CN1129209A - Process for production of beta-jonone - Google Patents

Process for production of beta-jonone Download PDF

Info

Publication number
CN1129209A
CN1129209A CN95111793A CN95111793A CN1129209A CN 1129209 A CN1129209 A CN 1129209A CN 95111793 A CN95111793 A CN 95111793A CN 95111793 A CN95111793 A CN 95111793A CN 1129209 A CN1129209 A CN 1129209A
Authority
CN
China
Prior art keywords
reactor
jononeionone
pseudo ionone
ionone
reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95111793A
Other languages
Chinese (zh)
Other versions
CN1037343C (en
Inventor
陶凤岗
方屹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN95111793A priority Critical patent/CN1037343C/en
Publication of CN1129209A publication Critical patent/CN1129209A/en
Application granted granted Critical
Publication of CN1037343C publication Critical patent/CN1037343C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/14Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by doubly-bound oxygen atoms
    • C07C403/16Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by doubly-bound oxygen atoms not being part of —CHO groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The production method of beta-ionone at room temp. includes the following steps: the pseudo-ionone is diluted by using an appropriately-proportioned organic solvent, then is dropped in a reactor along with a certain volume-proportioned sulphuric acid and at the same time the reactant is treated by ultrasonic radiation, and after the reactant is flowed out from the reactor, said reaction is stopped by glacial water. Said invention is simple in method and equipment, easy to control, its product yield is up to 65-85% and the beta-ionone content of its product is up to 92-96%.

Description

A kind of β-process for production of beta-jonone
The invention belongs to chemical technology field, is a kind of production method of β-jononeionone.
β-jononeionone is a kind of quite useful spices, also is the basic raw material of producing vitamin A on the medicine industry, and it is that cyclisation forms under acidic conditions after being raw material and condensation of acetone generation pseudo ionone by citral.But because the variation of position of double bond in the molecule, have α-, β-and γ-three kind of isomer.Wherein based on α-and β-.
Figure A9511179300031
The product of cyclization is α-and the mixture of β-jononeionone normally.Therefore how to control the cyclisation reaction conditions, improve the content of β-jononeionone in the product, to satisfy perfume industry.Particularly medicine industry is a key point in the production technique to the requirement of β-jononeionone.
At present, β-jononeionone has three kinds of main production methods.The one, with pseudo ionone-35 ℃~-5 ℃ down directly and strong sulfuric acid response make.Because reaction need be carried out at low temperatures, and reacts very exothermic, temperature is restive, and productive rate is on the low side, the content of β-jononeionone not high (90~92%), and the content of α-isomer higher (3~5%).Deficiency at this method, early seventies has had improve one's methods (German Patent Ger 2023294, co7c 175/00), in reaction system, add appropriate solvent after, temperature of reaction can be brought up to-15~-5 ℃, and the yield of product and quality have certain improvement.But this method still needs low-temp reaction, uses a large amount of solvents in the reaction, increases certain difficulty to production.The eighties has the people propose a kind ofly at room temperature to contact the method for producing β-jononeionone by pseudo ionone and sulfuric acid by moment (patent No. Ger 3328440 mid-term, co7c 49/21), but this method needs special equipment, and condition control acquires a certain degree of difficulty, so be not widely adopted.
The object of the present invention is to provide the production method that a kind of technology that can implement at room temperature condition is simple, control convenient, that productive rate is higher β-jononeionone.
The production method step of β-jononeionone that the present invention proposes is as follows, and pseudo ionone with polyhalohydrocarbon class organic solvent diluting, is splashed into reactor respectively with sulfuric acid, and reactant is used the frozen water stopped reaction after flowing out reactor.When wherein pseudo ionone and sulfuric acid splash into reactor, reactant is carried out ultrasonic radiation with ultrasonic generator.Reactant carries out aftertreatment after with the frozen water stopped reaction, promptly tells organic layer and with the aqueous sodium carbonate neutralization, after organism removed and desolvates, underpressure distillation promptly got β-jononeionone.Said process all at room temperature carries out.
Among the present invention, pseudo ionone can fully contact in the short period of time with sulfuric acid, is main points guaranteeing abundant reaction, improve productive rate.Because vitriol oil proportion is bigger, false violet is diluted the requirement that is difficult to reach expection with common organic solvent.Therefore, present method has been selected the bigger many halons organic solvent of proportion for use, as methylene dichloride, chloroform, trichloroethane, tetracol phenixin etc.The usage quantity of solvent cut and reaction times and productive rate have much relations.The ratio of common solvent and pseudo ionone (volume ratio) is with 1~5: 1 is comparatively suitable.Solvent load is too small, and then the touch opportunity of the vitriol oil and pseudo ionone increases, and help shortening the reaction times, but reaction is fierce, and side reaction increases, and influences reaction yield; Solvent load is excessive, though reaction yield has raising, needs the long reaction times, and the content of α-jononeionone can increase to some extent in the product.
Among the present invention, pseudo ionone and vitriolic ratio are as the criterion can make the complete cyclisation of pseudo ionone.Because reaction times of present method is extremely very brief, reacts completely for making, it is certain excessive to need sulfuric acid to have.Generally the ratio (volume ratio) with sulfuric acid and pseudo ionone is controlled at 1~4: 1 is advisable.
Adopt the ultrasonic wave radiation, main effect is to increase pseudo ionone to contact with vitriolic, promotes liquid-liquid biphasic reaction.In the selection of ultrasonic generator, power is the main factor of considering, and frequency is little to the influence of reaction.For example, adopt the producer of 16kHz and 33kHz, reaction result does not have significant difference, and the variation of power can cause the remarkable difference of reacting, with the producer of less power such as 40W, need to reduce the flow of raw material and increase the reaction times, and adopt the bigger producer of power to help the fully mixed of reactant, shorten the residence time of reactant in reactor, more favourable to reaction.Generally can select the ultrasonic generator of 50~250W for use.
Ultrasonic wave is to the radiated time of reactant, and promptly whether the residence time of reactant in reactor is as the criterion fully with the pseudo ionone cyclization in principle.It is subjected to the model, power, the volume of reactor, the influence of various factors such as flow of reactant of used ultra-sonic generator.After above-mentioned factor was adjusted to stationary state, then stop (super acoustic emanation) time of reactant in reactor was short more good more.Because, increase the reaction times, will cause increasing of α-isomer.Usually reactant was controlled at for 1-5 seconds through the ultrasonic wave radiated time.Use method provided by the invention, the productive rate of β-jononeionone is 65~85%, and the content of β-jononeionone is 92~96%, 1~3% of the content of α-jononeionone, if condition is controlled well, α-isomer can be controlled in below 1%.
Advantage of the present invention is that single pot of original Jian Xieshi production technique is changed into the canalization continuous production processes, the reaction that needed originally to carry out under the deep cooling condition is become at ambient temperature carry out.Equipment is simple, easy to operate, easy control of reaction conditions, productive rate height, product quality are good, industrial a small amount of investment of need β-violet skill ketone that promptly can be mass-produced.Conversion unit generally comprises the groove that holds the pseudo ionone and the vitriol oil, reactor, ultrasonic generator, frozen water pot etc.Reaction unit as shown in Figure 1.Header tank 1 and 2 is respectively applied for and holds the pseudo ionone diluting soln and the vitriol oil, and reactor 3 places ultrasonic cleaner 4.Pseudo ionone groove and sulfuric acid tank have the Guan Tongyu reactor to be communicated with respectively, and the centre has valve control respectively, and reactor bottom has pipeline to be communicated with frozen water pot 5, and there is valve control the centre, so that make reactant flow into frozen water pot, stopped reaction.Product through after the aftertreatment in the fractionation pot underpressure distillation get finished product.
Embodiment 1
Reaction unit is seen accompanying drawing, the output rating of ultrasonic generator is 50W, operating frequency 33kHz, be respectively the vitriol oil (1000ml) and pseudo ionone chloroformic solution (the 600g pseudo ionone is dissolved in the 600ml chloroform) in the header tank, the 100ml reactor places ultra-sonic generator, behind the unlatching ultrasonic wave rattler, simultaneously balancedly splash in the reactor sulfuric acid and pseudo ionone solution, and immediately flow out, use the frozen water stopped reaction, above-mentioned reactant is controlled in 4-5 minutes and drips off.
After reaction is finished, tell organic layer, water, sodium carbonate solution and water washing respectively, organic layer removes the back underpressure distillation of desolvating and obtains β-jononeionone, productive rate 70%, bp 10125-120 ℃, n D 201.5200. analysis of hplc, α in the product-jononeionone content is 95.5%, α-jononeionone<1%.
Embodiment 2
Reaction unit and operation are with example 1.The 600ml pseudo ionone is dissolved in the 2500ml chloroform, and the vitriol oil is 1500ml, drips off in 10 minutes, and the productive rate of β-jononeionone is 82%, n D 201.5196.The content of β-jononeionone is 92.8% in the product, and α-jononeionone is 2.5%.
Fig. 1 is a reaction unit

Claims (5)

1. method of producing β-jononeionone, with pseudo ionone with the bigger polyhalohydrocarbon class organic solvent diluting of proportion, splash into reactor respectively with sulfuric acid, after reactant flows out reactor, use the frozen water stopped reaction, and, when it is characterized in that pseudo ionone and sulfuric acid splash into reactor, reactant is carried out the ultrasonic wave radiation with ultrasonic generator through aftertreatment.
2. the method for production according to claim 1 β-jononeionone is characterized in that used organic solvent is one or more of methylene dichloride, chloroform, trichloroethane, tetracol phenixin, and the volume ratio of solvent and pseudo ionone is 1~5: 1.
3. the method for production β-jononeionone according to claim 1 and 2, the volume ratio that it is characterized in that sulfuric acid and pseudo ionone is 1~4: 1.
4. according to the method for the described production of claim 1-3 β-jononeionone, it is characterized in that the ultrasonic generator power that uses is 50~250W.
5. device of producing β-jononeionone, by hold pseudo ionone and vitriolic header tank, reactor, ultrasonic generator respectively, the frozen water pot is formed, it is characterized in that described two header tanks have pipeline to be communicated with reactor respectively, reactor is arranged in ultrasonic cleaner, reactor bottom has pipeline to be communicated with the frozen water pot, and each connecting pipe is equipped with by-pass valve control.
CN95111793A 1995-10-05 1995-10-05 Process for production of beta-jonone Expired - Fee Related CN1037343C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN95111793A CN1037343C (en) 1995-10-05 1995-10-05 Process for production of beta-jonone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN95111793A CN1037343C (en) 1995-10-05 1995-10-05 Process for production of beta-jonone

Publications (2)

Publication Number Publication Date
CN1129209A true CN1129209A (en) 1996-08-21
CN1037343C CN1037343C (en) 1998-02-11

Family

ID=5079038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95111793A Expired - Fee Related CN1037343C (en) 1995-10-05 1995-10-05 Process for production of beta-jonone

Country Status (1)

Country Link
CN (1) CN1037343C (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100513400C (en) * 2006-09-13 2009-07-15 湖南中烟工业有限责任公司 Use of hydroxyl cupric phosphate in synthesizing 5,6-epoxy-bata-ionone and method of synthesizing 5,6-epoxy-bata-ionone
CN106496006A (en) * 2016-09-30 2017-03-15 万华化学集团股份有限公司 A kind of method for preparing β ionoionone using modified functionalized acidic ionic liquid
CN106673980A (en) * 2016-12-24 2017-05-17 上海弗鲁克科技发展有限公司 Device and method for continuously producing beta-ionone by using microchannel
CN108329200A (en) * 2018-03-21 2018-07-27 万华化学集团股份有限公司 A method of preparing alpha, beta-lonone by raw material of pseudoionone
CN109970535A (en) * 2019-04-23 2019-07-05 上海应用技术大学 A kind of preparation method of alpha, beta-lonone
CN109988064A (en) * 2019-04-28 2019-07-09 上海应用技术大学 A kind of pseudo ionone selectivity cyclisation method
CN113372210A (en) * 2021-06-08 2021-09-10 万华化学集团股份有限公司 Preparation method of beta-ionone
CN113603577A (en) * 2021-07-30 2021-11-05 万华化学集团股份有限公司 Fragrance-controllable beta-ionone and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3328440A1 (en) * 1983-08-06 1985-02-21 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING JONONS
JPS6057530A (en) * 1983-09-07 1985-04-03 Hitachi Maxell Ltd Magnetic recording medium

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100513400C (en) * 2006-09-13 2009-07-15 湖南中烟工业有限责任公司 Use of hydroxyl cupric phosphate in synthesizing 5,6-epoxy-bata-ionone and method of synthesizing 5,6-epoxy-bata-ionone
CN106496006B (en) * 2016-09-30 2019-07-23 万华化学集团股份有限公司 A method of alpha, beta-lonone is prepared using modified functionalized acidic ionic liquid
CN106496006A (en) * 2016-09-30 2017-03-15 万华化学集团股份有限公司 A kind of method for preparing β ionoionone using modified functionalized acidic ionic liquid
CN106673980A (en) * 2016-12-24 2017-05-17 上海弗鲁克科技发展有限公司 Device and method for continuously producing beta-ionone by using microchannel
CN108329200A (en) * 2018-03-21 2018-07-27 万华化学集团股份有限公司 A method of preparing alpha, beta-lonone by raw material of pseudoionone
CN108329200B (en) * 2018-03-21 2021-03-09 万华化学集团股份有限公司 Method for preparing beta-ionone by using pseudoionone as raw material
CN109970535A (en) * 2019-04-23 2019-07-05 上海应用技术大学 A kind of preparation method of alpha, beta-lonone
CN109970535B (en) * 2019-04-23 2021-12-24 上海应用技术大学 Preparation method of beta-ionone
CN109988064A (en) * 2019-04-28 2019-07-09 上海应用技术大学 A kind of pseudo ionone selectivity cyclisation method
CN109988064B (en) * 2019-04-28 2021-11-19 上海应用技术大学 Selective cyclization method of pseudo ionone
CN113372210A (en) * 2021-06-08 2021-09-10 万华化学集团股份有限公司 Preparation method of beta-ionone
CN113372210B (en) * 2021-06-08 2022-04-19 万华化学集团股份有限公司 Preparation method of beta-ionone
CN113603577A (en) * 2021-07-30 2021-11-05 万华化学集团股份有限公司 Fragrance-controllable beta-ionone and preparation method thereof
CN113603577B (en) * 2021-07-30 2022-09-20 万华化学集团股份有限公司 Fragrance-controllable beta-ionone and preparation method thereof

Also Published As

Publication number Publication date
CN1037343C (en) 1998-02-11

Similar Documents

Publication Publication Date Title
Cortese et al. Palladium-catalyzed reductions of. alpha.,. beta.-unsaturated carbonyl compounds, conjugated dienes, and acetylenes with trialkylammonium formates
Johnson Nonenzymic biogenetic-like olefinic cyclizations
CN1037343C (en) Process for production of beta-jonone
MXPA01011259A (en) Reactions using lewis acids
CN105669779A (en) Synthesis method for increasing Pd content of metal organic framework based on Zr(IV) ions
CN102864021A (en) Epoxidation vegetable oil preparation method
Acton et al. Potential prophylactic antitumor activity of retinylidene 1, 3-diketones
BG104545A (en) Method for producing oxidic catalysts containing copper
CN109293515A (en) A kind of new process using micro passage reaction synthesis ketone musk
CN201785324U (en) Reactive system for producing 2-ethyl hexenoicaldehyde from butyric aldehyde
CN1202065C (en) Industrial method for preparing beta-ionone
House et al. Reactions involving electron transfer. VIII. Reaction of trityllithium with enones
CN110229058A (en) A kind of method that lactic acid catalyzed conversion prepares propionic acid
CN100564340C (en) (2E, 4E)-preparation method of 2-methyl-6-oxo-2
Ram et al. Catalyst type and concentration dependence in catalytic transfer hydrogenolysis of α, β-unsaturated carbonyls and nitriles via ammonium formate
CN100374418C (en) Synthesis of caprolactam and its oligomer
Tegmo‐Larsson et al. The Oxa‐di‐π‐methane Rearrangement of 1‐Phenyl‐3‐acetylcyclopentene: Identification of the Reactive Triplet as the Localized Styrene π, π*‐State. Preliminary Communication
Chen et al. Photoproduction of hydrogen and 1, 2-propanediol from aqueous methanol and ethanol solution catalysed by ZnS
WO2003076558A3 (en) Method for the continuous production of biomethanol diesel
CN106928038A (en) A kind of method that hydrogen peroxide normal temperature oxidation cyclohexanol prepares cyclohexanone
Cookson et al. Synthesis of α-damascone [trans-1-(2, 6, 6-trimethylcyclohex-2-enyl) but-2-en-1-one] by a catalysed Diels–Alder reaction with inverse electron demand
CN1373014A (en) Non-acid wire drawing technology and its wire drawing powder and machine
CN87105072A (en) A kind of preparation method of alkaline electrogalvanize bright agent
Inoue et al. The Photochemical Reaction of Benzo [c] cinnoline. I. The Photoreduction and Subsequent Reactions in Acidified Alcohols
US3497560A (en) Method of producing aldehydes in the vitamin a series

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee