阵,通过权重方阵分解出近似信号和细节信号提取相关特征,具体包括以下步骤:
1.一种基于梯度电压高频振荡的变压器绕组绝缘评估方法,其特征在于:试验变压器额定电压UkV。变压器接线端子包括:变压器绕组信号输入端子In,信号采集端子Out;具体测试方法包括以下步骤:
步骤一:测量试验变压器绕组梯度电压下的高频振荡信号,包括:
(1)测量变压器绕组的高频振荡信号,闭合信号采集连接开关7使变压器绕组输出套管8与数据采集系统相连,闭合电源连接开关9使变压器绕组输入套管10与外部高频高压直流电源3连接,旋转电压幅值调节旋钮2,使高频高压电源系统在额定功率下升高电压至电压U1,待电压稳定之后,断开电源连接开关绕组输入端高压直流系统,输出套管8通过数据采集装置11测量绕组高频振荡信号X1(t)(X1(t)=[x1 x2......xN]),采集数据点N个,其中U为额定电压:
Figure GDA0003499888120000041
(2)重复步骤(1),旋转电压幅值调节旋钮2使电压升至梯度电压Ui,共采集10组变压器绕组10组高频振荡信号
步骤二:变压器绕组梯度电压高频振荡信号特征提取,包括:
(1)根据测试10组梯度电压变压器绕组高频振荡信号构造电压矩阵HH=[X1X2……X10]
(2)根据p阶权重方阵Gp对电压矩阵进行特征提取,获得近似信号特征矩阵Zp,细节信号特征矩阵Zpq
Figure GDA0003499888120000042
Figure GDA0003499888120000043
式中Gp(i,j)(p∈[1,10])是权重方阵,σ是宽度参数取1.5,Gp是p阶权重方阵,
(3)通过q阶权重方阵Gq对近似信号特征矩阵Zp进行特征提取,计算细节信号特征矩阵Zpq
Figure GDA0003499888120000044
式中Gq是q阶权重方阵
步骤三:进行试验变压器绝缘状态评估,包括:
(1)计算测量高压振荡曲线变压器绝缘正常的近似信号矩阵对数误差绝对和ASLEP
Figure GDA0003499888120000045
ALSEP=sum(ASP)
式中ASP是P阶近似信号特征矩阵每列的对数误差绝对和,Zp(:,j)和zp(:,j)是测试信号和正常信号的P阶近似信号特征矩阵第j列数据
(2)若平均近似信号矩阵对数误差绝对和AASLE>0.95,则变压器绝缘状态正常,否则需要通过对细节近似信号矩阵Zpq提取特征进一步分析;
Figure GDA0003499888120000051
(3)计算各细节信号特征矩阵Zpq的协同系数f1 pq、反差系数
Figure GDA0003499888120000052
非相似性
Figure GDA0003499888120000053
对数熵
Figure GDA0003499888120000054
均值
Figure GDA0003499888120000055
和方差
Figure GDA0003499888120000056
Figure GDA0003499888120000057
Figure GDA0003499888120000058
Figure GDA0003499888120000059
(4)根据细节信号矩阵特征系数fi pq权重化后的特征参数Wi,计算绝缘状态判断系数Q,根据以下表各判断变压器绝缘状态
Figure GDA00034998881200000510
Figure GDA00034998881200000511
式中
Figure GDA00034998881200000512
是变压器正常时的特征参数,
Figure GDA00034998881200000513
是变压器检测时的特征参数;
(5)当Q>1时,变压器绝缘状态属于严重破损;当0.6<Q≤1,变压器绝缘状态属于明显破损;当0<Q≤0.6时,变压器属于轻微破损”。

Claims (1)

1.一种基于梯度电压高频振荡的变压器绕组绝缘评估方法,其特征在于:试验研究平台主要包括:信号采集系统1、电压幅值调节旋钮2、高压直流电源3;电源连接开关9、信号采集连接开关7;信号输入套管10、信号输出套管8;箱体4、绕组5、铁心6;具体测试方法包括以下步骤:
步骤一:测量试验变压器绕组梯度电压下的高频振荡信号,包括:
测量变压器绕组的高频振荡信号,将变压器绕组输入套管10与外部高频高压直流电源3连接,变压器绕组输出套管8与数据采集系统相连,高频高压电源系统在额定功率下升高电压至各种梯度电压Ui,待电压稳定之后,断开绕组输入端高压直流系统,输出套管8通过数据采集装置11测量绕组共10组高频振荡信号Xi(t)(Xi(t)=[x1 x2......xN]),采集数据点N个,其中U为额定电压;
Figure FDA0003499888110000011
步骤二:变压器绕组梯度电压高频振荡信号特征提取,包括:
(1)根据梯度电压高频振荡信号构造电压矩阵H
H=[X1 X2……X10]
(2)根据p阶权重方阵Gp对电压矩阵进行特征提取,获得近似信号特征矩阵Zp,细节信号特征矩阵Zpq
Figure FDA0003499888110000012
Figure FDA0003499888110000013
式中Gp(i,j)(p∈[1,10])是权重方阵,σ是宽度参数取1.5,Gp是p阶权重方阵,
(3)通过q阶权重方阵Gq对近似信号特征矩阵Zp进行特征提取,计算细节信号特征矩阵Zpq
Figure FDA0003499888110000014
式中Gq是q阶权重方阵
步骤三:进行试验变压器绝缘状态评估,包括:
(1)计算测量高压振荡曲线变压器绝缘正常的近似信号矩阵对数误差绝对和ASLEP
Figure FDA0003499888110000015
ALSEP=sum(ASP)
式中ASP是P阶近似信号特征矩阵每列的对数误差绝对和,Zp(:,j)和zp(:,j)是测试信号和正常信号的P阶近似信号特征矩阵第j列数据
(2)若平均近似信号矩阵对数误差绝对和AASLE>0.95,则变压器绝缘状态正常,否则需要通过对细节近似信号矩阵Zpq提取特征进一步分析;
Figure FDA0003499888110000021
(3)计算各细节信号特征矩阵Zpq的协同系数f1 pq、反差系数f2 pq、非相似性f3 pq、对数熵f4 pq、均值f5 pq和方差f6 pq
Figure FDA0003499888110000022
Figure FDA0003499888110000023
Figure FDA0003499888110000024
(4)根据细节信号矩阵特征系数fi pq权重化后的特征参数Wi,计算绝缘状态判断系数Q,根据以下表各判断变压器绝缘状态
Figure FDA0003499888110000025
Figure FDA0003499888110000026
式中
Figure FDA0003499888110000027
是变压器正常时的特征参数,
Figure FDA0003499888110000028
是变压器检测时的特征参数;
(5)当Q>1时,变压器绝缘状态属于严重破损;当0.6<Q≤1,变压器绝缘状态属于明显破损;当0<Q≤0.6时,变压器属于轻微破损。
CN202110141194.7A 2021-02-02 2021-02-02 一种基于梯度电压高频振荡的变压器绕组绝缘评估方法 Active CN112924905B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110141194.7A CN112924905B (zh) 2021-02-02 2021-02-02 一种基于梯度电压高频振荡的变压器绕组绝缘评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110141194.7A CN112924905B (zh) 2021-02-02 2021-02-02 一种基于梯度电压高频振荡的变压器绕组绝缘评估方法

Publications (2)

Publication Number Publication Date
CN112924905A CN112924905A (zh) 2021-06-08
CN112924905B true CN112924905B (zh) 2022-04-08

Family

ID=76169478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110141194.7A Active CN112924905B (zh) 2021-02-02 2021-02-02 一种基于梯度电压高频振荡的变压器绕组绝缘评估方法

Country Status (1)

Country Link
CN (1) CN112924905B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114355007B (zh) * 2021-12-02 2022-07-26 西南交通大学 一种基于自激振荡的油浸式互感器形变诊断方法
CN114325258B (zh) * 2021-12-03 2022-07-19 西南交通大学 一种考虑多谐振频率的变压器套管绝缘评估方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699839A (zh) * 2016-01-28 2016-06-22 云南电网有限责任公司电力科学研究院 一种变压器绕组工作状态检测方法及系统
CN110361610A (zh) * 2019-06-23 2019-10-22 西南交通大学 变压器绕组径向变形测试系统及其测试评估方法
CN111983524A (zh) * 2020-08-26 2020-11-24 西南交通大学 一种基于振荡波时频变换的变压器绕组故障评估方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621421B (zh) * 2012-03-29 2014-02-26 贵阳供电局 一种基于关联分析与变权重系数的变压器状态评估方法
SE537145C2 (sv) * 2013-04-16 2015-02-17 Megger Ltd Metod och anordning för bestämning av kraftsystemparametrar
CN104569724A (zh) * 2015-01-06 2015-04-29 国家电网公司 一种变压器短路故障综合诊断方法
CN105182116B (zh) * 2015-08-26 2018-08-14 云南电网有限责任公司电力科学研究院 一种基于加权梯度结构相似度的变压器绕组工作状态检测方法
BR112018009766A8 (pt) * 2015-12-01 2019-02-26 General Electric Technology Gmbh método de avaliação inteligente de condição de isolamento principal de isolamento de papel e óleo de transformador
CN109116154B (zh) * 2018-08-24 2019-07-12 西南交通大学 一种绕组模型绝缘受潮和老化评估研究的实验方法
CN111983365B (zh) * 2020-08-26 2021-07-20 西南交通大学 一种基于振荡波多级分解的变压器绕组变形检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699839A (zh) * 2016-01-28 2016-06-22 云南电网有限责任公司电力科学研究院 一种变压器绕组工作状态检测方法及系统
CN110361610A (zh) * 2019-06-23 2019-10-22 西南交通大学 变压器绕组径向变形测试系统及其测试评估方法
CN111983524A (zh) * 2020-08-26 2020-11-24 西南交通大学 一种基于振荡波时频变换的变压器绕组故障评估方法

Also Published As

Publication number Publication date
CN112924905A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
Bagheri et al. Advanced transformer winding deformation diagnosis: moving from off-line to on-line
Jayasinghe et al. Winding movement in power transformers: a comparison of FRA measurement connection methods
Christian et al. Procedures for detecting winding displacements in power transformers by the transfer function method
Liu et al. A study of the sweep frequency impedance method and its application in the detection of internal winding short circuit faults in power transformers
CN112924905B (zh) 一种基于梯度电压高频振荡的变压器绕组绝缘评估方法
Wu et al. A new testing method for the diagnosis of winding faults in transformer
Jayasinghe et al. Investigations on sensitivity of FRA technique in diagnosis of transformer winding deformations
CN103809086A (zh) 基于频域Cole-Davidson模型的电力变压器受潮检测方法
Al-Ameri et al. Understanding the influence of power transformer faults on the frequency response signature using simulation analysis and statistical indicators
Purkait et al. Pattern classification of impulse faults in transformers by wavelet analysis
Yang et al. Frequency domain spectroscopy measurements of oil-paper insulation for energized transformers
Kraetge et al. Frequency response analysis—Status of the worldwide standardization activities
CN103792262A (zh) 基于频域Havriliak-Negami模型的电力变压器受潮检测方法
Setayeshmehr et al. On-line monitoring of transformer via transfer function
Lu et al. A novel online monitoring strategy for the localized grounding insulation defect of converter transformers based on converter switching states control
Sharma et al. Development of reference SFRA plot of transformer at design stage using high frequency modelling
CN114280433B (zh) 一种基于放大电路的变压器套管局部放电风险评估方法
Pinhas et al. On the development of transfer function method for fault identification in large power transformers on load
ElFaraskoury Experiences of Sweep Frequency Response Analyser for the Diagnosis of Transformer Winding Damage
CN113640703A (zh) 一种高频高压谐振点捕捉的绝缘状态测试方法
Habibi et al. The study of sweep frequency response analysis for inspecting the performance of transformer
Tahir et al. Optimization of FRA by an improved numerical winding model: Disk space variation
CN113156275B (zh) 一种考虑差异性接线方式的变压器绝缘诊断方法
Nurmanova et al. The Influence of External Parameters on Transformer Frequency Response Signature and Numerical Indices
Gite et al. Investigating mechanical integrity in power transformer using sweep frequency response analysis (SFRA)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant