CN112921193A - 通电控制稀土浸出液渗流方向的方法 - Google Patents

通电控制稀土浸出液渗流方向的方法 Download PDF

Info

Publication number
CN112921193A
CN112921193A CN202110097261.XA CN202110097261A CN112921193A CN 112921193 A CN112921193 A CN 112921193A CN 202110097261 A CN202110097261 A CN 202110097261A CN 112921193 A CN112921193 A CN 112921193A
Authority
CN
China
Prior art keywords
liquid collecting
liquid
rare earth
pipe
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110097261.XA
Other languages
English (en)
Other versions
CN112921193B (zh
Inventor
王高锋
朱建喜
何宏平
冉凌瑜
徐洁
朱润良
陈情泽
马灵涯
魏景明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Geochemistry of CAS
Original Assignee
Guangzhou Institute of Geochemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Geochemistry of CAS filed Critical Guangzhou Institute of Geochemistry of CAS
Priority to CN202110097261.XA priority Critical patent/CN112921193B/zh
Publication of CN112921193A publication Critical patent/CN112921193A/zh
Application granted granted Critical
Publication of CN112921193B publication Critical patent/CN112921193B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

本发明提供通电控制稀土浸出液渗流方向的方法,包括在稀土矿山体顶部开挖注液井,在稀土矿山体底部开挖集液孔,集液孔底部略高于基岩,并且在基岩底板的断层、裂隙和破碎带之上,将集液管插入集液孔内,集液管为导电材料制成,并连接电源阳极;在稀土矿山底部开挖集液沟,深度连通至集液管出液口;在集液沟出口布置阴极;在稀土矿山底部开挖集液池,集液池连接集液沟出口;集液池位置略低于集液沟,底部略低于基岩顶面或潜水层;当浸取母液运移至略高于基岩上方时,在阳极电极和阴极电极之间通直流电。本发明提供通电控制稀土浸出液渗流方向的方法,防止浸出液泄漏至地下水造成稀土损失,同时污染环境。

Description

通电控制稀土浸出液渗流方向的方法
技术领域
本发明属于采矿技术领域,尤其涉及通电控制稀土浸出液渗流方向的方法。
背景技术
离子吸附型稀土矿中稀土主要以离子态或水合羟基离子的形式存在,能够被其它电解质交换浸出。目前,离子吸附型稀土矿的主流开采技术是硫酸铵原地浸出工艺,该工艺在矿山表面布置注液系统,在采矿体外围(山脚)基岩出漏或基岩盖层较薄位置设置收液系统(集液沟),依靠重力作用,浸出液渗流至集液沟。但是,对于矿体底板埋藏较深,低于当地浸蚀基准面、与当地潜水面交会,底板起伏程度大,发育集中密集的渗漏性断裂裂隙带,底板开放性的矿床仅依靠自然重力收液的方法,将会使绝大部分母液流失。针对原地进出工艺浸出液渗漏的问题,提出了一系列人工强制封底收液措施:
汤洵忠提出“以水制水,以水封闭”的水封闭工艺(CN89105818.4)。在采场的上方、左方、右方设置注水井,往注水井中加水,使上、左、右三面形成与母液水位相同的水幕,使浸取液不能向外伸出,而只能沿向下的方向流入集液沟被收集。这种方法显著的缺点是需要消耗大量的水资源。
舒荣波提出采用注浆技术在发育不良的基岩底板构建防渗层(CN110055414A),防止浸出液通过基岩底板进入地下水造成稀土资源损失。这种方法需要在矿山底部实施钻孔和注浆,工艺复杂、工程量大、运行成本高,且容易造成山体崩塌。
发明内容
本发明的目的在于解决上述现有技术存在的缺陷,提供通电控制稀土浸出液渗流方向的方法,防止浸出液泄漏至地下水造成稀土损失,同时污染环境。
本发明采用如下技术方案:
通电控制稀土浸出液渗流方向的方法,包括:
开挖至少一个注液井,在稀土矿山顶部分别挖出不同深度的注液井;
开挖至少一个集液孔,在稀土矿山体底部开挖集液孔,集液孔的位置高于基岩0.1-0.5米,集液孔的位置并且在基岩底板的断层、裂隙和破碎带之上;
布置至少一个集液管,集液管插入集液孔内,集液管为导电材料制成,并充当阳极电极;
开挖至少一个集液沟,在稀土矿山底部开挖集液沟,集液沟的开设方向与集液孔的开设方向不同,集液沟与集液管的出液口相连通;
在集液沟的出口位置布置阴极电极;
在稀土矿山底部开挖集液池,集液池连接集液沟;
阳极电极与电源正极相连,阴极电极与电源负极相连;
向注液井中注入浸取剂,当浸取液运移至高于基岩上方0.1-0.5米时,在阳极电极和阴极电极之间通直流电。
其中,稀土矿山山体是指风化壳淋积型稀土矿山,包括山脚下的地面。
进一步的实施方式是,在稀土矿山底部开挖集液池,集液池连接集液沟,集液池位置低于集液沟0.1-3.0米,底部低于基岩顶面或潜水层0.1-2.5米。
进一步的实施方式是,浸取剂种类为铵盐或镁盐,所述铵盐为硫酸铵、氯化铵、硝酸铵中的一种或多种,所述镁盐为硫酸镁或氯化镁中的一种或多种。
进一步的实施方式是,集液管的形状为圆管状,顶部具有进液孔和两侧具有出液孔,集液管包裹过滤件,过滤件为滤布或滤网或土工布,出液孔大小与过滤件及顶部进液孔相同,进液孔直径是5-20厘米。
进一步的实施方式是,集液管的形状为方管状,顶部具有进液孔和两侧具有出液孔。
进一步的实施方式是,集液管的形状为方槽,两侧具有出液孔。
进一步的实施方式是,集液沟的开设方向与集液孔的开设方向相交。
进一步的实施方式是,集液沟的数量为4-20条,均连通至开设的集液孔的出液口。
进一步的实施方式是,集液管的长度为5-20米,集液管为圆管时的内径为10-80厘米。
进一步的实施方式是,集液管的数量为1根或多根,当集液管为多根时,从山体中心向两侧集液管上施加的电压逐次递减,集液管上施加的电压大小是5-200V。
本发明的有益效果:
1.不需要人工构建防渗层,能够减少浸取液泄漏,降低稀土损失,防止水土污染。
2.集液沟中收集到的母液水量降低了,部分浸出液泄漏至其基岩或进入潜水层,但母液浓度提高了,总的稀土收集量提高了,这是由于稀土和稀土水合离子在电场力作用下的定向电迁移和电渗,已经运移至阴极集液沟内,少部分随重力泄漏掉的水中已经几乎不含有稀土离子,较少的稀土母液、较高的稀土浓度有利于运输以及下一步稀土提纯。
附图说明
图1为本发明的一种实施方式的纵向剖面图;
图2为本发明集液管结构示意图;
图中:
1-注液井;
2-注液管;
3-浸析带;
4-集液管;
401-进液孔;
402-出液孔;
5-集液沟;
6-阴极电极;
7-集液池;
8-基岩;
9-集液孔。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的一些实施方式提供了通电控制稀土浸出液渗流方向的方法,包括:
在稀土矿山体顶部开挖注液井1,在稀土矿山体底部开挖集液孔9,集液孔9的位置高于基岩0.1-0.5米,集液孔9并且在基岩8底板的断层、裂隙和破碎带之上;
将集液管4插入集液孔9内,集液管4为导电材料制成,并充当阳极电极;
在稀土矿山底部开挖集液沟5,集液沟5的开设方向与集液孔9的开设方向不同,集液沟5与集液管4的出液口相连通;
在集液沟5的出口位置布置阴极电极6;
在稀土矿山底部开挖集液池7,集液池7连接集液沟5;
阳极电极与电源正极相连,阴极电极6与电源负极相连。
向注液井1中注入浸取剂,当浸取液运移至高于基岩8上方0.1-0.5米时,在阳极电极和阴极电极之间通直流电。
其中,稀土矿山山体是指风化壳淋积型稀土矿山,包括山脚下的地面。
上述方法中,研究人员发现,浸取后母液中的稀土主要以离子或羟基水合离子形式存在,直流电源作用下,电源正极和电源负极之间产生电场力,电场力能够驱动金属离子定向迁移,并带动与金属离子结合的水分子形成电渗流,电渗流的迁移方向和速度可由电源正负极方向和电场强度控制。
具体地,一些实施方式中,通电控制稀土浸出液渗流方向的方法具体包括:
一些实施方式中,在稀土矿山体顶部开挖注液井1包括:在稀土矿山山体顶部不同等高线位置开挖不同深度的注液井1,注液井1内可插入注液管2,注液管2的大小和深度需和注液井1相匹配,以使注液管2能够插入注液井1内。一些实施方式中,注液管2的管壁开设有多个出液孔,从而使得液体可以从多个出液孔进入到注液井内,进一步扩散到矿山山体中对稀土进行浸取。
一些实施方式中,在稀土矿山体底部开挖集液孔9包括:集液孔9的数量为多根,浸取稀土后得到的浸取液在重力作用下,移动至集液孔9内后,可以通过集液管4的顶部进液孔401进入,在电渗作用下金属离子结合的水分子形成电渗流,从集液管4两侧出液孔402流出,电渗流沿着阳极向阴极的方向运移至集液池7。
一些实施方式中,在集液孔9内设置集液管4包括:具体实施时,集液管4的形状可为圆管状,顶部具有进液孔401和两侧具有出液孔402,集液管4包裹过滤件,滤件为滤布或滤网或土工布,出液孔402大小与过滤件及顶部进液孔相同,进液孔401直径是5-20厘米,如图2所示。
或者具体实施时,集液管4的形状为方管状,顶部具有进液孔401和两侧具有出液孔402。或者具体实施时,集液管4的形状为方槽,不具有顶部进液孔401,但两侧具有出液孔402。具体实施时,集液管4的深度依据矿山的大小而定,一般设置为5-20米,集液管4为圆管状时的内径为10-80厘米,集液管4的数量为1根或多根,当集液管4为多根时,从山体中心向两侧集液管4上施加的电压逐次递减。集液管4上施加的电压大小是5-200V。
一些实施方式中,在电渗作用下,集液管4的浸出液向阴极电极6一侧流动,浸出液在集液孔9内汇聚进入集液管4内时,浸出液的流动容易造成土壤胶体颗粒的聚集或沉降,这样容易对造成顶部进液孔401的堵塞,因此在集液管4上设有过滤件,其能够有效过滤聚集的土壤胶体颗粒,从而保证开采过程中能够持续稳定的进行,过滤件可以预先安装固定在集液管4的管壁上,再将集液管4插入集液孔9内。
一些实施方式中,在稀土矿山底部开设集液沟5包括:具体实施时,集液沟5的开设方向与集液孔9的开设方向相交。具体实施时,集液沟5的数量为4-20条,均连通至纵向开设的集液管4的出液口,进而收集从阳极电极一侧流出的稀土浸出液。具体实施时,集液沟5还与更低处的集液池7相连通。具体实施时,集液池7位置略低于集液沟0.1-3.0米,集液池7底部略低于基岩顶面或潜水层0.1-2.5米。
稀土浸取液为本领域技术人员能够实现稀土提取的浸矿液。一些事实方式中,浸取液种类为铵盐或镁盐,所述铵盐为硫酸铵、氯化铵、硝酸铵中的一种或多种,所述镁盐为硫酸镁或氯化镁中的一种或多种。优选的,浸取剂浓度范围0.05-0.2mol/L,浸取剂用量为矿山中可交换稀土离子含量的1-5倍。
一些实施方式中,阳极电极与电源正极相连,阴极电极6与电源负极相连。当浸取液运移至高于基岩8上方0.1-0.5米时,在阳极电极和阴极电极之间通直流电。具体实施时,直流电源的电流密度J=20-200A/m2,浸取液渗流在电场力的作用下加速沿着阳极向阴极运移至集液池7内。利用电场力作用加速稀土离子迁移,使得稀土离子侧向迁移的速率足够大。浸取液中的稀土离子在自然重力条件下泄露至基岩裂隙或地下水之前,已经由阳极迁移至阴极至集液池,从而减少母液中稀土损失。
如图1所示,恰好剖切在一条集液沟5上,多座注液井1垂直于稀土矿山体表面的切面开挖,注液管2安装于其内部,在稀土矿山体底部开挖集液孔9,集液孔9位置略高于基岩8,并且在基岩8底板的断层、裂隙和破碎带之上,集液管4插入其内,集液管4为导电材料制成并充当阳极,在稀土矿山底部开挖集液沟5,深度连通至集液管4出液口,在集液沟5出口布置阴极电极,在稀土矿山底部开挖集液池7,集液池7连接集液沟5,集液池7位置略低于集液沟5,底部略低于基岩8顶面或潜水层。
下面结合具体矿山实例进行详细描述。
以下实施例选用的矿山为广东省梅州市仁居矿区。
实施例1
(1)矿山布置:在稀土矿山体上钻二十个注液井1;在山脚下打1条集液孔9,位于基岩8上方0.5米,并在集液孔9内设置集液管4;集液管4为导电塑料制成,连接电源阳极,集液管4为圆管状,内径为20厘米,进液孔401直径为10厘米;在稀土矿山底部挖开4条集液沟5,并连通至集液管4出口,在集液沟5出口位置设置电源阴极;在集液沟5下方3米设置集液池7。
(2)原地浸矿:向注液管2中注入摩尔浓度为0.05mol/L的硫酸铵溶液。
(3)母液收集:当浸取液运移至高于基岩8上方0.5米时,在阳极电极和阴极电极6之间加30V电势差,通直流电。使液体沿阳极集液管4向阴极集液沟5出口移动,最终导入集液池7收集稀土母液。
15天收集了母液4.38吨,稀土浸出率为65.3%。而以条件相同不采用通电控制稀土浸出液电渗流方向的传统方法,母液收集了4.75吨,稀土浸出率为37.1%。本实施例相比于传统方法,母液收集量降低了7.8%,但稀土浸出率提高了28.2%。其原因是母液中稀土离子沿电渗流方向从阳极集液管运移至阴极集液沟5出口。
实施例2
(1)矿山布置:在稀土矿山体上钻二十个注液井1;在山脚下打3条集液孔9,位于基岩上方0.1米,布置在中心1条,两侧各1条,并在集液孔9内设置集液管4;集液管4为导电塑料制成,连接电源阳极,集液管4为方管状,内径为30厘米,进液孔401直径为15厘米;在稀土矿山底部挖开6条集液沟5,并连通至集液管4出口,在集液沟5出口位置设置电源阴极6;在集液沟5下方3米设置集液池7。
(2)原地浸矿:向注液管中注入摩尔浓度为0.10mol/L的硫酸铵溶液。
(3)母液收集:当浸取液运移至高于基岩8上方0.5米时,从山体中心向两侧集液管4上施加的电压依次为60V和30V,通直流电。使液体沿阳极集液管4向阴极集液沟5出口移动,最终导入集液池7收集稀土母液。
15天收集了母液7.56吨,稀土浸出率为89.4%。而以条件相同不采用通电控制稀土浸出液电渗流方向的传统方法,母液收集了8.39吨,稀土浸出率为55.3%。本实施例相比于传统方法,母液收集量降低了9.9%,但稀土浸出率提高了34.1%。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.通电控制稀土浸出液渗流方向的方法,其特征在于,包括:
开挖注液井,在稀土矿山顶部分别挖出不同深度的注液井;
开挖集液孔,在稀土矿山体底部开挖集液孔,集液孔的位置高于基岩0.1-0.5米,并且在基岩底板的断层、裂隙和破碎带之上;
布置集液管,集液管插入集液孔内,集液管为导电材料制成,并充当阳极电极;
开挖集液沟,在稀土矿山底部开挖集液沟,集液沟的开设方向与集液孔的开设方向不同,集液沟与集液管的出液口相连通;
在集液沟的出口位置布置阴极电极;
阳极电极与电源正极相连,阴极电极与电源负极相连;
向注液井中注入浸取剂,当浸取液运移至高于基岩上方0.1-0.5米时,在阳极电极和阴极电极之间通直流电。
2.根据权利要求1所述的通电控制稀土浸出液渗流方向的方法,其特征在于,在稀土矿山底部开挖集液池,集液池连接集液沟,集液池位置低于集液沟0.1-3.0米,集液池底部低于基岩顶面或潜水层0.1-2.5米。
3.根据权利要求1所述的通电控制稀土浸出液渗流方向的方法,其特征在于,浸取剂种类为铵盐或镁盐,所述铵盐为硫酸铵、氯化铵、硝酸铵中的一种或多种,所述镁盐为硫酸镁或氯化镁中的一种或多种。
4.根据权利要求1所述的通电控制稀土浸出液渗流方向的方法,其特征在于,集液管的形状为圆管状,顶部具有进液孔和两侧具有出液孔,集液管包裹过滤件,过滤件为滤布或滤网或土工布,出液孔大小与过滤件及顶部进液孔相同,进液孔直径是5-20厘米。
5.根据权利要求1所述的通电控制稀土浸出液渗流方向的方法,其特征在于,集液管的形状为方管状,顶部具有进液孔和两侧具有出液孔。
6.根据权利要求1所述的通电控制稀土浸出液渗流方向的方法,其特征在于,集液管的形状为方槽,两侧具有出液孔。
7.根据权利要求1所述的通电控制稀土浸出液渗流方向的方法,其特征在于,集液沟的开设方向与集液孔的开设方向相交。
8.根据权利要求7所述的通电控制稀土浸出液渗流方向的方法,其特征在于集液沟的数量为4-20条,均连通至集液管的出液口。
9.根据权利要求4所述的通电控制稀土浸出液渗流方向的方法,其特征在于,集液管的长度为5-20米,集液管为圆管时的内径为10-80厘米。
10.根据权利要求1或9所述的通电控制稀土浸出液渗流方向的方法,其特征在于,集液管的数量为1根或多根,当集液管为多根时,从山体中心向两侧集液管上施加的电压逐次递减,集液管上施加的电压大小是5-200V。
CN202110097261.XA 2021-01-25 2021-01-25 通电控制稀土浸出液渗流方向的方法 Active CN112921193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110097261.XA CN112921193B (zh) 2021-01-25 2021-01-25 通电控制稀土浸出液渗流方向的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110097261.XA CN112921193B (zh) 2021-01-25 2021-01-25 通电控制稀土浸出液渗流方向的方法

Publications (2)

Publication Number Publication Date
CN112921193A true CN112921193A (zh) 2021-06-08
CN112921193B CN112921193B (zh) 2021-12-28

Family

ID=76167061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110097261.XA Active CN112921193B (zh) 2021-01-25 2021-01-25 通电控制稀土浸出液渗流方向的方法

Country Status (1)

Country Link
CN (1) CN112921193B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921180A (zh) * 2021-01-25 2021-06-08 中国科学院广州地球化学研究所 一种太阳能自供电稀土回收装置及其使用方法
CN115216653A (zh) * 2022-08-04 2022-10-21 中国科学院赣江创新研究院 一种利用电场强化风化壳淋积型稀土矿浸出的方法
CN117167010A (zh) * 2023-09-15 2023-12-05 中国科学院广州地球化学研究所 一种采用直流电开采稀土矿的方法及系统
CN117230327A (zh) * 2023-09-15 2023-12-15 中国科学院广州地球化学研究所 通电开采稀土矿的方法及通电开采稀土矿的导电注液管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402417A (zh) * 2018-12-21 2019-03-01 中国科学院广州地球化学研究所 通电开采稀土矿的方法
CN111944997A (zh) * 2020-08-06 2020-11-17 四川共拓岩土科技股份有限公司 一种水平孔电渗管道收液法
CN112011697A (zh) * 2020-09-24 2020-12-01 中国科学院广州地球化学研究所 通电开采稀土矿的方法及通电开采稀土矿的浸取剂

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402417A (zh) * 2018-12-21 2019-03-01 中国科学院广州地球化学研究所 通电开采稀土矿的方法
CN111944997A (zh) * 2020-08-06 2020-11-17 四川共拓岩土科技股份有限公司 一种水平孔电渗管道收液法
CN112011697A (zh) * 2020-09-24 2020-12-01 中国科学院广州地球化学研究所 通电开采稀土矿的方法及通电开采稀土矿的浸取剂

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921180A (zh) * 2021-01-25 2021-06-08 中国科学院广州地球化学研究所 一种太阳能自供电稀土回收装置及其使用方法
CN115216653A (zh) * 2022-08-04 2022-10-21 中国科学院赣江创新研究院 一种利用电场强化风化壳淋积型稀土矿浸出的方法
CN117167010A (zh) * 2023-09-15 2023-12-05 中国科学院广州地球化学研究所 一种采用直流电开采稀土矿的方法及系统
CN117230327A (zh) * 2023-09-15 2023-12-15 中国科学院广州地球化学研究所 通电开采稀土矿的方法及通电开采稀土矿的导电注液管

Also Published As

Publication number Publication date
CN112921193B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN112921193B (zh) 通电控制稀土浸出液渗流方向的方法
CN109402417B (zh) 通电开采稀土矿的方法
CN109469472A (zh) 一种离子型稀土矿原地浸取开采方法
CN104694746A (zh) 一种离子吸附型稀土原地浸矿的方法及其浸矿系统
CN108374097B (zh) 中国南方风化壳淋积型稀土矿浸出液截流工艺
CN111622206B (zh) 一种离子型稀土防渗帷幕构筑方法
CN111622269B (zh) 一种离子型稀土浅层地下水污染防控方法
CN110055414A (zh) 一种离子型稀土的渗流控制原位开采方法
CN106381405B (zh) 一种稀土矿山集液系统及方法
CN112921173A (zh) 一种南方离子型稀土原地浸矿的系统和方法
CN109593957A (zh) 一种离子型稀土矿原地浸取的主动抽提方法
CN102392129A (zh) 一种离子吸附型矿原地浸矿出液的方法和系统
CN109465290A (zh) 用于修复重金属污染土的系统和处理方法
CN106591605A (zh) 一种高效回收离子型稀土的深井收液方法
CN215163017U (zh) 一种南方离子型稀土原地浸矿系统及其带疏通器的收液管
CN105112652B (zh) 一种稀土矿原地浸出母液回收渠体结构
CN111944997B (zh) 一种水平孔电渗管道收液法
WO2018098845A1 (zh) 一种旋喷模块式稀土采矿方法
CN105256132A (zh) 一种稀土矿原地浸矿辅助渗漏装置及其使用方法
CN205170944U (zh) 一种稀土矿原地浸矿辅助渗漏装置
CN1208080A (zh) 离子型稀土原地浸矿工艺
CN115125404B (zh) 离子型稀土矿原地浸矿场渗漏液收集系统和方法
CN114575359B (zh) 一种弱渗透土层边坡地下水灾害治理方法
CN217840065U (zh) 一种深大基坑降水装置
CN107058767A (zh) 一种提高低渗透砂岩型铀矿层渗透性的化学方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant