CN112907095A - 基于改进bp神经网络的火电机组智能泄漏监测方法 - Google Patents

基于改进bp神经网络的火电机组智能泄漏监测方法 Download PDF

Info

Publication number
CN112907095A
CN112907095A CN202110245249.9A CN202110245249A CN112907095A CN 112907095 A CN112907095 A CN 112907095A CN 202110245249 A CN202110245249 A CN 202110245249A CN 112907095 A CN112907095 A CN 112907095A
Authority
CN
China
Prior art keywords
thermal power
neural network
generating unit
power generating
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110245249.9A
Other languages
English (en)
Inventor
刘桂生
赵重阳
石祥文
秦永新
柳倩
张禹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHN Energy Jianbi Power Plant
Original Assignee
CHN Energy Jianbi Power Plant
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHN Energy Jianbi Power Plant filed Critical CHN Energy Jianbi Power Plant
Priority to CN202110245249.9A priority Critical patent/CN112907095A/zh
Publication of CN112907095A publication Critical patent/CN112907095A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • G06Q10/063114Status monitoring or status determination for a person or group
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

本发明公开了基于改进BP神经网络的火电机组智能泄漏监测方法。该方法首先针对经典BP算法作出改进,提出加动量算法的三层BP算法神经网络,其次收集火电机组目标系统的运行历史大数据,主要包括相关系统的热力学参数、环境温度及机组负荷,作为改进BP神经网络的训练样本,训练完成后根据火电机组目标系统当前运行数据,判别一个或多个高低能级系统之间是否发生泄漏,当泄露发生时发出警报提示。本发明可以自动实时在线监测一个或多个高低能级系统之间是否内漏,从而消除火电机组运行中由于泄漏而长期存在的能级耗损,确保机组安全经济运行。

Description

基于改进BP神经网络的火电机组智能泄漏监测方法
技术领域
本发明涉及火电机组自动监测领域,尤其涉及基于改进BP神经网络的火电机组智能泄漏监测技术,属于热工控制领域。
背景技术
国内在管系泄漏监测方面主要采用声发射、质量平衡、压力分析等阀门检漏技术,实际应用效果不理想。国内外对热力系统泄漏监测技术的研究主要集中在阀门检漏,很少考虑管道及其连接件的泄漏和影响,也很少考虑加装各种测点及装置获取泄漏状态的特征量。热力系统泄漏是两个或多个不同能级系统之间的工质及能量交换过程,由于泄漏的存在,相关热力系统之间的热力参数会发生变化,热力参数的变化是时间的函数。现有的泄漏技术在系统性方面考虑不足,在泄漏特征信号的研究上也忽视了时空的连续性,导致现有泄漏技术难于取得理想的实际效果。
本发明对火电机组复杂热力系统中不同能级系统之间的泄漏监测技术开展研究,提出基于改进BP神经网络的火电机组智能泄漏监测技术。研究在火电机组现有热力系统及设备的边界下,一个或多个高低能级系统之间发生泄漏时,系统相关热力参数之间数学关系及随时间的变化规律,在此基础上,设计开发基于火电机组大数据分析和热力平衡的复杂热力系统泄漏智能监测系统,实现对火电机组多能级系统的泄漏进行有效监测。
发明内容
技术问题:本发明的目的是提供一种基于改进BP神经网络的火电机组智能泄漏监测方法,有效监测火电机组复杂热力系统的能级流失状况,消除火电机组运行中由于泄漏而长期存在的能级耗损,确保机组安全经济运行。
技术方案:为实现上述技术目标,本发明提出基于改进BP神经网络的火电机组智能泄漏监测方法,使得自动监测准确率提高。
本发明的基于改进BP神经网络的火电机组智能泄漏监测方法如下:
步骤一:基于经典BP算法的最速下降法学习规则,引入动量项,加速BP算法收敛,从而改进BP神经网络的模式识别能力;
步骤二:构建x个输入2输出的三层BP网络,收集火电机组目标系统过去一年的运行历史大数据,剔除机组停机及采集异常的数据,作为三层BP神经网络的学习样本,在火电机组现有热力系统及设备的边界下,在一个或多个高低能级系统之间发生泄漏时,训练BP神经网络对系统相关热力参数之间数学关系及随时间变化规律的感知能力;
步骤三:根据火电机组目标系统当前运行数据,判别一个或多个高低能级系统之间是否发生泄漏。
其中:
步骤一所述的引入动量项,加速BP算法收敛,即:
w(n0+1)=w(n0)+η(n0)d(n0)+αΔw(n0),
其中,w(n0)、w(n0+1)分别为n0、n0+1时刻的权值,η(n0)为n0时刻的学习率,
Figure BDA0002963865010000021
EA为误差,α为动量因子,α一般取值0.1~0.8,
Aw(n0)=w(n0)-w(n0-1)=η(n0-1)d(n0-1),这时权值修正量加上了有关上一时刻权值修改方向的记忆。
步骤二所述构建x个输入2输出的三层BP网络,网络的隐节点数选为10,网络输入层的输入个数x,对应目标系统的所需热力学参数温度、压力、环境温度以及机组负荷,神经网络隐层采用双极性Sigmoid激活函数,输出层采用单极性Sigmoid激活函数,隐节点数取10,学习率η=0.1,目标误差ε=0.01,最大学习次数10000,初始权值和偏移取[-0.1,0.1]内随机值,令系统发生泄漏的样本输出为[0 1],系统未发生泄漏的样本输出为[1 0]。
步骤三所述判别一个或多个高低能级系统之间是否发生泄漏,是将火电机组目标系统当前运行数据送入训练完成后的三层BP神经网络,判别一个或多个高低能级系统之间是否发生泄漏,当BP网络输出为[1 0]时,判定泄露未发生;当BP网络输出为[0 1]时,判定泄露发生,当泄露发生时发出警报提示。
有益效果:本发明利用改进的BP神经网络,基于机组目标系统的历史运行大数据,可以自动实时在线监测一个或多个高低能级系统之间是否内漏,从而消除火电机组运行中由于泄漏而长期存在的能级耗损,确保机组安全经济运行。
附图说明
图1为多能级热力系统分割示意图。
图中有:P1为系统1的压力,P2为系统2的压力,Pn为系统n的压力,t1为系统1的温度,t2为系统2的温度,tn为系统n的温度。
具体实施方式
首先根据火电机组的典型设计边界,结合泄漏监测要求及目的,确定泄漏监测技术所研究的热力系统的范围。监测系统主要涵盖:主、再蒸汽及其疏放水系统、高低旁系统、清洁疏水系统、真空系统、高排通风系统、再热器安全门等。对确定范围内的高低能级系统布置方式、隔离方式、测点布置及外部环境等系统边界进行分析,充分考虑在线数据的完备性及相关性,将所研究复杂热力系统分割成不同特征的子块。图1为上述多能级热力系统分割示意图。以图1中的系统1为例,所需热力学参数为温度和压力。
该智能泄漏监测方法如下:
步骤一:基于经典BP算法的最速下降法学习规则,引入动量项,加速BP算法收敛,从而改进BP神经网络的模式识别能力;
步骤二:构建x个输入2输出的三层BP网络,收集火电机组目标系统过去一年的运行历史大数据,剔除机组停机及采集异常的数据,作为三层BP神经网络的学习样本,在火电机组现有热力系统及设备的边界下,在一个或多个高低能级系统之间发生泄漏时,训练BP神经网络对系统相关热力参数之间数学关系及随时间变化规律的感知能力;
步骤三:根据火电机组目标系统当前运行数据,判别一个或多个高低能级系统之间是否发生泄漏。
考虑引入动量项,加速BP算法收敛,即:
w(n0+1)=w(n0)+η(n0)d(n0)+αΔw(n0),
其中,w(n0)、w(n0+1)分别为n0、n0+1时刻的权值,η(n0)为n0时刻的学习率,
Figure BDA0002963865010000031
EA为误差,α为动量因子,动量因子α一般取值0.1~0.8。
Δw(n0)=w(n0)-w(n0-1)=η(n0-1)d(n0-1),这时权值修正量加上了有关上一时刻权值修改方向的记忆。
基于改进的BP算法,构建4输入2输出的三层BP网络,网络的隐节点数选为10,网络输入层的输入为目标系统的所需热力学参数(温度、压力)、环境温度以及机组负荷,神经网络隐层采用双极性Sigmoid激活函数,输出层采用单极性Sigmoid激活函数,隐节点数取10,学习率η=0.1,目标误差ε=0.01,最大学习次数10000,初始权值和偏移取[-0.1,0.1]内随机值,令系统发生泄漏的样本输出为[0 1],系统未发生泄漏的样本输出为[1 0]。收集火电机组目标系统过去一年的运行历史大数据,剔除机组停机及采集异常的数据,作为三层BP神经网络的学习样本。在火电机组现有热力系统及设备的边界下,在一个或多个高低能级系统之间发生泄漏时,训练BP神经网络对系统相关热力参数之间数学关系及随时间变化规律的感知能力。
将火电机组目标系统当前运行数据送入训练完成后的三层BP神经网络,当BP网络输出为[1 0]时,判定系统1泄露未发生;当BP网络输出为[01]时,判定系统1泄露发生,并发出警报提示。

Claims (4)

1.一种基于改进BP神经网络的火电机组智能泄漏监测方法,其特征在于该智能泄漏监测方法如下:
步骤一:基于经典BP算法的最速下降法学习规则,引入动量项,加速BP算法收敛,从而改进BP神经网络的模式识别能力;
步骤二:构建x个输入2输出的三层BP网络,收集火电机组目标系统过去一年的运行历史大数据,剔除机组停机及采集异常的数据,作为三层BP神经网络的学习样本,在火电机组现有热力系统及设备的边界下,在一个或多个高低能级系统之间发生泄漏时,训练BP神经网络对系统相关热力参数之间数学关系及随时间变化规律的感知能力;
步骤三:根据火电机组目标系统当前运行数据,判别一个或多个高低能级系统之间是否发生泄漏。
2.根据权利要求1所述的基于改进BP神经网络的火电机组智能泄漏监测方法,其特征在于:步骤一所述的引入动量项,加速BP算法收敛,即:
w(n0+1)=w(n0)+η(n0)d(n0)+αΔw(n0),
其中,w(n0)、w(n0+1)分别为n0、n0+1时刻的权值,η(n0)为n0时刻的学习率,
Figure FDA0002963863000000011
EA为误差,α为动量因子,α一般取值0.1~0.8,
Δw(n0)=w(n0)-w(n0-1)=η(n0-1)d(n0-1),这时权值修正量加上了有关上一时刻权值修改方向的记忆。
3.根据权利要求1所述的基于改进BP神经网络的火电机组智能泄漏监测方法,其特征在于:步骤二所述构建x个输入2输出的三层BP网络,网络的隐节点数选为10,网络输入层的输入个数x,对应目标系统的所需热力学参数温度、压力、环境温度以及机组负荷,神经网络隐层采用双极性Sigmoid激活函数,输出层采用单极性Sigmoid激活函数,隐节点数取10,学习率η=0.1,目标误差ε=0.01,最大学习次数10000,初始权值和偏移取[-0.1,0.1]内随机值,令系统发生泄漏的样本输出为[0 1],系统未发生泄漏的样本输出为[1 0]。
4.根据权利要求1所述的基于改进BP神经网络的火电机组智能泄漏监测方法,其特征在于:步骤三所述判别一个或多个高低能级系统之间是否发生泄漏,是将火电机组目标系统当前运行数据送入训练完成后的三层BP神经网络,判别一个或多个高低能级系统之间是否发生泄漏,当BP网络输出为[1 0]时,判定泄露未发生;当BP网络输出为[0 1]时,判定泄露发生,当泄露发生时发出警报提示。
CN202110245249.9A 2021-03-05 2021-03-05 基于改进bp神经网络的火电机组智能泄漏监测方法 Pending CN112907095A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110245249.9A CN112907095A (zh) 2021-03-05 2021-03-05 基于改进bp神经网络的火电机组智能泄漏监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110245249.9A CN112907095A (zh) 2021-03-05 2021-03-05 基于改进bp神经网络的火电机组智能泄漏监测方法

Publications (1)

Publication Number Publication Date
CN112907095A true CN112907095A (zh) 2021-06-04

Family

ID=76107814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110245249.9A Pending CN112907095A (zh) 2021-03-05 2021-03-05 基于改进bp神经网络的火电机组智能泄漏监测方法

Country Status (1)

Country Link
CN (1) CN112907095A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008992A (zh) * 2006-12-30 2007-08-01 北京市劳动保护科学研究所 基于人工神经网络的管道泄漏的检测方法
CN104061445A (zh) * 2014-07-09 2014-09-24 中国石油大学(华东) 一种基于神经网络的管道泄漏检测方法
CN105546352A (zh) * 2015-12-21 2016-05-04 重庆科技学院 基于声音信号的天然气管道微泄漏检测方法
US20190114511A1 (en) * 2017-10-16 2019-04-18 Illumina, Inc. Deep Learning-Based Techniques for Training Deep Convolutional Neural Networks
CN109709911A (zh) * 2018-12-11 2019-05-03 上海电力学院 一种火电机组循环工质外漏在线测量方法及测量系统
CN111237473A (zh) * 2020-03-06 2020-06-05 西华大学 一种密封装置的密封性能控制系统
KR20210010194A (ko) * 2019-07-19 2021-01-27 울산과학기술원 딥러닝 기반의 화력 발전소 재과열기 튜브의 누설 감지 방법 및 이를 수행하는 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008992A (zh) * 2006-12-30 2007-08-01 北京市劳动保护科学研究所 基于人工神经网络的管道泄漏的检测方法
CN104061445A (zh) * 2014-07-09 2014-09-24 中国石油大学(华东) 一种基于神经网络的管道泄漏检测方法
CN105546352A (zh) * 2015-12-21 2016-05-04 重庆科技学院 基于声音信号的天然气管道微泄漏检测方法
US20190114511A1 (en) * 2017-10-16 2019-04-18 Illumina, Inc. Deep Learning-Based Techniques for Training Deep Convolutional Neural Networks
CN109709911A (zh) * 2018-12-11 2019-05-03 上海电力学院 一种火电机组循环工质外漏在线测量方法及测量系统
KR20210010194A (ko) * 2019-07-19 2021-01-27 울산과학기술원 딥러닝 기반의 화력 발전소 재과열기 튜브의 누설 감지 방법 및 이를 수행하는 장치
CN111237473A (zh) * 2020-03-06 2020-06-05 西华大学 一种密封装置的密封性能控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何晓云;罗泽蓉;李明悦;李亚斌;赵盛萍;: "基于BP神经网络的空气质量建模分析", 山东工业技术, no. 17, pages 239 - 240 *

Similar Documents

Publication Publication Date Title
CN112033463B (zh) 一种核动力设备状态评估与预测一体化方法和系统
CN109858125B (zh) 一种基于径向基神经网络的火电机组供电煤耗计算方法
CN113269041B (zh) 一种应用于同期装置的信号异常检测方法
CN112907095A (zh) 基于改进bp神经网络的火电机组智能泄漏监测方法
Tarifa et al. Fault diagnosis for a MSF using a SDG and fuzzy logic
CN109635430A (zh) 电网输电线路暂态信号监测方法和系统
Wu et al. Hybrid deep network based multi-source sensing data fusion for fdia detection in smart grid
Wang et al. The research of fire detector based on information fusion technology
Gang et al. Fault warning method based on extreme learning regression and fuzzy reasoning
Deng et al. Fault diagnosis technology based on the fusion of neural network and fuzzy Logic
Shiqi et al. Detection of Bad Data and False Data Injection Based on Back-Propagation Neural Network
Zou et al. Fault diagnosis of shield machine based on SOM-BP neural network fusion
Sun et al. Research on Fault Diagnosis of Reactor Coolant Accident in Nuclear Power Plant Based on Radial Basis Function and Fuzzy Neural Network
Dinh et al. Implementation of Digital Twin-Assisted Condition Monitoring and Fault Diagnosis for Wind Turbines
Bae et al. Predictive fault detection and diagnosis of nuclear power plant using the two-step neural network models
Cao et al. Study on the determination method of the normal value of relative internal efficiency of the last stage group of steam turbine
Hu et al. An Artificial Neural Network Model for Monitoring Real-Time Parameters and Detecting Early Warnings in Induced Draft Fan
Lu et al. Elevator Error Diagnosis Method Based on Neural Network Model
han Kim et al. Detection of Boiler Tube Leakage Fault in a Thermal Power Plant Using K-means Algorithm based on Auto-Associative Neural Network
Wang et al. Board-level Intelligent Built-in Test Design of Digital Input Module by Improved BP Neural Network
Singh et al. Hybrid Intelligent Warning System for Boiler tube Leak Trips
Hong et al. Operation Security Prediction for Wind Turbines Using Convolutional Neural Networks: A Proposed Method
Huang et al. A genetic algorithm-based neural network approach for fault diagnosis in hydraulic servo-valves
Wang et al. Fault diagnosis of electric control system of construction machinery based on PNN neural network
Wen et al. The extraction and application of fault characteristic vector for lower vacuum of condenser in 1000MW unit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination