CN112884654B - 一种基于cnn的wdsr图像超分辨率重建优化方法 - Google Patents

一种基于cnn的wdsr图像超分辨率重建优化方法 Download PDF

Info

Publication number
CN112884654B
CN112884654B CN202110235842.5A CN202110235842A CN112884654B CN 112884654 B CN112884654 B CN 112884654B CN 202110235842 A CN202110235842 A CN 202110235842A CN 112884654 B CN112884654 B CN 112884654B
Authority
CN
China
Prior art keywords
original
resolution reconstruction
image super
picture
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110235842.5A
Other languages
English (en)
Other versions
CN112884654A (zh
Inventor
马丽
白红英
张云飞
董悦丽
孙斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ordos Institute of Technology
Original Assignee
Ordos Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ordos Institute of Technology filed Critical Ordos Institute of Technology
Priority to CN202110235842.5A priority Critical patent/CN112884654B/zh
Publication of CN112884654A publication Critical patent/CN112884654A/zh
Application granted granted Critical
Publication of CN112884654B publication Critical patent/CN112884654B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4046Scaling of whole images or parts thereof, e.g. expanding or contracting using neural networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于CNN的WDSR图像超分辨率重建优化方法,包括:获取原始训练集和原始测试集;构建基于WDSR算法的图像超分辨率重建模型,并利用原始训练集对图像超分辨率重建模型进行训练,获得初始图像超分辨率重建模型;利用增强预测算法优化初始图像超分辨率重建模型,获得中间图像超分辨率重建模型;利用测试集对初始图像超分辨率重建模型进行重建效果验证;基于重建效果验证结果,对WDSR算法进行改进,直至重建效果验证结果符合预设约束条件,获得最终图像超分辨率重建模型。本发明在对WDSR算法改进的基础上,结合增强预测算法,能够降低计算开销,提高模型精度,能够获得更好的训练和测试准确率。

Description

一种基于CNN的WDSR图像超分辨率重建优化方法
技术领域
本发明涉及图像处理技术领域,更具体的说是涉及一种基于CNN的WDSR图像超分辨率重建优化方法。
背景技术
超分辨率技术(Super-Resolution),简称SR,是指通过软件或硬件的方法,从观测到的低分辨率图像重建出相应的高分辨率图像,在监控设备、卫星图像遥感、网络图片压缩传输及存储、数字高清、显微成像、视频编码通信、视频复原和医学影像等领域都有重要的应用价值。
传统的图像超分辨率重建技术中,基于插值的方法,方式相对简单,但是达到的效果较其它方法比较差。基于重建的方法,需要依赖多幅图像序列信息进行重构才能提高算法的效果,必须是同一场景的图片,即连续系列的帧图像。
基于深度学习的SR,主要是基于单张低分辨率的重建方法,即Single ImageSuper-Resolution(SISR),是现在研究的热门算法,由于其强大的特征表达和非线性变换能力,在图像超分辨率领域取得了非常不错的效果。
WDSR是基于CNN的SR算法,不足之处是对输入图像进行旋转、翻转操作后,像素点P(x,y)位置改变了,使用同一个模式经过卷积操作(该操作对像素位置比较敏感)的结果会显著不同。而在超分辨这种像素级操作的任务中,同一张图片经旋转、翻折等,再分别进行超分辨,得到的结果不应该在精度上有较大的差异。
因此,如何充分利用WDSR算法的优点,对WDSR算法进行改进,并在WDSR算法改进的基础上,提高超分辨精准度的基于CNN的WDSR图像超分辨率重建优化方法,是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种基于CNN的WDSR图像超分辨率重建优化方法,在对WDSR算法改进的基础上,将增强预测算法与之相结合,能够降低计算开销,提高模型的精度,获得更好的训练和测试准确率,得到更好的超分辨率重建图像。
为了实现上述目的,本发明采用如下技术方案:
一种基于CNN的WDSR图像超分辨率重建优化方法,包括:
获取原始图片集,并将所述原始图片集分为原始训练集和原始测试集;
构建基于WDSR算法的图像超分辨率重建模型,并利用所述原始训练集对所述图像超分辨率重建模型进行初步训练,获得初始图像超分辨率重建模型;
引入增强预测算法,并利用所述增强预测算法对原始训练集和原始测试集进行处理,获得新的训练集和新的测试集;
基于所述新的训练集优化所述初始图像超分辨率重建模型,获得中间图像超分辨率重建模型;
利用所述原始测试集或所述新的测试集对所述中间图像超分辨率重建模型进行重建效果验证;
基于重建效果验证结果,对WDSR算法进行改进,直至所述重建效果验证结果符合预设约束条件,获得最终图像超分辨率重建模型。
优选的,在上述一种基于CNN的WDSR图像超分辨率重建优化方法中,所述原始训练集和所述原始测试集的制作过程为:
获取原始图片集,对所述原始图片集中的各个原始高清图片依次进行压缩和尺寸放大,获得模糊图片集;
将所述模糊图片集中的各个模糊图片和与其对应的原始高清图片分别组成图片对;
将所有所述图片对分成数量不等的两部分,将数量相对较多的部分作为所述原始训练集,将数量相对较少的部分作为所述原始测试集。
优选的,在上述一种基于CNN的WDSR图像超分辨率重建优化方法中,所述增强预测算法包括:
将所述原始训练集中的每张原始高清图片分别进行上、下、左、右翻转,生成四张翻转后的图片,并将每张翻转后的图片分别旋转90°、180°、270°,共生成12张图片;
将生成的12张图片分别输入至所述初始图像超分辨率重建模型,进行卷积、池化和全联接操作,得到相应的12张超分辨率重建图片;
将得到的12张超分辨率重建图片,分别经过逆翻转、逆旋转操作,使每张图像、每个像素都变换回原始位置,每个位置的像素值取12张图中对应位置像素值的平均值。
优选的,在上述一种基于CNN的WDSR图像超分辨率重建优化方法中,卷积操作的非线性变换公式如下:
上式中,I’(x,y)表示卷积操作的输出像素,I(x,y)表示位置在x,y的输入像素点,k(i,j)表示卷积核i,j位置的权重,2k+1表示卷积核的大小。
优选的,在上述一种基于CNN的WDSR图像超分辨率重建优化方法中,利用所述原始测试集或所述新的测试集对所述中间图像超分辨率重建模型进行重建效果验证,包括:
输入所述原始测试集或所述新的测试集至所述中间图像超分辨率重建模型,获得重建图片;
采用PSNR方法或SSIM方法将所述原始训练集中的原始高清图片与所述重建图片进行比较,生成比较结果;
基于所述比较结果,验证所述中间图像超分辨率重建模型的重建效果。
优选的,在上述一种基于CNN的WDSR图像超分辨率重建优化方法中,所述基于重建效果验证结果,对WDSR算法进行改进,直至所述重建效果验证结果符合预设约束条件,获得最终图像超分辨率重建模型,包括:
基于重建效果验证结果,调节优化所述中间图像超分辨率重建模型的网络节点和模型参数;
再次训练所述中间图像超分辨率重建模型,并再次利用PSNR方法或SSIM方法对再次训练后的所述中间图像超分辨率重建模型的重建效果进行验证;
反复对所述中间图像超分辨率重建模型进行调节、优化和重建效果验证,直至重建效果验证结果符合预设约束条件。
优选的,在上述一种基于CNN的WDSR图像超分辨率重建优化方法中,基于重建效果验证结果,调节优化所述中间图像超分辨率重建模型的网络节点和模型参数,包括:
调节WDSR算法中head、body、tail、skip的卷积操作;
去除冗余卷积层,优化提高relu前的特征图channel数,提高PSNR值和SSIM值。
优选的,在上述一种基于CNN的WDSR图像超分辨率重建优化方法中,所述PSNR方法的表达式如下:
上式中,I表示给定的大小为h×w的干净图像;K表示给定的大小为h×w噪声图像;MSE表示均方误差;n表示每个像素的比特数;PSNR表示峰值信噪比,数值越大,表示图像失真越小。
优选的,在上述一种基于CNN的WDSR图像超分辨率重建优化方法中,SSIM方法分别从亮度、对比度和结构三方面度量图像相似性,其取值范围为[0,1],取值越大,表示图像失真越小。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种基于CNN的WDSR图像超分辨率重建优化方法,利用WDSR算法的优点,并对WDSR算法进行改进,将增强预测算法与改进后的WDSR算法相结合,能够降低计算开销性能,提高深度模型的精度,获得更好的训练和测试准确率,得到更加好的超分辨率重建图像。本发明通过增强预测方法,即对训练后的图像超分辨率重建模型,通过对输入图像进行旋转、翻转等操作,得到多个不同的结果,再将结果取平均来得到提高模型的学习能力,并提高超分辨重建图片的精准度的目的。本发明通过深度学习,结合增强预测算法进行处理,并通过PSNR方法、SSIM方法等不断优化调节节点模型和参数,可以重建出比较令人满意的效果。对于所有的输入图像进行的卷积操作,一方面,效果具有翻转鲁棒性,使得对旋转、翻转敏感的卷积操作随着位置的旋转、翻转不再产生显著的不同,即对图像的像素位置不再敏感;另一方面,多个不同模型的平均泛化效果优于单个模型的效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明提供的基于CNN的WDSR图像超分辨率重建优化方法的流程图;
图2附图为本发明提供的S1中的训练集和测试集的制作过程示意图;
图3附图为本发明提供的S3中增强预测算法的流程图;
图4附图为本发明提供的S4中重建效果验证的流程图;
图5附图为本发明提供的WDSR算法改进的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例公开了一种基于CNN的WDSR图像超分辨率重建优化方法,包括以下步骤:
S1、获取原始图片集,并将原始图片集分为原始训练集和原始测试集;
S2、构建基于WDSR算法的图像超分辨率重建模型,并利用原始训练集对图像超分辨率重建模型进行初步训练,获得初始图像超分辨率重建模型;
S3、引入增强预测算法,并利用增强预测算法对原始训练集和原始测试集进行处理,获得新的训练集和新的测试集;
S4、基于新的训练集优化初始图像超分辨率重建模型,获得中间图像超分辨率重建模型;
S5、利用原始测试集或新的测试集对中间图像超分辨率重建模型进行重建效果验证;
S6、基于重建效果验证结果,对WDSR算法进行不断改进,直至重建效果验证结果符合预设约束条件,获得最终图像超分辨率重建模型。
如图2所示,原始训练集和原始测试集的具体制作过程为:
S11、获取原始图片集,对原始图片集中的各个原始高清图片依次进行压缩和尺寸放大,获得模糊图片集;
S12、将模糊图片集中的各个模糊图片和与其对应的原始高清图片分别组成图片对;
S13、将所有图片对分成数量不等的两部分,将数量相对较多的部分作为原始训练集,将数量相对较少的部分作为原始测试集。
S3中,输入图像超分辨率重建模型的低分辨率图像和高分辨率图像之间的非线性函数关系可以表示为:PHR=f(PLR),其中,PHR表示重建之后输出的高分辨率图像,PLR表示输入的低分辨率图像,f()表示卷积操作和非线性激活函数的组合。
对于输入的低分辨率图像的某个像素点I(x,y),特定卷积核k在其上的卷积操作可表示为:
其中,I’(x,y)表示卷积操作的输出像素,I(x,y)表示位置在x,y的输入像素,k(i,j)表示卷积核i,j位置的权重,2k+1是卷积核的大小。由公式1可以看出,对像素进行卷积操作的结果I’(x,y),与输入图像像素的相对位置I(x,y)有关,如果对输入图像进行旋转、翻转操作后,同一个模型经过公式1所示的非线性变换,对输入图像进行的操作结果是显著不同的。所以,卷积操作对输入图像像素的位置是很敏感的,但是,在超分辨率这种像素级操作的任务中,同一张图片经过旋转和翻转后,再分别进行超分辨,得到的结果不应该在精度上有较大的差异。为了提高卷积操作对图像旋转和翻转的鲁棒性,可以使用增强预测的方式提高深度模型的精度。
增强预测算法包括:
S31、将原始训练集中的每张原始高清图片分别进行上、下、左、右翻转,生成四张翻转后的图片,并将每张翻转后的图片分别旋转90°、180°、270°,共生成12张图片;
S32、将生成的12张图片分别输入至初始图像超分辨率重建模型,进行卷积、池化和全联接操作,得到相应的12张超分辨率重建图片;
S33、将得到的12张超分辨率重建图片,分别经过逆翻转、逆旋转操作,使每张图像、每个像素都变换回原始位置,变换回原始位置后的每张图片中每个位置的像素值取12张图中对应位置像素值的平均值。
通过增强算法将原始高清图片进行多状态改变,使中间图像超分辨率重建模型得到更深入的学习,以提高重建图片的清晰度。
S5、利用原始测试集或新的测试集对中间图像超分辨率重建模型进行重建效果验证,包括以下步骤:
S51、输入原始测试集或新的测试集至中间图像超分辨率重建模型,获得重建图片;
S52、采用PSNR方法或SSIM方法将原始训练集中的原始图片与重建图片进行比较,生成比较结果;
PSNR(Peak Signal to Noise Ratio)峰值信噪比,一种全参考的图像质量评价指标。
给定一个大小为h×w的干净图像I和噪声图像K,均方误差(MSE)定义为:
据此,PSNR(dB)定义为:
上式中,n为每像素的比特数,针对灰度图像,n一般取8,即像素灰阶数为256,如果是彩色图像,通常有三种方法来计算。
A.分别计算RGB三个通道的PSNR,然后取平均值。
B.计算RGB三通道的MSE,然后再除以3。
C.将图片转化为YCbCr格式,然后只计算Y分量也就是亮度分量的PSNR。
PSNR的单位是dB,数值越大表示失真越小。
SSIM(structural similarity)结构相似性,也是一种全参考的图像质量评价指标,它分别从亮度、对比度、结构三方面度量图像相似性。SSIM取值范围[0,1],值越大,表示图像失真越小。
S53、基于比较结果,验证中间图像超分辨率重建模型的重建效果。
S6、基于重建效果验证结果,对WDSR算法进行改进,直至重建效果验证结果符合预设约束条件,获得最终图像超分辨率重建模型,具体包括:
S61、基于重建效果验证结果,调节优化中间图像超分辨率重建模型的网络节点和模型参数;
S62、再次训练中间图像超分辨率重建模型,并再次利用PSNR方法或SSIM方法对再次训练后的中间图像超分辨率重建模型的重建效果进行验证;
S63、反复执行S61-S62,直至重建效果验证结果符合预设约束条件,生成最终图像超分辨率重建模型。
S61、基于重建效果验证结果,调节优化中间图像超分辨率重建模型的网络节点和模型参数,包括:
S611、调节WDSR算法中head、body、tail、skip的卷积操作;
S612、去除冗余卷积层,优化提高relu前的特征图channel数,提高PSNR值和SSIM值。
本实施例训练方法使用WDSR_b方法,并根据效果进行不断改进。
WDSR_b网络结构如下:
标准化输入
head:卷积×1
body:block(卷积+relu+卷积×2)*16
tail:卷积×1
skip:卷积×1
标准化输出
tail部分仅有一次卷积,实际放大思路同EDSR算法,不过是一次卷积得到足够的channels(3*n^2),一步重建为3通道的图像。
本实例中也可使用其他基于深度卷积神经网络的超分重建学习算法。如DRCN、ESPCN、VESPCN、SRGAN和EDSR等算法。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (4)

1.一种基于CNN的WDSR图像超分辨率重建优化方法,其特征在于,包括:
获取原始图片集,并将所述原始图片集分为原始训练集和原始测试集,制作过程为:
获取原始图片集,对所述原始图片集中的各个原始高清图片依次进行压缩和尺寸放大,获得模糊图片集;
将所述模糊图片集中的各个模糊图片和与其对应的原始高清图片分别组成图片对;
将所有所述图片对分成数量不等的两部分,将数量相对较多的部分作为所述原始训练集,将数量相对较少的部分作为所述原始测试集;
构建基于WDSR算法的图像超分辨率重建模型,并利用所述原始训练集对所述图像超分辨率重建模型进行初步训练,获得初始图像超分辨率重建模型;
引入增强预测算法,并利用所述增强预测算法对所述原始训练集和所述原始测试集进行处理,获得新的训练集和新的测试集;
基于所述新的训练集优化所述初始图像超分辨率重建模型,获得中间图像超分辨率重建模型;
利用所述原始测试集或所述新的测试集对所述中间图像超分辨率重建模型进行重建效果验证,包括:
输入所述原始测试集或所述新的测试集至所述中间图像超分辨率重建模型,获得重建图片;
采用PSNR方法或SSIM方法将所述原始训练集中的原始高清图片与所述重建图片进行比较,生成比较结果;
基于所述比较结果,验证所述中间图像超分辨率重建模型的重建效果;
基于重建效果验证结果,对WDSR算法进行改进,直至所述重建效果验证结果符合预设约束条件,获得最终图像超分辨率重建模型,包括:
基于重建效果验证结果,调节优化所述中间图像超分辨率重建模型的网络节点和模型参数,具体包括:调节WDSR算法中head、body、tail、skip的卷积操作;去除冗余卷积层,优化提高relu前的特征图channel数,提高PSNR值和SSIM值;
再次训练所述中间图像超分辨率重建模型,并再次利用PSNR方法或SSIM方法对再次训练后的所述中间图像超分辨率重建模型的重建效果进行验证;
反复对所述中间图像超分辨率重建模型进行调节、优化和重建效果验证,直至重建效果验证结果符合预设约束条件;
所述增强预测算法包括:
将所述原始训练集中的每张原始高清图片分别进行上、下、左、右翻转,生成四张翻转后的图片,并将每张翻转后的图片分别旋转90°、180°、270°,共生成12张图片;
将生成的12张图片分别输入至所述初始图像超分辨率重建模型,进行卷积、池化和全联接操作,得到相应的12张超分辨率重建图片;
将得到的12张超分辨率重建图片分别经过逆翻转、逆旋转操作,使每张图像、每个像素都变换回原始位置,变换回原始位置后的每张图片中每个位置的像素值取12张图中对应位置像素值的平均值。
2.根据权利要求1所述的一种基于CNN的WDSR图像超分辨率重建优化方法,其特征在于,卷积操作的非线性变换公式如下:
上式中,I’(x,y)表示卷积操作的输出像素,I(x,y)表示位置在x,y的输入像素点,k(i,j)表示卷积核i,j位置的权重,2k+1表示卷积核的大小。
3.根据权利要求1所述的一种基于CNN的WDSR图像超分辨率重建优化方法,其特征在于,所述PSNR方法的表达式如下:
上式中,I表示给定的大小为h×w的干净图像;K表示给定的大小为h×w噪声图像;MSE表示均方误差;n表示每个像素的比特数;PSNR表示峰值信噪比,数值越大,表示图像失真越小。
4.根据权利要求1所述的一种基于CNN的WDSR图像超分辨率重建优化方法,其特征在于,SSIM方法分别从亮度、对比度和结构三方面度量图像相似性,其取值范围为[0,1],取值越大,表示图像失真越小。
CN202110235842.5A 2021-03-03 2021-03-03 一种基于cnn的wdsr图像超分辨率重建优化方法 Active CN112884654B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110235842.5A CN112884654B (zh) 2021-03-03 2021-03-03 一种基于cnn的wdsr图像超分辨率重建优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110235842.5A CN112884654B (zh) 2021-03-03 2021-03-03 一种基于cnn的wdsr图像超分辨率重建优化方法

Publications (2)

Publication Number Publication Date
CN112884654A CN112884654A (zh) 2021-06-01
CN112884654B true CN112884654B (zh) 2024-02-20

Family

ID=76055314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110235842.5A Active CN112884654B (zh) 2021-03-03 2021-03-03 一种基于cnn的wdsr图像超分辨率重建优化方法

Country Status (1)

Country Link
CN (1) CN112884654B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038246A1 (en) * 2017-08-24 2019-02-28 Agfa Nv METHOD FOR GENERATING AN IMPROVED TOMOGRAPHIC IMAGE OF AN OBJECT
CN110599403A (zh) * 2019-09-09 2019-12-20 合肥工业大学 一种具有良好高频视觉效果的图像超分辨率重建方法
WO2020056791A1 (zh) * 2018-09-21 2020-03-26 五邑大学 一种多尺度空洞卷积神经网络超分辨率重构方法及装置
KR20200052402A (ko) * 2018-10-23 2020-05-15 주식회사 아나패스 보간된 전역 지름길 연결을 적용한 잔류 컨볼루션 신경망을 이용하는 초해상도 추론 방법 및 장치
CN111696043A (zh) * 2020-06-10 2020-09-22 上海理工大学 一种三维fsrcnn的高光谱图像超分辨率重建算法
CN111914686A (zh) * 2020-07-15 2020-11-10 云南电网有限责任公司带电作业分公司 基于周域关联和模式识别的sar遥感图像水域提取方法、装置及系统
CN112381123A (zh) * 2020-10-30 2021-02-19 鄂尔多斯应用技术学院 一种基于时间序列预测方法的采煤机故障预测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038246A1 (en) * 2017-08-24 2019-02-28 Agfa Nv METHOD FOR GENERATING AN IMPROVED TOMOGRAPHIC IMAGE OF AN OBJECT
WO2020056791A1 (zh) * 2018-09-21 2020-03-26 五邑大学 一种多尺度空洞卷积神经网络超分辨率重构方法及装置
KR20200052402A (ko) * 2018-10-23 2020-05-15 주식회사 아나패스 보간된 전역 지름길 연결을 적용한 잔류 컨볼루션 신경망을 이용하는 초해상도 추론 방법 및 장치
CN110599403A (zh) * 2019-09-09 2019-12-20 合肥工业大学 一种具有良好高频视觉效果的图像超分辨率重建方法
CN111696043A (zh) * 2020-06-10 2020-09-22 上海理工大学 一种三维fsrcnn的高光谱图像超分辨率重建算法
CN111914686A (zh) * 2020-07-15 2020-11-10 云南电网有限责任公司带电作业分公司 基于周域关联和模式识别的sar遥感图像水域提取方法、装置及系统
CN112381123A (zh) * 2020-10-30 2021-02-19 鄂尔多斯应用技术学院 一种基于时间序列预测方法的采煤机故障预测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Yang Yang,et al.License Plate Image Super-Resolution Based on Convolutional Neural Network.2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC).2018,第18182343卷723-727. *
基于WGAN单帧人脸图像超分辨率算法;周传华;吴幸运;李鸣;;计算机技术与发展(第09期);35-41 *
基于正交匹配追踪算法的急性运动超分辨率图像重构方法;郭瑞芳;科学技术与工程;第17卷(第30期);69-73 *
基于深度学习的红外图像超分辨率重建;史永祥等;应用科技;第47卷(第04期);8-13 *

Also Published As

Publication number Publication date
CN112884654A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN111754403B (zh) 一种基于残差学习的图像超分辨率重构方法
CN106683067B (zh) 一种基于残差子图像的深度学习超分辨率重建方法
CN110136062B (zh) 一种联合语义分割的超分辨率重建方法
CN111242846B (zh) 基于非局部增强网络的细粒度尺度图像超分辨率方法
CN110717868B (zh) 视频高动态范围反色调映射模型构建、映射方法及装置
CN110136057B (zh) 一种图像超分辨率重建方法、装置及电子设备
CN110796622B (zh) 一种基于串联神经网络多层特征的图像比特增强方法
CN112270644A (zh) 基于空间特征变换和跨尺度特征集成的人脸超分辨方法
CN111932461A (zh) 一种基于卷积神经网络的自学习图像超分辨率重建方法及系统
CN111105376B (zh) 基于双分支神经网络的单曝光高动态范围图像生成方法
CN112116601A (zh) 一种基于线性采样网络及生成对抗残差网络的压缩感知采样重建方法及系统
CN112767252B (zh) 一种基于卷积神经网络的图像超分辨率重建方法
CN112184549B (zh) 基于时空变换技术的超分辨图像重建方法
CN105513033A (zh) 一种非局部联合稀疏表示的超分辨率重建方法
CN114170088A (zh) 一种基于图结构数据的关系型强化学习系统及方法
CN115880158A (zh) 一种基于变分自编码的盲图像超分辨率重建方法及系统
CN115170392A (zh) 一种基于注意力机制的单图像超分辨率算法
CN114926883A (zh) 一种满足多种降质模型的人脸图像处理方法
CN112884654B (zh) 一种基于cnn的wdsr图像超分辨率重建优化方法
CN111986079A (zh) 基于生成对抗网络路面裂缝图像超分辨率重建方法及装置
CN116862765A (zh) 一种医学影像超分辨率重建方法及系统
CN113674154B (zh) 一种基于生成对抗网络的单幅图像超分辨率重建方法及系统
CN113344786B (zh) 基于几何生成模型的视频转码方法、装置、介质和设备
CN114862679A (zh) 基于残差生成对抗网络的单图超分辨率重建方法
CN114463181A (zh) 一种基于改进生成对抗网络的图像超分辨率方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant