CN112890828A - 一种密集连接门控网络的脑电信号识别方法及系统 - Google Patents

一种密集连接门控网络的脑电信号识别方法及系统 Download PDF

Info

Publication number
CN112890828A
CN112890828A CN202110050378.2A CN202110050378A CN112890828A CN 112890828 A CN112890828 A CN 112890828A CN 202110050378 A CN202110050378 A CN 202110050378A CN 112890828 A CN112890828 A CN 112890828A
Authority
CN
China
Prior art keywords
convolution
module
densely
gated
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110050378.2A
Other languages
English (en)
Inventor
彭德光
朱楚洪
孙健
唐贤伦
高崚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Zhaokun Intelligent Medical Technology Co ltd
Original Assignee
Chongqing Zhaokun Intelligent Medical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Zhaokun Intelligent Medical Technology Co ltd filed Critical Chongqing Zhaokun Intelligent Medical Technology Co ltd
Priority to CN202110050378.2A priority Critical patent/CN112890828A/zh
Publication of CN112890828A publication Critical patent/CN112890828A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • G06F18/24137Distances to cluster centroïds
    • G06F18/2414Smoothing the distance, e.g. radial basis function networks [RBFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Mathematical Physics (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Fuzzy Systems (AREA)
  • Power Engineering (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明提出一种密集连接门控网络的脑电信号识别方法及系统,包括:利用密集连接卷积模块对输入的脑电信号进行特征提取;利用所述门控卷积模块从所述密集连接卷积模块的输出中学习所述脑电信号的时序特征;利用分类模块从所述门控卷积模块的输出中获取分类结果;本发明可有效提高脑电信号识别的准确性。

Description

一种密集连接门控网络的脑电信号识别方法及系统
技术领域
本发明涉及脑电信号处理领域,尤其涉及一种密集连接门控网络的脑电信号识别方法及系统。
背景技术
脑机接口(BCI)是一种直接通过大脑产生的脑电波来控制外部设备的新颖技术,该技术在残疾人的康复、军事、日常娱乐等方面都有着很大的应用潜力。脑机接口中,最为核心的部分就是脑电信号的识别。由于脑电信号是高维度和不稳定的,并且通常混合这肌电,眼电等环境噪音,所以对脑电信号进行识别是一项具有挑战的任务。
目前,随着研究者的不断努力,对脑电信号的分析已经有了许多的方法。在传统的机器学习方法中,一般是把特征提取和特征分类分成两步来处理,例如使用共同空间模式(CSP)来提取脑电信号的特征,并利用支持向量机(SVM)来对特征进行分类。随着深度学习方法的不断研究,这些方法也被应用于了脑电信号的识别研究中,并且取得了比传统方法更好的识别准确率。其中,卷积神经网络(CNN)、深度信念网络(DBN)以及长短期记忆网络(LSTM)等都被常用于脑电信号的识别。
由于脑电信号中通常包含着很多的噪音,如果直接使用会导致提取的特征包含其他的无用信息。此外,因为脑电信号具有高维度,非平稳的特征,并且脑电信号还是一种时序的信号,所以经典的卷积神经网络的结构并不是很好的适用于脑电信号。
发明内容
鉴于以上现有技术存在的问题,本发明提出一种密集连接门控网络的脑电信号识别方法及系统,主要解决脑电信号传统识别方法准确率不高的问题。
为了实现上述目的及其他目的,本发明采用的技术方案如下。
一种密集连接门控网络的脑电信号识别方法,包括:
利用密集连接卷积模块对输入的脑电信号进行特征提取;
利用所述门控卷积模块从所述密集连接卷积模块的输出中学习所述脑电信号的时序特征;
利用分类模块从所述门控卷积模块的输出中获取分类结果。
可选地,所述密集连接卷积模块包括:
至少三个依次排列的卷积层,且每一个在后的卷积层的输出与所有在前卷积层的输出一起输入一层特征拼接层,得到拼接后的特征作为下一层网络的输入;
最后一层特征拼接层的输出经过最大池化后作为所述密集卷积模块的输出。
可选地,每个所述卷积层的卷积核为1x5,激活函数采用ReLU,padding方式采用SAME。
可选地,所述门控卷积模块包括两个串联排列的门控卷积子模块,每个所述门控卷积子模块由一个不包含非线性激活函数卷积层和包含非线性激活函数的卷积层组成,两个卷积层的输出矩阵对应相乘后作为对应门控卷积子模块的输出。
可选地,所述门控卷积模块的输出端设置最大池化层,池化大小为1x2,padding方式采用SAME。
可选地,在所述分类模块和所述门控卷积模块之间设置至少两层全连接层。
可选地,对所述全连接层采用dropout操作,其中,dropout值包括0.5。
可选地,利用密集连接卷积模块对输入的脑电信号进行特征提取之前,包括:
通过经验模式分解算法将采集的原始脑电信号分解为固有模式分量和剩余分量;
利用前三阶所述固有模式分量重构脑电信号作为所述密集连接卷积模块的输入。
可选地,预先对所述原始脑电信号进行预处理,并将预处理后的脑电信号通过经验模式分解算法再处理;其中,预处理包括去除异常值、去均值、归一化、滤波。
一种密集连接门控网络的脑电信号识别系统,包括:
密集连接模块,用于对输入的脑电信号进行特征提取;
门控卷积模块,用于从所述密集连接模块的输出中学习所述脑电信号的时序特征;
分类模块,用于从所述门控卷积模块的输出中获取分类结果。
如上所述,本发明一种密集连接门控网络的脑电信号识别方法及系统,具有以下有益效果。
密集连接卷积模块进行特征提取,使得提取的特征包含各卷积层的信息,可有效丰富脑电信号的特征表达,提高识别的准确性。
附图说明
图1为本发明一实施例中密集连接门控网络的脑电信号识别方法的流程示意图。
图2为本发明一实施例中密集连接门控卷积神经网络的结构框架示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
请参阅图1,本发明提供一种密集连接门控网络的脑电信号识别方法,包括以下步骤:
步骤S01,获取原始脑电数据,并对原始脑电数据进行预处理。使用脑电信号采集仪采集脑电信号,并且采用必要的预处理措施处理脑电信号,其中预处理包括:去除明显的异常值,去均值,归一化以及滤波等处理操作。
进一步地,可针对经过预处理的脑电信号进行种类标记,并将标记后的数据按比例分为训练集和测试集,如可按照4∶1的比例分为训练集和测试集,具体划分比例可根据实际应用需求进行调整,这里不作限制。
步骤S02,采用经验模式分解算法对训练集和测试集中的数据进行分解,并根据分解得到的数据重构脑电信号。具体地,经验模式分解算法能够自适应的分解原始的信号,因此,非常适合用于对脑电信号进行滤波处理。经验模式分解算法通过将输入的脑电信号分解为一组固有模式分量(IMFs)和剩余分量,输入的脑电信号可以表示为:
Figure BDA0002898942900000041
式中,x表示输入的脑电信号,c表示分解的IMF,res代表剩余分量,n表示IMF的个数。根据以往的经验表明,一般前三阶IMF中包含了表达脑电信号的主要信息,所以选用了前三阶的IMF来重构脑电信号。经过这样的步骤能够滤掉脑电信号中的大部分噪音,从而提高卷积神经网络提取到的特征的质量。
步骤S03,构建密集连接卷积模块。为了充分利用每个卷积层的输出,密集连接卷积模块包括:至少三个依次排列的卷积层,且每一个在后的卷积层的输出与所有在前卷积层的输出一起输入一层特征拼接层,得到拼接后的特征作为下一层网络的输入;最后一层特征拼接层的输出经过最大池化后作为所述密集卷积模块的输出。
具体地,请参阅图2,在密集连接卷积模块中,主要包含了三个卷积层,密集连接卷积模块从输入端到输出端的排列结构依次为:卷积层Conv1,卷积层Conv2,特征拼接层Concatenation,卷积层Conv3,特征拼接层Concatenation,池化层Max pooling1。每个卷积层提取的特征不仅只输入到下一个卷积层,而且与该模块中后续的每个卷积层的输出拼接起来共同作为下一个卷积层(或者下一个池化层)的输入,以这样的密集连接结构可以充分利用每个卷积层提取到的特征,从而使得最后提取到的特征更能反映原始脑电信号的特征。可选地,在密集连接卷积模块中,各卷积层的卷积核大小都是1×5,激活函数都是ReLU,padding方式是SAME,步长的大小设置为1。在最后加入了一个最大池化层来减少网络的参数,其池化的大小是1×3,padding方式是SAME。具体应用中,也可根据实际应用需求调整卷积核大小,步长等参数。
步骤S04:构建门控卷积模块。为了对密集连接卷积模块提取到的特征进行进一步提炼,并且利用脑电信号中的时序特征,引入了门控卷积部分。在卷积神经网络中加入门控机制,可以在一定的程度上使得网络能够学习到样本的时序特征。
门控卷积模块包括两个串联排列的门控卷积子模块,每个所述门控卷积子模块由一个不包含非线性激活函数卷积层和包含非线性激活函数的卷积层组成,两个卷积层的输出矩阵对应相乘后作为对应门控卷积子模块的输出。
具体地,门控卷积子模块主要是通过一个没有非线性激活函数的卷积层和一个有Sigmod激活函数的卷积层来实现的,在没有激活函数的卷积层中卷积核的大小可设置为1×3,在有激活函数的卷积层卷积核的大小设置为1×5,最后通过以下的公式,把这两个部分连接起来:
Figure BDA0002898942900000051
式中,h(x)表示了一层的输出,x表示输入,w和b分别代表了没有激活函数的卷积层的参数和偏置参数,v和e分别代表了有激活函数的卷积层的参数和偏置参数,σ代表激活函数,
Figure BDA0002898942900000052
表示两个矩阵元素对应相乘。
进一步地,再连接同样的一个门控卷积子模块,通过两个门控卷积子模块串联学习脑电信号的时域特征。
在一实施例中,在门控卷积模块的输出端可设置最大池化层来减少网络的参数,其池化的大小是1×2,padding方式是SAME。
在一实施例中,可设置至少两层全连接层用于对接门控卷积模块的输出,以平滑输出特征的维度。并且在全连接层中加入了dropout操作防止网络的过拟合,其值设为0.5,即以0.5的概率选择性的开启或关闭全连接层接入网络的神经元。
步骤S05,构建分类模块。通过分类模块接收全连接层的输出,识别脑电信号的类别。可选地,分类模块可采用Softmax分类器。
步骤S06,通过训练集对构建的网络进行训练。使用经过经验模式分解算法处理好的训练集的脑电数据来训练构建的密集连接门控卷积神经网络,在训练的过程中,采用了随机梯度下降算法(SGD)来训练网络,采用的学习率为1×10-4,损失函数采用的是交叉熵,其公式为:
Figure BDA0002898942900000053
式中,p表示真实分布,q表示预测分布。训练好密集连接门控卷积神经网络后,保存好其相关参数,以便测试使用。
步骤S07,通过测试集验证网络性能。使用经验模式分解算法处理后的测试集数据测试密集连接门控卷积神经网络对脑电信号识别的性能。
本实施例中还提供了一种密集连接门控网络的脑电信号识别系统,用于执行前述方法实施例中所述的密集连接门控网络的脑电信号识别方法。由于系统实施例的技术原理与前述方法实施例的技术原理相似,因而不再对同样的技术细节做重复性赘述。
在一实施例中,密集连接门控网络的脑电信号识别系统,包括:
密集连接模块,用于对输入的脑电信号进行特征提取;
门控卷积模块,用于从所述密集连接模块的输出中学习所述脑电信号的时序特征;
分类模块,用于从所述门控卷积模块的输出中获取分类结果。
综上所述,本发明一种密集连接门控网络的脑电信号识别方法及系统,针对脑电信号中通常混入了肌电、眼电等噪音的问题,引入了可以自适应的分解信号的经验模式分解算法来去除脑电信号中的噪音并重构脑电信号,可有效提高脑电信号分类识别的准确性;由于脑电信号的数据特征使得经典的卷积神经网络的结果不能充分的对其进行特征提取,引入了密集连接模块和门控卷积模块来对卷积神经网络的结果进行了改进,密集连接模块能够利用每一层卷积层得到的特征,使得最后得到的特征能够最大程度的表征原始脑电信号的特点,门控卷积模块则能够对密集连接模块得到的特征进一步筛选,并且能够在一定的程度上利用脑电信号中的时序信息,经过加入这两个模块构建的密集连接门控卷积神经网络能够更加有效的提取脑电信号的特征,使得识别准确率得到提高。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种密集连接门控网络的脑电信号识别方法,其特征在于,包括:
利用密集连接卷积模块对输入的脑电信号进行特征提取;
利用所述门控卷积模块从所述密集连接卷积模块的输出中学习所述脑电信号的时序特征;
利用分类模块从所述门控卷积模块的输出中获取分类结果。
2.根据权利要求1所述的密集连接门控网络的脑电信号识别方法,其特征在于,所述密集连接卷积模块包括:
至少三个依次排列的卷积层,且每一个在后的卷积层的输出与所有在前卷积层的输出一起输入一层特征拼接层,得到拼接后的特征作为下一层网络的输入;
最后一层特征拼接层的输出经过最大池化后作为所述密集卷积模块的输出。
3.根据权利要求2所述的密集连接门控网络的脑电信号识别方法,其特征在于,每个所述卷积层的卷积核为1x5,激活函数采用ReLU,padding方式采用SAME。
4.根据权利要求1所述的密集连接门控网络的脑电信号识别方法,其特征在于,所述门控卷积模块包括两个串联排列的门控卷积子模块,每个所述门控卷积子模块由一个不包含非线性激活函数卷积层和包含非线性激活函数的卷积层组成,两个卷积层的输出矩阵对应相乘后作为对应门控卷积子模块的输出。
5.根据权利要求4所述的密集连接门控网络的脑电信号识别方法,其特征在于,所述门控卷积网络的输出端设置最大池化层,池化大小为1x2,padding方式采用SAME。
6.根据权利要求1所述的密集连接门控网络的脑电信号识别方法,其特征在于,在所述分类模块和所述门控卷积模块之间设置至少两层全连接层。
7.根据权利要求6所述的密集连接门控网络的脑电信号识别方法,其特征在于,对所述全连接层采用dropout操作,其中,dropout值包括0.5。
8.根据权利要求1所述的密集连接门控网络的脑电信号识别方法,其特征在于,利用密集连接卷积模块对输入的脑电信号进行特征提取之前,包括:
通过经验模式分解算法将采集的原始脑电信号分解为固有模式分量和剩余分量;
利用前三阶所述固有模式分量重构脑电信号作为所述密集连接卷积模块的输入。
9.根据权利要求8所述的密集连接门控网络的脑电信号识别方法,其特征在于,预先对所述原始脑电信号进行预处理,并将预处理后的脑电信号通过经验模式分解算法再处理;其中,预处理包括去除异常值、去均值、归一化、滤波。
10.一种密集连接门控网络的脑电信号识别系统,其特征在于,包括:
密集连接模块,用于对输入的脑电信号进行特征提取;
门控卷积模块,用于从所述密集连接模块的输出中学习所述脑电信号的时序特征;
分类模块,用于从所述门控卷积模块的输出中获取分类结果。
CN202110050378.2A 2021-01-14 2021-01-14 一种密集连接门控网络的脑电信号识别方法及系统 Pending CN112890828A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110050378.2A CN112890828A (zh) 2021-01-14 2021-01-14 一种密集连接门控网络的脑电信号识别方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110050378.2A CN112890828A (zh) 2021-01-14 2021-01-14 一种密集连接门控网络的脑电信号识别方法及系统

Publications (1)

Publication Number Publication Date
CN112890828A true CN112890828A (zh) 2021-06-04

Family

ID=76113120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110050378.2A Pending CN112890828A (zh) 2021-01-14 2021-01-14 一种密集连接门控网络的脑电信号识别方法及系统

Country Status (1)

Country Link
CN (1) CN112890828A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113744758A (zh) * 2021-09-16 2021-12-03 江南大学 基于2-DenseGRUNet模型的声音事件检测方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018048945A1 (en) * 2016-09-06 2018-03-15 Deepmind Technologies Limited Processing sequences using convolutional neural networks
CN109480824A (zh) * 2018-12-11 2019-03-19 武汉中旗生物医疗电子有限公司 心电波形数据的处理方法、装置和服务器
CN109662708A (zh) * 2019-01-21 2019-04-23 郑州大学第附属医院 一种基于深度神经网络的术后病人行为监测方法
CN109745002A (zh) * 2018-12-27 2019-05-14 天津惊帆科技有限公司 一种便携式睡眠监测设备
CN110069958A (zh) * 2018-01-22 2019-07-30 北京航空航天大学 一种密集深度卷积神经网络的脑电信号快速识别方法
CN110287341A (zh) * 2019-06-26 2019-09-27 腾讯科技(深圳)有限公司 一种数据处理方法、装置以及可读存储介质
CN110348214A (zh) * 2019-07-16 2019-10-18 电子科技大学 对恶意代码检测的方法及系统
CN110782664A (zh) * 2019-10-16 2020-02-11 北京航空航天大学 一种智能车路系统的运行状况监测方法
CN111145170A (zh) * 2019-12-31 2020-05-12 电子科技大学 一种基于深度学习的医学影像分割方法
CN111626114A (zh) * 2020-04-20 2020-09-04 哈尔滨工业大学 基于卷积神经网络的心电信号心律失常分类系统
CN111950455A (zh) * 2020-08-12 2020-11-17 重庆邮电大学 一种基于lffcnn-gru算法模型的运动想象脑电信号特征识别方法
CN111990988A (zh) * 2020-08-10 2020-11-27 北京航空航天大学 基于密集连接卷积循环神经网络的心电信号房颤检测装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018048945A1 (en) * 2016-09-06 2018-03-15 Deepmind Technologies Limited Processing sequences using convolutional neural networks
CN110069958A (zh) * 2018-01-22 2019-07-30 北京航空航天大学 一种密集深度卷积神经网络的脑电信号快速识别方法
CN109480824A (zh) * 2018-12-11 2019-03-19 武汉中旗生物医疗电子有限公司 心电波形数据的处理方法、装置和服务器
CN109745002A (zh) * 2018-12-27 2019-05-14 天津惊帆科技有限公司 一种便携式睡眠监测设备
CN109662708A (zh) * 2019-01-21 2019-04-23 郑州大学第附属医院 一种基于深度神经网络的术后病人行为监测方法
CN110287341A (zh) * 2019-06-26 2019-09-27 腾讯科技(深圳)有限公司 一种数据处理方法、装置以及可读存储介质
CN110348214A (zh) * 2019-07-16 2019-10-18 电子科技大学 对恶意代码检测的方法及系统
CN110782664A (zh) * 2019-10-16 2020-02-11 北京航空航天大学 一种智能车路系统的运行状况监测方法
CN111145170A (zh) * 2019-12-31 2020-05-12 电子科技大学 一种基于深度学习的医学影像分割方法
CN111626114A (zh) * 2020-04-20 2020-09-04 哈尔滨工业大学 基于卷积神经网络的心电信号心律失常分类系统
CN111990988A (zh) * 2020-08-10 2020-11-27 北京航空航天大学 基于密集连接卷积循环神经网络的心电信号房颤检测装置
CN111950455A (zh) * 2020-08-12 2020-11-17 重庆邮电大学 一种基于lffcnn-gru算法模型的运动想象脑电信号特征识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹卫东等: "《采用注意力门控卷积网络的目标情感分析》", 《西安电子科技大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113744758A (zh) * 2021-09-16 2021-12-03 江南大学 基于2-DenseGRUNet模型的声音事件检测方法
CN113744758B (zh) * 2021-09-16 2023-12-01 江南大学 基于2-DenseGRUNet模型的声音事件检测方法

Similar Documents

Publication Publication Date Title
Wang et al. LSTM-based EEG classification in motor imagery tasks
Lopes et al. Data-free knowledge distillation for deep neural networks
Jarrett et al. What is the best multi-stage architecture for object recognition?
Zhang et al. Chromosome classification with convolutional neural network based deep learning
CN109215680B (zh) 一种基于卷积神经网络的语音还原方法
CN109598222B (zh) 基于eemd数据增强的小波神经网络运动想象脑电分类方法
CN112766355B (zh) 一种标签噪声下的脑电信号情绪识别方法
CN110020639B (zh) 视频特征提取方法及相关设备
Taqi et al. Classification and discrimination of focal and non-focal EEG signals based on deep neural network
Asghar et al. AI inspired EEG-based spatial feature selection method using multivariate empirical mode decomposition for emotion classification
CN114176607B (zh) 一种基于视觉Transformer的脑电信号分类方法
AlJarrah et al. Arabic handwritten characters recognition using convolutional neural network
CN111783534A (zh) 一种基于深度学习的睡眠分期方法
CN114424940A (zh) 基于多模态时空特征融合的情绪识别方法及系统
Stuchi et al. Frequency learning for image classification
CN112380959A (zh) 一种基于图神经网络的单变量时间序列分类方法
CN114863572A (zh) 一种多通道异构传感器的肌电手势识别方法
Tseng et al. An interpretable compression and classification system: Theory and applications
CN115238796A (zh) 基于并行damscn-lstm的运动想象脑电信号分类方法
CN112890828A (zh) 一种密集连接门控网络的脑电信号识别方法及系统
CN106909944B (zh) 一种人脸图片聚类的方法
CN116919422A (zh) 基于图卷积的多特征情感脑电识别模型建立方法及装置
Goel et al. Automated detection of epileptic EEG signals using recurrence plots-based feature extraction with transfer learning
Yu et al. Encoding physiological signals as images for affective state recognition using convolutional neural networks
Thamizharasi Performance analysis of face recognition by combining multiscale techniques and homomorphic filter using fuzzy K nearest neighbour classifier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210604

RJ01 Rejection of invention patent application after publication