CN112882207A - 光学成像镜头及成像设备 - Google Patents

光学成像镜头及成像设备 Download PDF

Info

Publication number
CN112882207A
CN112882207A CN202110470408.5A CN202110470408A CN112882207A CN 112882207 A CN112882207 A CN 112882207A CN 202110470408 A CN202110470408 A CN 202110470408A CN 112882207 A CN112882207 A CN 112882207A
Authority
CN
China
Prior art keywords
lens
optical imaging
imaging lens
image
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110470408.5A
Other languages
English (en)
Other versions
CN112882207B (zh
Inventor
章彬炜
曾昊杰
刘绪明
曾吉勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Lianyi Optics Co Ltd
Original Assignee
Jiangxi Lianyi Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Lianyi Optics Co Ltd filed Critical Jiangxi Lianyi Optics Co Ltd
Priority to CN202110470408.5A priority Critical patent/CN112882207B/zh
Publication of CN112882207A publication Critical patent/CN112882207A/zh
Application granted granted Critical
Publication of CN112882207B publication Critical patent/CN112882207B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明公开了一种光学成像镜头及成像设备,该光学成像镜头沿光轴从物侧到成像面依次包括:具有负光焦度的第一透镜,其物侧面为凸面、像侧面为凹面;具有负光焦度的第二透镜,其物侧面为凹面、像侧面为凸面;光阑;具有正光焦度的第三透镜,其物侧面为凸面、像侧面为凸面;具有正光焦度的第四透镜,其物侧面为凸面、像侧面为凸面;具有负光焦度的第五透镜,其物侧面为凹面、像侧面为凹面;具有正光焦度的第六透镜,其物侧面为凸面、像侧面为凸面;具有负光焦度的第七透镜,其物侧面在近光轴处为凸面且具有反曲点,其像侧面在近光轴处为凹面且具有反曲点。该光学成像镜头具有超大光圈、长焦摄远、高像素、小型化、热稳定性好等优点。

Description

光学成像镜头及成像设备
技术领域
本发明涉及成像镜头技术领域,特别是涉及一种超大光圈长焦光学成像镜头及成像设备。
背景技术
随着安防监控视频技术应用范围和场景的逐步拓展,以及安防监控在高清化、网络化、智能化等方面的要求日益加强,安防监控镜头产品在高清图像输出、超大光圈、日夜共焦成像、高可靠性等方面的技术水平要求也日益提升。
目前市场上流行的大部分监控类镜头的光圈比较小,F#大部分在2.0以上,导致此类镜头在强光及低照度环境下成像效果较差、分辨率偏低,不能满足室内外复杂的环境光下日夜高清成像的需求;还有许多监控类镜头镜片片数多,甚至采用全玻璃材料镜片,使镜头的成本较高且体积较大,不利于在市场上推广应用。
发明内容
为此,本发明的目的在于提出一种光学成像镜头及成像设备,至少具有超大光圈、长焦摄远、高像素、小型化、热稳定性好、成本相对较低的优点。
本发明实施例通过以下技术方案实施上述的目的。
第一方面,本发明提供了一种光学成像镜头,沿光轴从物侧到成像面依次包括:第一透镜、第二透镜、光阑、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、滤光片以及保护玻璃。其中,所述第一透镜具有负光焦度,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;所述第二透镜具有负光焦度,所述第二透镜的物侧面为凹面,所述第二透镜的像侧面为凸面;所述第三透镜具有正光焦度,所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凸面;所述第四透镜具有正光焦度,所述第四透镜的物侧面为凸面,所述第四透镜的像侧面为凸面;所述第五透镜具有负光焦度,所述第五透镜的物侧面为凹面,所述第五透镜的像侧面为凹面;所述第六透镜具有正光焦度,所述第六透镜的物侧面为凸面,所述第六透镜像侧面为凸面;所述第七透镜具有负光焦度,所述第七透镜的物侧面在近光轴处为凸面且具有反曲点,所述第七透镜的像侧面在近光轴处为凹面且具有反曲点。所述光学成像镜头满足以下条件式:0.9<F#<1,F#表示光学成像镜头的相对孔径。
第二方面,本发明提供一种成像设备,包括成像元件及第一方面提供的光学成像镜头,成像元件用于将光学成像镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学成像镜头及成像设备,通过合理的搭配各透镜之间的镜片形状与光焦度组合,以及合理选取第三透镜的球面玻璃材料,有效控制了热焦点偏移,使镜头在高低温环境下(-30~70℃)依旧有良好成像表现;由于光阑的位置及各透镜的面型设置合理,使镜头具有超大光圈的特性,满足明暗环境的成像需求;同时还具有高像素、长焦摄远、小型化、成本相对较低的优点,能够满足安防监控类设备的使用需求。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明第一实施例中的光学成像镜头的结构示意图;
图2为本发明第一实施例中的光学成像镜头的f-tanθ畸变曲线图;
图3为本发明第一实施例中的光学成像镜头的垂轴色差图;
图4为本发明第一实施例中的光学成像镜头的MTF图;
图5为本发明第一实施例中的光学成像镜头在常温20℃下的离焦曲线图;
图6为本发明第一实施例中的光学成像镜头在低温-30℃下的离焦曲线图;
图7为本发明第一实施例中的光学成像镜头在高温70℃下的离焦曲线图;
图8为本发明第二实施例中的光学成像镜头的结构示意图;
图9为本发明第二实施例中的光学成像镜头的f-tanθ畸变曲线图;
图10为本发明第二实施例中的光学成像镜头的垂轴色差图;
图11为本发明第二实施例中的光学成像镜头的MTF图;
图12为本发明第三实施例中的光学成像镜头的结构示意图;
图13为本发明第三实施例中的光学成像镜头的f-tanθ畸变曲线图;
图14为本发明第三实施例中的光学成像镜头的垂轴色差图;
图15为本发明第三实施例中的光学成像镜头的MTF图;
图16为本发明第四实施例中的光学成像镜头的结构示意图;
图17为本发明第四实施例中的光学成像镜头的f-tanθ畸变曲线图;
图18为本发明第四实施例中的光学成像镜头的垂轴色差图;
图19为本发明第四实施例中的光学成像镜头的MTF图;
图20为第七透镜上反曲点与光轴的垂直距离示意图;
图21为本发明第五实施例提供的成像设备的结构示意图。
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。在说明书全文中,相同的附图标号指代相同的元件。
本发明提出一种光学成像镜头,该光学成像镜头沿光轴从物侧到成像面依次包括:第一透镜、第二透镜、光阑、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、滤光片以及保护玻璃。
第一透镜具有负光焦度,第一透镜的物侧面为凸面,第一透镜的像侧面为凹面;
第二透镜具有负光焦度,第二透镜的物侧面为凹面,第二透镜的像侧面为凸面;
第三透镜具有正光焦度,第三透镜的物侧面和像侧面均为凸面;
第四透镜具有正光焦度,第四透镜的物侧面和像侧面均为凸面;
第五透镜具有负光焦度,第五透镜的物侧面和像侧面均为凹面;
第六透镜具有正光焦度,第六透镜的物侧面和像侧面均为凸面;
第七透镜具有负光焦度, 第七透镜的物侧面在近光轴处为凸面且具有反曲点,第七透镜的像侧面在近光轴处为凹面且具有反曲点。
所述光学成像镜头满足以下条件式:
0.9<F#<1;(1)
其中,F#表示光学成像镜头的相对孔径。相对孔径F#是镜头的有效焦距与入射孔径的比值,F#越小表示光学成像镜头的光圈越大。满足条件式(1)时,表明光学成像镜头具有超大光圈的特性,在低照度的环境下依然能有优良的成像效果,能够满足明暗环境的成像需求。
在一些实施例中,所述光学成像镜头满足以下条件式:
1.8<f/IH<1.9;(2)
其中,f表示光学成像镜头的有效焦距,IH表示光学成像镜头的实际半像高。满足条件式(2)时,表明镜头具有长焦性能,能保证光学系统的摄远效果,使系统具有较大的放大倍率,同时放宽镜头对装配公差的容忍度,有效降低镜头的公差敏感性。
在一些实施例中,所述光学成像镜头满足以下条件式:
0.5<SAG11/CT1<2;(3)
0.5<SAG12/CT1<2;(4)
其中,SAG11表示第一透镜的物侧面的矢高,SAG12表示第一透镜的像侧面的矢高,CT1表示第一透镜的中心厚度。满足条件式(3)和(4),能合理限制第一透镜的面型形状,在保证镜片对光线的曲折力的前提下,降低镜片的加工难度;如果SAG11/CT1或SAG12/CT1的值超过下限时,第一透镜对光线的曲折能力不足,会导致镜头总长较长;如果SAG11/CT1或SAG12/CT1的值超过上限时,第一透镜的物侧面形状外凸明显,导致镜片加工成型困难。
在一些实施例中,所述光学成像镜头满足以下条件式:
0.5<SAG21/CT2<2;(5)
0.5<SAG22/CT2<2;(6)
其中,SAG21表示第二透镜的物侧面的矢高,SAG22表示第二透镜的像侧面的矢高,CT2表示第二透镜的中心厚度。满足条件式(5)和(6),能合理限制第二透镜的面型形状,在保证镜片对光线的曲折力的前提下,降低镜片的加工难度。如果SAG21/CT2或SAG22/CT2的值超过下限时,第二透镜对光线的曲折能力不足,会导致镜头总长较长;如果SAG21/CT2或SAG22/CT2的值超过上限时,第二透镜的像侧面形状外凸明显,导致镜片加工成型困难。
在一些实施方式中,所述光学成像镜头满足以下条件式:
1.69<Nd3<1.73;(7)
52<Vd3<55;(8)
其中,Nd3表示第三透镜的折射率,Vd3 表示第三透镜的色散系数。满足条件式(7)和(8),能合理限定第三透镜的玻璃材料选择,平衡其它光学镜片组及结构由于热膨胀所带来的焦点偏移导致的镜头成像不清晰的问题,使得光学成像镜头在高低温环境下(-30~70℃)依旧有良好的成像表现,提升光学成像镜头的热稳定性,拓宽光学成像镜头的应用范围。
在一些实施方式中,所述光学成像镜头满足以下条件式:
2.5mm<YR71<4mm;(9)
2.5mm<YR72<4mm;(10)
其中,YR71表示第七透镜的物侧面上反曲点与光轴的垂直距离,YR72表示第七透镜像侧面上反曲点与光轴的垂直距离,具体YR71和YR72的示意图可参见图20所示。第七透镜的物侧面和像侧面上均设置有反曲点,满足条件式(9)和(10),能够合理限制第七透镜的物侧面和像侧面上反曲点的位置,有助于加强轴外视场的慧差矫正同时很好的收敛场曲,提升成像品质。
在一些实施方式中,所述光学成像镜头满足以下条件式:
2.0<ET5/CT5<3.2;(11)
其中,CT5表示第五透镜的中心厚度,ET5表示第五透镜的边缘厚度。满足条件式(11)时,能合理限制第五透镜的形状,在保证该双凹镜片对光线的发散能力的前提下,降低镜片的加工难度;且ET5/CT5的值超过下限时,会使第五透镜对光线的发散能力不足,并导致镜头总长较长;ET5/CT5的值超过上限时,第五透镜的厚薄比较大,且由于是双凹的镜片,导致镜片加工成型困难。
在一些实施方式中,所述光学成像镜头满足以下条件式:
1.9<EPND/IH<2;(12)
其中,EPND表示光学成像镜头的通光孔径,IH表示光学成像镜头的实际半像高。满足条件式(12)时,能够实现镜头的大通光量与大成像面的合理均衡,使镜头具有超大光圈的同时具有较高的解像力。
在一些实施方式中,所述光学成像镜头满足以下条件式:
0.85mm-1<(TL/f)/IH<0.9mm-1;(13)
其中,TL表示光学成像镜头的光学总长,f表示光学成像镜头的有效焦距,IH表示光学成像镜头的实际半像高。满足条件式(13)时,能合理均衡镜头的总长与解像能力的关系。如果(TL/f)/IH的值超过上限时,镜头的整体总长过大,或者说如果整体缩短总长的情况下,像高会不足;(TL/f)/IH的值超过下限时,由于各透镜的光焦度过大,镜头像差矫正困难,解像能力显著下降。
在一些实施方式中,所述光学成像镜头满足以下条件式:
6.5mm<IH/tanθ<7.5mm;(14)
其中,IH表示光学成像镜头的实际半像高,θ表示光学成像镜头的半视场角。满足条件式(14)时,能够合理限定光学成像镜头的畸变,降低畸变矫正的难度。IH/tanθ的值超过下限时,镜头的畸变会朝负方向增大,导致画面桶形畸变明显,影响拍摄画面的视觉效果;IH/tanθ的值超过上限时,镜头的畸变会朝正方向变大,从而导致光学系统的边缘相对照度降低,画面有暗角风险。
在一些实施方式中,所述光学成像镜头满足以下条件式:
CRA<12°;(15)
其中,CRA表示光学成像镜头的主光线在成像面上的入射角。满足条件式(15)时,能够很好的匹配芯片的主光线入射角,实现良好的成像效果。
作为一种实施方式,采用一片玻璃镜片和六片塑胶镜片的玻塑混合搭配结构,在实现小型化和低成本的同时,还能够保证镜头具有良好的成像效果。其中第三透镜可以是玻璃球面材质,能很好的矫正系统的温漂,提升镜头的热稳定性。第一透镜、第二透镜、第四透镜、第五透镜、第六透镜以及第七透镜可以是塑胶非球面镜片,采用非球面镜片,可以有效减少镜片数量,修正像差,提供更好的光学性能。
下面分多个实施例对本发明进行进一步的说明。在各个实施例中,光学成像镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。下述实施例仅为本发明的较佳实施方式,但本发明的实施方式并不仅仅受下述实施例的限制,其他的任何未背离本发明创新点所作的改变、替代、组合或简化,都应视为等效的置换方式,都包含在本发明的保护范围之内。
在本发明各个实施例中,当光学成像镜头中的透镜为非球面透镜时,透镜的非球面面型均满足如下方程式:
Figure 132595DEST_PATH_IMAGE001
其中,z为非球面沿光轴方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率,k为圆锥系数conic,A2i为第2i阶的非球面面型系数。
第一实施例
请参阅图1,所示为本申请第一实施例提供的光学成像镜头100的结构示意图,该光学成像镜头100沿光轴从物侧到成像面依次包括第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1和保护玻璃G2。
其中,第一透镜L1具有负光焦度,第一透镜的物侧面S1为凸面,第一透镜的像侧面S2为凹面;
第二透镜L2具有负光焦度,第二透镜的物侧面S3为凹面,第二透镜的像侧面S4为凸面;
第三透镜L3具有正光焦度,第三透镜的物侧面S5和像侧面S6均为凸面;
第四透镜L4具有正光焦度,第四透镜的物侧面S7和像侧面S8均为凸面;
第五透镜L5具有负光焦度,第五透镜的物侧面S9和像侧面S10均为凹面;
第六透镜L6具有正光焦度,第六透镜的物侧面S11和像侧面S12均为凸面;
第七透镜L7具有负光焦度, 第七透镜的物侧面S13在近光轴处为凸面且具有一个反曲点,第七透镜的像侧面S14在近光轴处为凹面且具有一个反曲点;
第一透镜L1、第二透镜L2、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7均为塑胶非球面镜片,第三透镜L3为玻璃球面镜片。
具体的,本实施例提供的光学成像镜头100的各透镜的设计参数如表1所示。
表1
Figure 540443DEST_PATH_IMAGE002
本实施例中,光学成像镜头100中各个透镜的非球面参数如表2所示。
表2
Figure 831747DEST_PATH_IMAGE003
请参照图2、图3、图4、图5、图6以及图7,所示分别为光学成像镜头100的f-tanθ畸变曲线图、垂轴色差曲线图、调制传递函数(MTF)曲线图、在常温20℃下的离焦曲线图、在低温-30℃下的离焦曲线图以及在高温70℃下的离焦曲线图,从图2中可以看出光学畸变控制在-15%以内,说明光学成像镜头100的畸变得到良好的矫正;从图3中可以看出不同波长处的垂轴色差控制在2.5微米以内,说明光学成像镜头100的垂轴色差得到良好的矫正;从图4中可以看出MTF值均在0.7以上,说明光学成像镜头100的解像力表现优秀,具有良好的成像质量;从图5、图6、图7可以看出,在常温(20℃)、低温(-30℃)、高温(70℃)下,曲线都比较密集,说明光学成像镜头100的温漂较小,光学热稳定性好。
第二实施例
如图8所示,为本实施例提供的光学成像镜头200的结构示意图,本实施例的光学成像镜头200与上述第一实施例大致相同,不同之处主要在于设计参数不同。
具体的,本实施例提供的光学成像镜头200的设计参数如表3所示。
表3
Figure 364359DEST_PATH_IMAGE004
本实施例中,光学成像镜头200中各个透镜的非球面参数如表4所示。
表4
Figure 904538DEST_PATH_IMAGE005
请参照图9、图10和图11,所示分别为光学成像镜头200的f-tanθ畸变曲线图、垂轴色差曲线图、调制传递函数(MTF)曲线图,从图9中可以看出光学畸变控制在-15%以内,说明光学成像镜头200的畸变得到良好的矫正;从图10中可以看出不同波长处的垂轴色差控制在3微米以内,说明光学成像镜头200的垂轴色差得到良好的矫正;从图11中可以看出MTF值均在0.7以上,说明光学成像镜头200的解像力表现优秀,具有良好的成像质量。
第三实施例
如图12所示,为本实施例提供的光学成像镜头300的结构示意图,本实施例的光学成像镜头300与上述第一实施例大致相同,不同之处主要在于设计参数不同。
具体的,本实施例提供的光学成像镜头300的设计参数如表5所示。
表5
Figure 42258DEST_PATH_IMAGE006
本实施例中,光学成像镜头300中各个透镜的非球面参数如表6所示。
表6
Figure 629097DEST_PATH_IMAGE007
请参照图13、图14和图15,所示分别为光学成像镜头300的f-tanθ畸变曲线图、垂轴色差曲线图、调制传递函数(MTF)曲线图,从图13中可以看出光学畸变控制在-12.5%以内,说明光学成像镜头300的畸变得到良好的矫正;从图14中可以看出不同波长处的垂轴色差控制在1微米以内,说明光学成像镜头300的垂轴色差得到良好的矫正;从图15中可以看出MTF值均在0.6以上,说明光学成像镜头300的解像力表现优秀,具有良好的成像质量。
第四实施例
如图16所示,为本实施例提供的光学成像镜头400的结构示意图,本实施例的光学成像镜头400与上述第一实施例大致相同,不同之处主要在于设计参数不同。
具体的,本实施例提供的光学成像镜头400的设计参数如表7所示。
表7
Figure 852268DEST_PATH_IMAGE008
本实施例中,光学成像镜头400中各个透镜的非球面参数如表8所示。
表8
Figure 933488DEST_PATH_IMAGE009
请参照图17、图18和图19,所示分别为光学成像镜头400的f-tanθ畸变曲线图、垂轴色差曲线图、调制传递函数(MTF)曲线图,从图17可以看出光学畸变控制在-12%以内,说明光学成像镜头400的畸变得到良好的矫正;从图18中可以看出不同波长处的垂轴色差控制在2微米以内,说明光学成像镜头400的垂轴色差得到良好的矫正;从图19中可以看出MTF值均在0.6以上,说明光学成像镜头400的解像力表现优秀,具有良好的成像质量。
请参阅表9,所示为上述四个实施例中提供的光学成像镜头分别对应的光学特性,包括光学成像镜头的有效焦距f、光圈数F#、光学总长TL、视场角2θ、半像高IH,以及与前述的每个条件式对应的相关数值。
表9
Figure 925714DEST_PATH_IMAGE010
从以上每个实施例的垂轴色差、畸变曲线以及MTF曲线图可以看出,各实施例中的光学成像镜头的垂轴色差小于3微米、f-tanθ畸变值均在-15%以内、MTF值均在0.6以上,表明本发明实施例提供的镜头具有较小的畸变,成像画面失真小,同时具有良好的解像力。
本发明各实施例中的光学成像镜头在低温(-30℃)或高温(70℃)环境下,镜头的焦点偏移量较小;示例性地,图5、6和7分别为本发明第一实施例中的光学成像镜头100在常温20℃、低温-30℃以及高温70℃下的离焦曲线图,从图中可以看出,所述光学成像镜头100在低温(-30℃)或高温(70℃)下,曲线都比较密集,说明光学成像镜头的温漂较小,光学热稳定性好;其它实施例的镜头在高低温中焦点偏移量也较小,以上表明本发明的镜头温漂较小,光学热稳定性好。
综上所述,本发明实施例提供的光学成像镜头,通过合理的搭配各透镜之间的镜片形状、材料与光焦度组合,有效的修正了光学成像镜头的像差和温漂,由此,本发明实施例提供的光学成像镜头具有光学热稳定性好、成像品质高的优点;同时还具有超大光圈、长焦摄远、小型化、成本相对较低的优点,能够满足安防监控类设备的使用需求。
第五实施例
请参阅图21,所示为本发明第五实施例提供的成像设备500,该成像设备500可以包括成像元件510和上述任一实施例中的光学成像镜头(例如光学成像镜头100)。成像元件510可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
该成像设备500可以是安防监控设备、车载、全景相机以及其它任意一种形态的装载了上述光学成像镜头的电子设备。
本申请实施例提供的成像设备500包括光学成像镜头100,由于光学成像镜头100具有超大光圈、高像素、小型化、热稳定性好、成本相对较低的优点,具有该光学成像镜头100的成像设备500也具有超大光圈、高像素、小型化、热稳定性好、成本相对较低的优点,可满足安防监控类设备的使用需求。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

1.一种光学成像镜头,其特征在于,沿光轴从物侧到成像面依次包括:
具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
具有负光焦度的第二透镜,所述第二透镜的物侧面为凹面,所述第二透镜的像侧面为凸面;
光阑;
具有正光焦度的第三透镜,所述第三透镜的物侧面为凸面,所述第三透镜的像侧面为凸面;
具有正光焦度的第四透镜,所述第四透镜的物侧面为凸面,所述第四透镜的像侧面为凸面;
具有负光焦度的第五透镜,所述第五透镜的物侧面为凹面,所述第五透镜的像侧面为凹面;
具有正光焦度的第六透镜,所述第六透镜的物侧面为凸面,所述第六透镜像侧面为凸面;
具有负光焦度的第七透镜,所述第七透镜的物侧面在近光轴处为凸面且具有反曲点,所述第七透镜的像侧面在近光轴处为凹面且具有反曲点;
其中,所述光学成像镜头满足以下条件式:
0.9<F#<1;
其中,F#表示光学成像镜头的相对孔径。
2.根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜、所述第二透镜、所述第四透镜、所述第五透镜、所述第六透镜以及所述第七透镜均为塑胶非球面镜片,所述第三透镜为玻璃球面镜片。
3.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
1.8<f/IH<1.9;
其中,f表示所述光学成像镜头的有效焦距,IH表示所述光学成像镜头的实际半像高。
4.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
0.5<SAG11/CT1<2;
0.5<SAG12/CT1<2;
其中,SAG11表示所述第一透镜的物侧面的矢高,SAG12表示所述第一透镜的像侧面的矢高,CT1表示所述第一透镜的中心厚度。
5.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
0.5<SAG21/CT2<2;
0.5<SAG22/CT2<2;
其中,SAG21表示所述第二透镜的物侧面的矢高,SAG22表示所述第二透镜的像侧面的矢高,CT2表示所述第二透镜的中心厚度。
6.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
1.69<Nd3<1.73;
52<Vd3<55;
其中,Nd3表示所述第三透镜的折射率,Vd3 表示所述第三透镜的色散系数。
7.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
2.5mm<YR71<4mm;
2.5mm<YR72<4mm;
其中,YR71表示所述第七透镜的物侧面上反曲点与光轴的垂直距离,YR72表示所述第七透镜的像侧面上反曲点与光轴的垂直距离。
8.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
2< ET5/CT5<3.2;
其中,ET5表示所述第五透镜的边缘厚度,CT5表示所述第五透镜的中心厚度。
9.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
1.9<EPND/IH<2;
其中,EPND表示所述光学成像镜头的通光孔径,IH表示所述光学成像镜头的实际半像高。
10.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
0.85mm-1<(TL/f)/IH<0.90mm-1
其中,TL表示所述光学成像镜头的光学总长,f表示所述光学成像镜头的有效焦距,IH表示所述光学成像镜头的实际半像高。
11.根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足以下条件式:
6.5mm<IH/tanθ<7.5mm;
其中,IH表示所述光学成像镜头的实际半像高,θ表示所述光学成像镜头的半视场角。
12.一种成像设备,其特征在于,包括如权利要求1-11任一项所述的光学成像镜头及成像元件,所述成像元件用于将所述光学成像镜头形成的光学图像转换为电信号。
CN202110470408.5A 2021-04-29 2021-04-29 光学成像镜头及成像设备 Active CN112882207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110470408.5A CN112882207B (zh) 2021-04-29 2021-04-29 光学成像镜头及成像设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110470408.5A CN112882207B (zh) 2021-04-29 2021-04-29 光学成像镜头及成像设备

Publications (2)

Publication Number Publication Date
CN112882207A true CN112882207A (zh) 2021-06-01
CN112882207B CN112882207B (zh) 2021-07-06

Family

ID=76040204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110470408.5A Active CN112882207B (zh) 2021-04-29 2021-04-29 光学成像镜头及成像设备

Country Status (1)

Country Link
CN (1) CN112882207B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253430A (zh) * 2021-06-24 2021-08-13 江西联益光学有限公司 广角镜头及成像设备
CN114815165A (zh) * 2021-08-05 2022-07-29 三星电机株式会社 成像透镜系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015896A1 (en) * 2013-06-28 2016-05-04 Ricoh Imaging Company, Ltd. Zoom lens system
JP2016145928A (ja) * 2015-02-09 2016-08-12 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
CN106199922A (zh) * 2016-07-13 2016-12-07 浙江舜宇光学有限公司 七片式广角镜头
CN106324797A (zh) * 2015-06-29 2017-01-11 佳能企业股份有限公司 光学镜头
CN108132526A (zh) * 2016-12-01 2018-06-08 广西师范大学 一种用于三维测量的条纹投影镜头
CN108427172A (zh) * 2017-02-14 2018-08-21 先进光电科技股份有限公司 光学成像系统
US20180284397A1 (en) * 2016-07-25 2018-10-04 Nidec Sankyo Corporation Wide-angle lens
TW201910851A (zh) * 2017-08-14 2019-03-16 佳能企業股份有限公司 光學鏡頭
CN111025593A (zh) * 2019-12-30 2020-04-17 深圳市特莱斯光学有限公司 大孔径高清光学镜头
CN111929875A (zh) * 2020-09-24 2020-11-13 江西联创电子有限公司 定焦镜头
CN112068285A (zh) * 2020-09-22 2020-12-11 王翠莲 广角长焦成像光学系统
CN112433346A (zh) * 2020-12-10 2021-03-02 舜宇光学(中山)有限公司 一种大光圈光学系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015896A1 (en) * 2013-06-28 2016-05-04 Ricoh Imaging Company, Ltd. Zoom lens system
JP2016145928A (ja) * 2015-02-09 2016-08-12 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
CN106324797A (zh) * 2015-06-29 2017-01-11 佳能企业股份有限公司 光学镜头
CN106199922A (zh) * 2016-07-13 2016-12-07 浙江舜宇光学有限公司 七片式广角镜头
US20180284397A1 (en) * 2016-07-25 2018-10-04 Nidec Sankyo Corporation Wide-angle lens
CN108132526A (zh) * 2016-12-01 2018-06-08 广西师范大学 一种用于三维测量的条纹投影镜头
CN108427172A (zh) * 2017-02-14 2018-08-21 先进光电科技股份有限公司 光学成像系统
TW201910851A (zh) * 2017-08-14 2019-03-16 佳能企業股份有限公司 光學鏡頭
CN111025593A (zh) * 2019-12-30 2020-04-17 深圳市特莱斯光学有限公司 大孔径高清光学镜头
CN112068285A (zh) * 2020-09-22 2020-12-11 王翠莲 广角长焦成像光学系统
CN111929875A (zh) * 2020-09-24 2020-11-13 江西联创电子有限公司 定焦镜头
CN112433346A (zh) * 2020-12-10 2021-03-02 舜宇光学(中山)有限公司 一种大光圈光学系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253430A (zh) * 2021-06-24 2021-08-13 江西联益光学有限公司 广角镜头及成像设备
CN114815165A (zh) * 2021-08-05 2022-07-29 三星电机株式会社 成像透镜系统

Also Published As

Publication number Publication date
CN112882207B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN109407279B (zh) 广角镜头及成像设备
CN105938238B (zh) 拍摄镜头系统和具有拍摄镜头系统的拍摄设备
CN110554489B (zh) 广角镜头
US20080024882A1 (en) Subminiature optical system
CN113156611B (zh) 光学镜头和成像设备
CN110596857B (zh) 广角镜头及成像设备
CN114114650B (zh) 光学镜头及成像设备
CN110609378B (zh) 广角镜头及成像设备
CN113946037B (zh) 光学镜头及成像设备
CN112285907A (zh) 光学镜头及成像设备
CN112882207B (zh) 光学成像镜头及成像设备
CN113376813B (zh) 光学镜头及成像设备
CN114509863B (zh) 广角镜头及成像设备
CN114690382B (zh) 光学镜头及成像设备
CN113253434B (zh) 光学镜头及成像设备
CN114002828B (zh) 全景镜头及成像设备
CN112255772B (zh) 光学成像镜头及成像设备
CN113253430B (zh) 广角镜头及成像设备
CN115097613B (zh) 光学镜头及成像设备
CN115079386B (zh) 光学镜头及成像设备
CN113467061B (zh) 光学镜头及成像设备
CN112630943B (zh) 光学成像镜头及成像设备
CN113933973B (zh) 光学镜头及成像设备
CN112630944B (zh) 光学镜头及成像设备
CN112817120A (zh) 鱼眼镜头系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant