CN112877096A - Gasoline blending component and preparation method and system thereof - Google Patents
Gasoline blending component and preparation method and system thereof Download PDFInfo
- Publication number
- CN112877096A CN112877096A CN202110193514.3A CN202110193514A CN112877096A CN 112877096 A CN112877096 A CN 112877096A CN 202110193514 A CN202110193514 A CN 202110193514A CN 112877096 A CN112877096 A CN 112877096A
- Authority
- CN
- China
- Prior art keywords
- gasoline blending
- component
- heat exchange
- blending component
- hydrocarbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002156 mixing Methods 0.000 title claims abstract description 76
- 238000002360 preparation method Methods 0.000 title abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 68
- 150000001993 dienes Chemical class 0.000 claims abstract description 55
- 239000006227 byproduct Substances 0.000 claims abstract description 40
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 34
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 34
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 34
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 29
- 239000011593 sulfur Substances 0.000 claims abstract description 29
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 25
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000000926 separation method Methods 0.000 claims description 49
- 238000005984 hydrogenation reaction Methods 0.000 claims description 46
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 11
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 11
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 11
- 150000001336 alkenes Chemical class 0.000 claims description 10
- 150000001925 cycloalkenes Chemical class 0.000 claims description 7
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 6
- 150000001924 cycloalkanes Chemical class 0.000 claims description 5
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 239000002994 raw material Substances 0.000 abstract description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000012535 impurity Substances 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 34
- 239000003054 catalyst Substances 0.000 description 22
- 238000000197 pyrolysis Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002283 diesel fuel Substances 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004230 steam cracking Methods 0.000 description 2
- OSITUIQNHIARIW-UHFFFAOYSA-N 1,2,3-trimethylbenzene;1,2,4-trimethylbenzene Chemical compound CC1=CC=C(C)C(C)=C1.CC1=CC=CC(C)=C1C OSITUIQNHIARIW-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/02—Gasoline
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
The invention relates to the field of gasoline production, and discloses a gasoline blending component and a preparation method and a system thereof, wherein the method for preparing the gasoline blending component comprises the following steps: separating hydrocarbon byproducts from a methanol-to-propylene process to obtain a light component and a heavy component, and selectively hydrogenating diolefin after heat exchange of the light component to obtain a gasoline blending component. The method can prepare the gasoline blending component with higher octane number by utilizing the specific hydrocarbon by-product, the octane number of the raw material before and after preparation is reduced by 1-3 units, the property is more stable, the impurity content is less, the sulfur and oxygen-containing compounds are basically not contained, and the benzene content is lower than 1%. Meanwhile, the method is simple to operate, does not need to add a large amount of equipment, and is low in cost.
Description
Technical Field
The invention relates to the field of gasoline production and discloses a gasoline blending component and a preparation method and a system thereof.
Background
In the process of producing gasoline in petroleum route, selective diolefin hydrogenation is the focus of technical attention to reduce the sulfur content in oil products in order to produce low sulfur gasoline. CN105567317A discloses a method for producing high octane low sulfur gasoline, which comprises the following steps: carrying out selective diene hydrodesulfurization reaction on raw gasoline to obtain primary treated gasoline with the total sulfur content of 50-200 mu g/g; carrying out selective diene hydrogenation sweetening reaction on the primary treated gasoline to obtain secondary treated gasoline with the mercaptan content of 10-50 mu g/g; and (3) carrying out n-alkane removal treatment on the secondary treated gasoline to obtain a gasoline product with the non-n-alkane content of 80-100 wt%. The total sulfur content of the obtained gasoline product is reduced, the octane number of the gasoline is improved under the condition of not increasing the olefin content of the gasoline due to the increase of the non-normal alkane content, or the octane number level of the gasoline can be kept moderately under the condition of reducing the olefin content of the gasoline, and the separated normal alkane can be used as a very useful chemical raw material.
There are also processes for treating cracked-gasoline to obtain low-sulfur gasoline by means of an optimized catalyst. CN107189812A and CN107159283A both use pyrolysis gasoline by-product in steam cracking process as raw material, respectively disclose a method for selective diolefin hydrogenation of cracking C6-C8 fraction and a method for selective diolefin hydrogenation of cracking C5-C9 fraction. Aiming at the characteristics of complex composition and poor thermal stability of pyrolysis gasoline, firstly, diolefin and styrene are removed through first-stage selective diolefin hydrogenation, and after second-stage hydrodesulfurization, the pyrolysis gasoline is mainly used for extracting aromatic hydrocarbon. The catalyst disclosed in CN107189812A has strong adaptability to pyrolysis gasoline raw materials with different arsenic contents and different sulfur contents, and the low-temperature activity of the catalyst is good. The catalyst disclosed in CN107159283A has better gel-holding capacity, strong arsenic resistance, sulfur resistance and coking inhibition capacity, and good low-temperature activity. The adaptability to pyrolysis gasoline raw materials with different arsenic contents and different sulfur contents is strong.
The method for preparing the low-sulfur gasoline blending component by utilizing the byproducts from other processes by adopting a simpler process not only can expand the source of low-sulfur gasoline, but also can improve the utilization rate of the process byproducts and create great economic value.
Disclosure of Invention
The invention aims to provide a method for preparing a low-sulfur gasoline blending component by utilizing byproducts from other processes, and provides a gasoline blending component, a preparation method and a system thereof.
In order to achieve the above object, a first aspect of the present invention provides a method for preparing a gasoline blending component, the method comprising: separating hydrocarbon byproducts from a methanol-to-propylene process to obtain a light component and a heavy component, and selectively hydrogenating diolefin after heat exchange of the light component to obtain a gasoline blending component.
In a second aspect, the invention provides a gasoline blending component prepared by the method as described above.
The third aspect of the invention provides a system for preparing gasoline blending components, which comprises a separation unit, a heat exchange unit and a hydrogenation unit which are sequentially communicated according to the material flow direction;
the separation unit is used for separating the hydrocarbon byproducts from the process of preparing propylene from methanol to obtain light components and heavy components;
the heat exchange unit is used for carrying out heat exchange treatment on the light component to obtain a heat-exchanged light component;
the hydrogenation unit is used for carrying out selective diene hydrogenation on the light components after heat exchange to obtain the gasoline blending component.
The method can prepare the gasoline blending component with higher octane number by utilizing the specific hydrocarbon by-product, the octane number of the raw material before and after preparation is reduced by 1-3 units, the property is more stable, the impurity content is less, the sulfur and oxygen-containing compounds are basically not contained, and the benzene content is lower than 1%. The method of the invention has simple operation, no need of adding a large amount of equipment and low cost.
Drawings
FIG. 1 is a schematic illustration of a gasoline blending component prepared using the system for preparing a gasoline blending component of the present invention.
Description of the reference numerals
1 Hydrocarbon by-product 2 oil product separation tower from MTP process
3 heavy component 4 oil product separation tower top pipeline
5 light component feed pipeline after heat exchange of heat exchanger 6
7 hydrogenation reactor 8 gasoline blending component
Detailed Description
The endpoints of the ranges and any values disclosed herein are not limited to the precise range or value, and such ranges or values should be understood to encompass values close to those ranges or values. For ranges of values, between the endpoints of each of the ranges and the individual points, and between the individual points may be combined with each other to give one or more new ranges of values, and these ranges of values should be considered as specifically disclosed herein.
The inventor of the present invention found in the research process that the by-product of the Methanol To Propylene (MTP) process contains about 10-11 wt% of hydrocarbon by-product of methanol raw material, and the carbon number distribution of the hydrocarbon by-product is wide and is concentrated on C4-C12Wherein the number of carbons of the cycloolefin is centered on C6、C7And C8With C7The number of the plants is large; aromatic carbon number centered on C7、C8And C9The content of xylene (m-xylene) and trimethylbenzene (1,2, 4-trimethylbenzene) is about 60 percent at most. The product has low impurity content and almost no sulfur. The inventor of the invention finds that the hydrocarbon by-product is separated under certain conditions to obtain a light component, and then the light component is subjected to selective diene hydrogenation to obtain a gasoline blending component, so that the octane number loss caused by olefin saturation can be reduced to the maximum extent on the basis of ensuring the quality stability of products.
In a first aspect, the present invention provides a process for preparing a gasoline blending component, the process comprising: separating hydrocarbon byproducts from a methanol-to-propylene process to obtain a light component and a heavy component, and selectively hydrogenating diolefin after heat exchange of the light component to obtain a gasoline blending component.
In the present invention, the hydrocarbon by-product obtained from the methanol to propylene process can be used for preparing gasoline blending components, and preferably, the hydrocarbon by-product from the methanol to propylene process comprises the following components: 2.5 to 4.5% by weight of an alkane, 21 to 60% by weight of an alkene, 9 to 12.5% by weight of a cycloalkane, 0.5 to 2.5% by weight of a cycloalkene, and 16 to 60% by weight of an aromatic hydrocarbon. Under the preferable condition, the prepared gasoline blending component has lower octane number loss and more stable product quality.
Preferably, the content of the components of C4-C12 in the hydrocarbon by-product from the methanol-to-propylene process is 93-98 wt%.
Preferably, the content of the components of C6-C9 in the hydrocarbon by-product from the methanol-to-propylene process is 58-71 wt%.
Preferably, the content of sulfur element in the hydrocarbon by-product from the methanol-to-propylene process is below 5 ppm.
Preferably, the diene value of the hydrocarbon by-product from the methanol to propylene process is not more than 25gI/100 g.
Generally, the temperature of the hydrocarbon by-product from the methanol to propylene process is 35-50 ℃, and the temperature after material heat exchange is 120-220 ℃.
Preferably, the conditions of the separation include: the temperature is 170-. More preferably, the conditions of the separation include: the temperature is 175 ℃ and 190 ℃, and the pressure is 2.34-2.44 MPa. Under the preferable conditions, the diolefin can be separated from the light component at the top of the rectifying tower, the proportion of the diolefin is higher, and the quality of the gasoline blending component is further improved.
In the present invention, the separation may be carried out in an apparatus conventionally used in the art, and preferably, the separation is carried out in an oil separation column (such as a rectification column). It should be understood that when the separation is performed in the oil separation tower, the separation temperature refers to the kettle temperature of the oil separation tower and the temperature of a reboiler at the bottom of the oil separation tower, and the separation pressure refers to the pressure at the top of the oil separation tower. Preferably, the pressure difference between the bottom of the tower and the top of the tower is 20-40kpa, and the temperature at the top of the tower is 150-190 ℃.
The light component obtained by separation is used for preparing subsequent gasoline blending components, and the heavy component obtained by separation can be used for preparing diesel oil.
In the present invention, the heat exchange may be carried out in a heat exchanger.
Preferably, the heat exchange conditions are such that the temperature of the light components after heat exchange is from 30 ℃ to 120 ℃ (e.g., can be from 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120 ℃ and any range consisting of any two values), more preferably from 30 ℃ to 80 ℃.
In the invention, the light component after heat exchange is subjected to selective diene hydrogenation treatment to obtain the gasoline blending component. The selective diene hydrotreatment can be carried out in equipment conventionally used in the art, such as a selective diene hydrogenation reactor.
Preferably, the conditions for the selective diene hydrogenation comprise: the temperature is 30-100 ℃ (for example, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 ℃ and any range formed between any two values), and the volume space velocity is 1-30h-1(for example, the number of the grooves can be 1, 5, 10, 15, 20, 25 and 30h-1And any range formed between any two values).
Wherein the volume space velocity refers to the volume space velocity of all the feed gases.
Wherein in the selective diene hydrogenation step, the volume ratio of the light components after heat exchange to hydrogen is 1: 3-20.
The selective diolefin hydrogenation is carried out in the presence of a selective diolefin hydrogenation catalyst, the selective diolefin hydrogenation catalyst can be any kind of existing selective diolefin hydrogenation catalyst, for example, the catalyst can be a catalyst loaded with palladium, cobalt, nickel, molybdenum and other elements, and the carrier can be alumina and the like.
The selective diene hydrogenation catalyst can be prepared by self or obtained commercially, for example, the selective diene hydrogenation catalyst can be a selective diene hydrogenation catalyst which is purchased from Kary environmental protection science and technology Co., Ltd and has the brand number of KC 128; sichuan Runhe (R) and catalysis New materials, namely selective diolefin hydrogenation catalyst with the brand number of RDC (RDC).
The second aspect of the invention provides a gasoline blending component prepared by the method.
Preferably, the diene value in the gasoline blending component is < 15gI/100 g; more preferably, the diene value in the gasoline blending component is < 10gI/100 g.
Preferably, the gasoline blending component has a sulfur content of < 3ppm, more preferably < 1 ppm.
Preferably, the gasoline blending component has an octane number above 90.
The third aspect of the invention provides a system for preparing gasoline blending components, which comprises a separation unit, a heat exchange unit and a hydrogenation unit which are sequentially communicated according to the material flow direction;
the separation unit is used for separating the hydrocarbon byproducts from the process of preparing propylene from methanol to obtain light components and heavy components;
the heat exchange unit is used for carrying out heat exchange treatment on the light component to obtain a heat-exchanged light component;
the hydrogenation unit is used for carrying out selective diene hydrogenation on the light components after heat exchange to obtain the gasoline blending component.
In a preferred embodiment of the present invention, as shown in fig. 1, the system for preparing gasoline blending components comprises a separation unit, a heat exchange unit and a hydrogenation unit which are sequentially communicated according to a material flow direction, wherein the separation unit comprises an oil product separation tower 2, the heat exchange unit preferably comprises a heat exchanger 5, and the hydrogenation unit comprises a hydrogenation reactor 7. The hydrocarbon by-product 1 from the MTP process is conveyed to an oil product separation tower 2 through a pipeline for separation to obtain a heavy component 3 (discharged from the bottom of the oil product separation tower 2) and a light component, the light component is conveyed to a heat exchanger 5 through a pipeline 4 at the top of the oil product separation tower for heat exchange, and the obtained light component after heat exchange is conveyed to a hydrogenation reactor 7 through a light component feeding pipeline 6 after heat exchange for selective diene hydrogenation to obtain a gasoline blending component 8.
The method for preparing gasoline blending components by using the system is explained in detail in the first aspect, and is not repeated.
The present invention will be described in detail below by way of examples.
The selective diolefin hydrogenation catalyst used in the following examples was sold under the trade designation KC128, manufactured by Kary environmental protection science and technology Inc.
Example 1
This example illustrates the preparation of a gasoline blending component according to the present invention.
The hydrocarbon by-product from the MTP process is used as a raw material, wherein the raw material comprises the following components: paraffin 3.36 wt%, alkene 38.90 wt%, cycloalkane 10.61 wt%, cycloalkene 0.67 wt% and arene 46.46 wt%. The properties are shown in table 1.
TABLE 1
The hydrocarbon by-product 1 from the MTP process at the temperature of 162 ℃ is conveyed to an oil product separation tower 2 through a pipeline for separation to obtain light components and heavy components, the temperature of a reboiler at the bottom of the oil product separation tower is 185 ℃, and the tower pressure is 2.38 MPa. And discharging heavy components from the bottom of the oil product separation tower for preparing diesel oil.
The light component is conveyed to a heat exchanger 5 through a pipeline 4 at the top of the oil product separation tower for heat exchange, and the temperature of the obtained light component after heat exchange is 42 ℃.
And (3) conveying the light component subjected to heat exchange to a hydrogenation reactor 7 through a light component feeding pipeline 6, and carrying out selective diene hydrogenation in the presence of a selective diene catalyst to obtain a gasoline blending component 8. Wherein the temperature is 42 ℃ and H2The volume ratio of the heat exchange catalyst to the light component after heat exchange is 10:1, and the volume space velocity is 20h-1。
The results of diene number, octane number and sulfur content in the gasoline blending component product obtained are shown in Table 5.
Example 2
This example illustrates the preparation of a gasoline blending component according to the present invention.
The hydrocarbon by-product from the MTP process is used as a raw material, wherein the raw material comprises the following components: paraffin 4.08 wt%, alkene 50.82 wt%, cycloalkane 10.33 wt%, cycloalkene 0.51 wt% and arene 34.26 wt%. The properties are shown in Table 2.
TABLE 2
The hydrocarbon by-product 1 from the MTP process with the temperature of 167 ℃ is conveyed to an oil product separation tower 2 through a pipeline for separation to obtain light components and heavy components, the temperature of a reboiler at the bottom of the oil product separation tower is 188 ℃, and the tower pressure is 2.40 MPa. And discharging heavy components from the bottom of the oil product separation tower for preparing diesel oil.
The light component is conveyed to a heat exchanger 5 through a pipeline 4 at the top of the oil product separation tower for heat exchange, and the temperature of the obtained light component after heat exchange is 44 ℃.
And (3) conveying the light component subjected to heat exchange to a hydrogenation reactor 7 through a light component feeding pipeline 6, and carrying out selective diene hydrogenation in the presence of a selective diene catalyst to obtain a gasoline blending component 8. Wherein the temperature is 44 ℃, H2The volume ratio of the heat exchange catalyst to the light components after heat exchange is 13:1, and the volume space velocity is 18h-1。
The results of diene number, octane number and sulfur content in the gasoline blending component product obtained are shown in Table 5.
Example 3
This example illustrates the preparation of a gasoline blending component according to the present invention.
The hydrocarbon by-product from the MTP process is used as a raw material, wherein the raw material comprises the following components: paraffin 2.90 wt%, alkene 26.33 wt%, cycloalkane 11.36 wt%, cycloalkene 1.12 wt% and arene 58.29 wt%. The properties are shown in Table 3.
TABLE 3
The hydrocarbon by-product 1 from the MTP process at the temperature of 160 ℃ is conveyed to an oil product separation tower 2 through a pipeline for separation to obtain light components and heavy components, the temperature of a reboiler at the bottom of the oil product separation tower is 183 ℃, and the pressure of the tower is 2.36 MPa. And discharging heavy components from the bottom of the oil product separation tower for preparing diesel oil.
The light component is conveyed to a heat exchanger 5 through a pipeline 4 at the top of the oil product separation tower for heat exchange, and the temperature of the obtained light component after heat exchange is 38 ℃.
And (3) conveying the light component subjected to heat exchange to a hydrogenation reactor 7 through a light component feeding pipeline 6, and carrying out selective diene hydrogenation in the presence of a selective diene catalyst to obtain a gasoline blending component 8. Wherein the temperature is 38 ℃, H2The volume ratio of the heat exchange catalyst to the light component after heat exchange is 10:1, and the volume space velocity is 25h-1。
The results of diene number, octane number and sulfur content in the gasoline blending component product obtained are shown in Table 5.
Example 4
This example illustrates the preparation of a gasoline blending component according to the present invention.
The gasoline blending component was prepared according to the materials and methods described in example 1, except that the separation temperature was 175 ℃ and the pressure was 2.34 MPa.
The results of diene number, octane number and sulfur content in the gasoline blending component product obtained are shown in Table 5.
Example 5
This example illustrates the preparation of a gasoline blending component according to the present invention.
The preparation of gasoline blending components was carried out according to the materials and methods described in example 1, except that the separation temperature was 170 ℃ and the pressure was 2.3 MPa.
The results of diene number, octane number and sulfur content in the gasoline blending component product obtained are shown in Table 5.
Example 6
This example illustrates the preparation of gasoline blending components according to the present invention
The preparation of gasoline blending components was carried out according to the materials and methods described in example 1, except that the separation temperature was 220 ℃ and the pressure was 2.5 MPa.
The results of diene number, octane number and sulfur content in the gasoline blending component product obtained are shown in Table 5.
Example 7
This example illustrates the preparation of a gasoline blending component according to the present invention.
The preparation of gasoline blending components was carried out according to the materials and methods described in example 1, except that the temperature of the light components after heat exchange was 80 ℃ and the hydrogenation conditions were: at a temperature of 80 ℃ and H2The volume ratio of the heat exchange catalyst to the light component after heat exchange is 3:1, and the volume space velocity is 30h-1。
The results of diene number, octane number and sulfur content in the gasoline blending component product obtained are shown in Table 5.
Example 8
This example illustrates the preparation of a gasoline blending component according to the present invention.
The preparation of gasoline blending components was carried out according to the materials and methods described in example 1, except that the temperature of the light components after heat exchange was 120 ℃ and the hydrogenation conditions were: at a temperature of 100 ℃ H2The volume ratio of the heat exchange catalyst to the light component after heat exchange is 20:1, and the volume space velocity is 1h-1。
The results of diene number, octane number and sulfur content in the gasoline blending component product obtained are shown in Table 5.
Comparative example 1
This comparative example serves to illustrate the preparation of a reference gasoline blending component.
The hydrocarbon by-product of the MTP process described in example 1 was used as a feedstock to prepare gasoline blending components, except that the preparation method was different, and specifically included: temperature ofThe hydrocarbon by-product with the temperature of 162 ℃ from the MTP process is conveyed to a hydrogenation reactor through a pipeline for deep hydrogenation reaction, H2The volume ratio of the MTP process hydrocarbon by-product is 50:1, and the volume space velocity is 12h-1。
The results of diene number, octane number and sulfur content in the gasoline blending component product obtained are shown in Table 5.
Comparative example 2
This comparative example serves to illustrate the preparation of a reference gasoline blending component.
The method of example 1 was used to prepare gasoline blending components, except that the feedstock was pyrolysis gasoline, which is a byproduct of a device for producing olefins by steam cracking of naphtha, wherein the feedstock comprised: paraffin 21.30 wt%, olefin 8.47 wt%, naphthene 2.64 wt%, cycloolefin 0.16 wt% and aromatic 67.43 wt%. The properties are shown in Table 4.
The results of diene number, octane number and sulfur content in the gasoline blending component product obtained are shown in Table 5.
TABLE 4
TABLE 5
The preferred embodiments of the present invention have been described above in detail, but the present invention is not limited thereto. Within the scope of the technical idea of the invention, many simple modifications can be made to the technical solution of the invention, including combinations of various technical features in any other suitable way, and these simple modifications and combinations should also be regarded as the disclosure of the invention, and all fall within the scope of the invention.
Claims (10)
1. A method of preparing a gasoline blending component, the method comprising: separating hydrocarbon byproducts from a methanol-to-propylene process to obtain a light component and a heavy component, and selectively hydrogenating diolefin after heat exchange of the light component to obtain a gasoline blending component.
2. The method of claim 1, wherein the hydrocarbon by-product from the methanol to propylene process comprises components having the following contents: 2.5 to 4.5% by weight of an alkane, 21 to 60% by weight of an alkene, 9 to 12.5% by weight of a cycloalkane, 0.5 to 2.5% by weight of a cycloalkene, and 16 to 60% by weight of an aromatic hydrocarbon.
3. The process of claim 1 or 2, wherein the hydrocarbon by-product from a methanol to propylene process has a content of components from C4 to C12 of 93 to 98 wt%;
preferably, the content of sulfur element in the hydrocarbon by-product from the methanol-to-propylene process is below 5 ppm;
preferably, the diene value of the hydrocarbon by-product from the methanol to propylene process is not more than 25gI/100 g.
4. The method of any one of claims 1-3, wherein the conditions of the separation comprise: the temperature is 170-220 ℃, and the pressure is 2.3-2.5 MPa;
preferably, the conditions of the separation include: the temperature is 175 ℃ and 190 ℃, and the pressure is 2.34-2.44 MPa.
5. A process according to any one of claims 1 to 4, wherein the heat exchange conditions are such that the temperature of the light components after heat exchange is from 30 to 120 ℃, more preferably from 30 to 80 ℃.
6. The process of any one of claims 1-5, wherein the conditions for selective diene hydrogenation comprise: the temperature is 30-100 ℃, and the volume space velocity is 1-30h-1。
7. The process of any one of claims 1 to 6, wherein in the selective diolefin hydrogenation step, the volume ratio of light components and hydrogen after heat exchange is 1:3 to 20.
8. A gasoline blending component produced by the process of any of claims 1 to 7.
9. Gasoline blending component according to claim 8, wherein the diene value in the gasoline blending component is < 15gI/100g, preferably < 10gI/100 g; and/or
The sulfur content of the gasoline blending component is less than 3ppm, preferably less than 1 ppm; and/or
The octane number of the gasoline blending component is more than 90.
10. A system for preparing gasoline blending components is characterized by comprising a separation unit, a heat exchange unit and a hydrogenation unit which are sequentially communicated according to the material flow direction;
the separation unit is used for separating the hydrocarbon byproducts from the process of preparing propylene from methanol to obtain light components and heavy components;
the heat exchange unit is used for carrying out heat exchange treatment on the light component to obtain a heat-exchanged light component;
the hydrogenation unit is used for carrying out selective diene hydrogenation on the light components after heat exchange to obtain the gasoline blending component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110193514.3A CN112877096B (en) | 2021-02-20 | 2021-02-20 | Gasoline blending component and preparation method and system thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110193514.3A CN112877096B (en) | 2021-02-20 | 2021-02-20 | Gasoline blending component and preparation method and system thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112877096A true CN112877096A (en) | 2021-06-01 |
CN112877096B CN112877096B (en) | 2022-12-09 |
Family
ID=76056688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110193514.3A Active CN112877096B (en) | 2021-02-20 | 2021-02-20 | Gasoline blending component and preparation method and system thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112877096B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114181736A (en) * | 2021-10-26 | 2022-03-15 | 国家能源集团宁夏煤业有限责任公司 | Method for producing gasoline blending component and gasoline blending component produced by the method |
CN114181735A (en) * | 2021-10-26 | 2022-03-15 | 国家能源集团宁夏煤业有限责任公司 | Blended gasoline and production method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013104614A1 (en) * | 2012-01-09 | 2013-07-18 | Total Raffinage Marketing | Method for the conversion of low boiling point olefin containing hydrocarbon feedstock |
CN104745223A (en) * | 2015-03-24 | 2015-07-01 | 江苏凯茂石化科技有限公司 | Method for preparing low-carbon olefine and co-producing gasoline by methanol |
CN109181766A (en) * | 2018-09-13 | 2019-01-11 | 大庆亿鑫化工股份有限公司 | A kind of modified light aromatic hydrocarbons hydrogenation plant and its operating method |
-
2021
- 2021-02-20 CN CN202110193514.3A patent/CN112877096B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013104614A1 (en) * | 2012-01-09 | 2013-07-18 | Total Raffinage Marketing | Method for the conversion of low boiling point olefin containing hydrocarbon feedstock |
CN104745223A (en) * | 2015-03-24 | 2015-07-01 | 江苏凯茂石化科技有限公司 | Method for preparing low-carbon olefine and co-producing gasoline by methanol |
CN109181766A (en) * | 2018-09-13 | 2019-01-11 | 大庆亿鑫化工股份有限公司 | A kind of modified light aromatic hydrocarbons hydrogenation plant and its operating method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114181736A (en) * | 2021-10-26 | 2022-03-15 | 国家能源集团宁夏煤业有限责任公司 | Method for producing gasoline blending component and gasoline blending component produced by the method |
CN114181735A (en) * | 2021-10-26 | 2022-03-15 | 国家能源集团宁夏煤业有限责任公司 | Blended gasoline and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN112877096B (en) | 2022-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110938464B (en) | Integrated process method for producing low-carbon aromatic hydrocarbon and olefin from gas oil | |
KR101896733B1 (en) | Method for producing single-ring aromatic hydrocarbons | |
CN112877096B (en) | Gasoline blending component and preparation method and system thereof | |
JP5180218B2 (en) | Separation of partition walls in light olefin hydrocarbon treatment | |
CN101824336B (en) | Technique for producing terphenyl, indane and aromatics solvent oil by cracking C9 fraction and hydrogenation | |
WO2011118753A1 (en) | Method for producing monocyclic aromatic hydrocarbon | |
WO2013156682A2 (en) | Process for producing biofuel and biofuel components | |
CN104178211B (en) | The selective desulfurization of FCC gasoline | |
CN105358509B (en) | C8-C10 aromatic compound feed steam is handled to prepare and recycle tri-methylated benzene | |
CN107460003B (en) | Method for increasing yield of aviation kerosene through hydrocracking | |
CN102337153B (en) | Hydrotreating method for gasoline distillate | |
RU2615160C2 (en) | Method of producing olefins and aromatic hydrocarbons | |
CN102041092A (en) | Method for widening catalytic reforming feedstock | |
KR101536852B1 (en) | Method for producing monocylic aromatic hydrocarbons | |
CN103509601A (en) | Technological process for co-production of propane by aromatization of carbon tetrad-hydrocarbon | |
CN112322343B (en) | Method and device for producing high-aromatic-content gasoline by MTP byproduct mixed aromatic hydrocarbon modification, high-aromatic-content gasoline and application thereof | |
JP5744622B2 (en) | Monocyclic aromatic hydrocarbon production method | |
US12065617B2 (en) | Method of producing plastic pyrolysis products from a mixed plastics stream | |
CN103864564B (en) | Technique for processing methanol-to-propylene by-products | |
CN103657707A (en) | Preparation method of low carbon hydrocarbon aromatization catalyst | |
CN102899084B (en) | Method for co-production of ethylene cracking raw material by aromatization of carbon tetrad | |
CN111978140B (en) | Method for preparing 1-butene and application thereof | |
CN114181736B (en) | Method for producing gasoline blending component and gasoline blending component produced by the method | |
CN111978141B (en) | Cracking mixed C 4 Material selective hydrogenation method and application thereof | |
CN103361121A (en) | Production method of high-octane gasoline blending component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |