CN112884791A - Method for constructing large-scale remote sensing image semantic segmentation model training sample set - Google Patents
Method for constructing large-scale remote sensing image semantic segmentation model training sample set Download PDFInfo
- Publication number
- CN112884791A CN112884791A CN202110140509.6A CN202110140509A CN112884791A CN 112884791 A CN112884791 A CN 112884791A CN 202110140509 A CN202110140509 A CN 202110140509A CN 112884791 A CN112884791 A CN 112884791A
- Authority
- CN
- China
- Prior art keywords
- sample set
- remote sensing
- image
- sensing image
- semantic segmentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000011218 segmentation Effects 0.000 title claims abstract description 36
- 238000012549 training Methods 0.000 title claims abstract description 30
- 239000013598 vector Substances 0.000 claims abstract description 24
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- 238000005457 optimization Methods 0.000 claims abstract description 11
- 238000000605 extraction Methods 0.000 claims abstract description 8
- 230000004927 fusion Effects 0.000 claims description 13
- 238000005520 cutting process Methods 0.000 claims description 10
- 238000009826 distribution Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract 1
- 238000011156 evaluation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30204—Marker
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110140509.6A CN112884791B (en) | 2021-02-02 | 2021-02-02 | Method for constructing large-scale remote sensing image semantic segmentation model training sample set |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110140509.6A CN112884791B (en) | 2021-02-02 | 2021-02-02 | Method for constructing large-scale remote sensing image semantic segmentation model training sample set |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112884791A true CN112884791A (en) | 2021-06-01 |
CN112884791B CN112884791B (en) | 2021-11-26 |
Family
ID=76052551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110140509.6A Active CN112884791B (en) | 2021-02-02 | 2021-02-02 | Method for constructing large-scale remote sensing image semantic segmentation model training sample set |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112884791B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113822900A (en) * | 2021-07-09 | 2021-12-21 | 武汉大学 | Vector constraint object-oriented new image sample automatic selection method and system |
CN115984559A (en) * | 2022-12-27 | 2023-04-18 | 二十一世纪空间技术应用股份有限公司 | Intelligent sample selection method and related device |
CN116051683A (en) * | 2022-12-20 | 2023-05-02 | 中国科学院空天信息创新研究院 | Remote sensing image generation method, storage medium and device based on style self-organization |
CN116486077A (en) * | 2023-04-04 | 2023-07-25 | 中国科学院地理科学与资源研究所 | Remote sensing image semantic segmentation model sample set generation method and device |
CN117237648A (en) * | 2023-11-16 | 2023-12-15 | 中国农业科学院农业资源与农业区划研究所 | Training method, device and equipment of semantic segmentation model based on context awareness |
CN117349462A (en) * | 2023-12-06 | 2024-01-05 | 自然资源陕西省卫星应用技术中心 | Remote sensing intelligent interpretation sample data set generation method |
CN118314028A (en) * | 2024-04-07 | 2024-07-09 | 自然资源部国土卫星遥感应用中心 | Road sample data manufacturing method based on vector image spots |
CN118470092A (en) * | 2024-06-04 | 2024-08-09 | 航天宏图信息技术股份有限公司 | Crop planting area extraction method, device, equipment and medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103258214A (en) * | 2013-04-26 | 2013-08-21 | 南京信息工程大学 | Remote sensing image classification method based on image block active learning |
CN108921025A (en) * | 2018-06-01 | 2018-11-30 | 苏州中科天启遥感科技有限公司 | A kind of object level classification samples automatic selecting method of collaborative variation detection |
CN110363798A (en) * | 2019-07-24 | 2019-10-22 | 宁波市测绘设计研究院 | A kind of generation method of remote sensing image interpretation sample set |
CN111144487A (en) * | 2019-12-27 | 2020-05-12 | 二十一世纪空间技术应用股份有限公司 | Method for establishing and updating remote sensing image sample library |
CN111325116A (en) * | 2020-02-05 | 2020-06-23 | 武汉大学 | Remote sensing image target detection method capable of evolving based on offline training-online learning depth |
US20200269530A1 (en) * | 2019-02-25 | 2020-08-27 | Roshdy George S. Barsoum | Rapid response fabrication of marine vessel platforms |
-
2021
- 2021-02-02 CN CN202110140509.6A patent/CN112884791B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103258214A (en) * | 2013-04-26 | 2013-08-21 | 南京信息工程大学 | Remote sensing image classification method based on image block active learning |
CN108921025A (en) * | 2018-06-01 | 2018-11-30 | 苏州中科天启遥感科技有限公司 | A kind of object level classification samples automatic selecting method of collaborative variation detection |
US20200269530A1 (en) * | 2019-02-25 | 2020-08-27 | Roshdy George S. Barsoum | Rapid response fabrication of marine vessel platforms |
CN110363798A (en) * | 2019-07-24 | 2019-10-22 | 宁波市测绘设计研究院 | A kind of generation method of remote sensing image interpretation sample set |
CN111144487A (en) * | 2019-12-27 | 2020-05-12 | 二十一世纪空间技术应用股份有限公司 | Method for establishing and updating remote sensing image sample library |
CN111325116A (en) * | 2020-02-05 | 2020-06-23 | 武汉大学 | Remote sensing image target detection method capable of evolving based on offline training-online learning depth |
Non-Patent Citations (3)
Title |
---|
WEIXUN ZHOU 等: "PatternNet: A benchmark dataset for performance evaluation of remote sensing image retrieval", 《ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING》 * |
戚尚育: "高分辫率遥感图像样本提取和样本库的研究", 《万方数据知识服务平台》 * |
黄亚博 等: "多源数据的土地覆被样本自动提取", 《遥感学报》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113822900B (en) * | 2021-07-09 | 2023-09-22 | 武汉大学 | Method and system for automatically selecting new image sample based on vector constraint object-oriented |
CN113822900A (en) * | 2021-07-09 | 2021-12-21 | 武汉大学 | Vector constraint object-oriented new image sample automatic selection method and system |
CN116051683A (en) * | 2022-12-20 | 2023-05-02 | 中国科学院空天信息创新研究院 | Remote sensing image generation method, storage medium and device based on style self-organization |
CN116051683B (en) * | 2022-12-20 | 2023-07-04 | 中国科学院空天信息创新研究院 | Remote sensing image generation method, storage medium and device based on style self-organization |
CN115984559B (en) * | 2022-12-27 | 2024-01-12 | 二十一世纪空间技术应用股份有限公司 | Intelligent sample selection method and related device |
CN115984559A (en) * | 2022-12-27 | 2023-04-18 | 二十一世纪空间技术应用股份有限公司 | Intelligent sample selection method and related device |
CN116486077A (en) * | 2023-04-04 | 2023-07-25 | 中国科学院地理科学与资源研究所 | Remote sensing image semantic segmentation model sample set generation method and device |
CN116486077B (en) * | 2023-04-04 | 2024-04-30 | 中国科学院地理科学与资源研究所 | Remote sensing image semantic segmentation model sample set generation method and device |
CN117237648A (en) * | 2023-11-16 | 2023-12-15 | 中国农业科学院农业资源与农业区划研究所 | Training method, device and equipment of semantic segmentation model based on context awareness |
CN117237648B (en) * | 2023-11-16 | 2024-02-23 | 中国农业科学院农业资源与农业区划研究所 | Training method, device and equipment of semantic segmentation model based on context awareness |
CN117349462B (en) * | 2023-12-06 | 2024-03-12 | 自然资源陕西省卫星应用技术中心 | Remote sensing intelligent interpretation sample data set generation method |
CN117349462A (en) * | 2023-12-06 | 2024-01-05 | 自然资源陕西省卫星应用技术中心 | Remote sensing intelligent interpretation sample data set generation method |
CN118314028A (en) * | 2024-04-07 | 2024-07-09 | 自然资源部国土卫星遥感应用中心 | Road sample data manufacturing method based on vector image spots |
CN118470092A (en) * | 2024-06-04 | 2024-08-09 | 航天宏图信息技术股份有限公司 | Crop planting area extraction method, device, equipment and medium |
Also Published As
Publication number | Publication date |
---|---|
CN112884791B (en) | 2021-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112884791B (en) | Method for constructing large-scale remote sensing image semantic segmentation model training sample set | |
CN111986099B (en) | Tillage monitoring method and system based on convolutional neural network with residual error correction fused | |
CN112287807B (en) | Remote sensing image road extraction method based on multi-branch pyramid neural network | |
CN111553303B (en) | Remote sensing orthographic image dense building extraction method based on convolutional neural network | |
CN113449594B (en) | Multilayer network combined remote sensing image ground semantic segmentation and area calculation method | |
CN108596055B (en) | Airport target detection method of high-resolution remote sensing image under complex background | |
CN105139395B (en) | SAR image segmentation method based on small echo pond convolutional neural networks | |
CN111626947B (en) | Map vectorization sample enhancement method and system based on generation of countermeasure network | |
CN112232371B (en) | American license plate recognition method based on YOLOv3 and text recognition | |
CN111967313B (en) | Unmanned aerial vehicle image annotation method assisted by deep learning target detection algorithm | |
CN112613350A (en) | High-resolution optical remote sensing image airplane target detection method based on deep neural network | |
CN110176005B (en) | Remote sensing image segmentation method based on normalized index and multi-scale model | |
CN112084871B (en) | High-resolution remote sensing target boundary extraction method based on weak supervised learning | |
CN114898327B (en) | Vehicle detection method based on lightweight deep learning network | |
CN114092794B (en) | Sea ice image classification method, system, medium, equipment and processing terminal | |
CN110659601A (en) | Depth full convolution network remote sensing image dense vehicle detection method based on central point | |
CN112686902A (en) | Two-stage calculation method for brain glioma identification and segmentation in nuclear magnetic resonance image | |
CN117572457B (en) | Cross-scene multispectral point cloud classification method based on pseudo tag learning | |
CN110909623A (en) | Three-dimensional target detection method and three-dimensional target detector | |
CN111104850A (en) | Remote sensing image building automatic extraction method and system based on residual error network | |
CN117541930A (en) | River basin scale high space-time resolution river network remote sensing information extraction method and system | |
CN115423802A (en) | Automatic classification and segmentation method for squamous epithelial tumor cell picture based on deep learning | |
CN113077438B (en) | Cell nucleus region extraction method and imaging method for multi-cell nucleus color image | |
Zeng et al. | Top-Down aircraft detection in large-scale scenes based on multi-source data and FEF-R-CNN | |
CN115620169B (en) | Building main angle correction method based on regional consistency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information |
Inventor after: Ding Yi Inventor after: Fan Wenwu Inventor after: Wang Xiaopan Inventor after: Liu Jian Inventor after: Liu Xulei Inventor after: Zheng Zhong Inventor after: Chen Yang Inventor after: Wen Li Inventor after: Hu Yan Inventor after: Li Penglong Inventor after: Ma Zezhong Inventor after: Xiao He Inventor after: Zhang Zelie Inventor after: Wang Yalin Inventor after: Ao Ying Inventor before: Ding Yi Inventor before: Fan Wenwu Inventor before: Wang Xiaopan Inventor before: Liu Jian Inventor before: Liu Xulei Inventor before: Zheng Zhong Inventor before: Chen Yang Inventor before: Wen Li Inventor before: Hu Yan Inventor before: Li Penglong Inventor before: Ma Zezhong Inventor before: Xiao He Inventor before: Zhang Zelie Inventor before: Wang Yalin Inventor before: Ao Ying |
|
CB03 | Change of inventor or designer information |