CN112874315B - Motion control method, device and equipment of balance car and storage medium - Google Patents
Motion control method, device and equipment of balance car and storage medium Download PDFInfo
- Publication number
- CN112874315B CN112874315B CN202110045804.3A CN202110045804A CN112874315B CN 112874315 B CN112874315 B CN 112874315B CN 202110045804 A CN202110045804 A CN 202110045804A CN 112874315 B CN112874315 B CN 112874315B
- Authority
- CN
- China
- Prior art keywords
- data
- value
- preset
- balance
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000007499 fusion processing Methods 0.000 claims abstract description 15
- 238000013500 data storage Methods 0.000 claims description 83
- 230000001133 acceleration Effects 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 19
- 238000013507 mapping Methods 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 10
- SAZUGELZHZOXHB-UHFFFAOYSA-N acecarbromal Chemical compound CCC(Br)(CC)C(=O)NC(=O)NC(C)=O SAZUGELZHZOXHB-UHFFFAOYSA-N 0.000 claims 1
- 238000004891 communication Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/32—Control or regulation of multiple-unit electrically-propelled vehicles
- B60L15/38—Control or regulation of multiple-unit electrically-propelled vehicles with automatic control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/22—Microcars, e.g. golf cars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/42—Electrical machine applications with use of more than one motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Motorcycle And Bicycle Frame (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本发明涉及平衡车技术领域,尤其涉及一种平衡车的运动控制方法、装置、设备及存储介质。The present invention relates to the technical field of self-balancing vehicles, in particular to a motion control method, device, equipment and storage medium of a self-balancing vehicle.
背景技术Background technique
运动控制是平衡车研究内容中的关键技术,目前已有的自平衡车产品的运动主要是通过其载体(人)的控制来实现的,前进后退由操作者前倾或后仰来改变整个自平衡车的重心分布从而实现运动,导致现有平衡车不能平稳且精准的转向控制。Motion control is the key technology in the research content of the self-balancing car. The movement of the existing self-balancing car products is mainly realized through the control of its carrier (human), and the operator leans forward or backward to change the entire self-balancing car. The distribution of the center of gravity of the self-balancing car realizes the movement, resulting in the inability of the existing self-balancing car to control the steering smoothly and accurately.
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。The above content is only used to assist in understanding the technical solution of the present invention, and does not mean that the above content is admitted as prior art.
发明内容Contents of the invention
本发明的主要目的在于提供了一种平衡车的运动控制方法、装置、设备及存储介质,旨在解决如何实现平衡车平稳且精准的转向控制的技术问题。The main purpose of the present invention is to provide a motion control method, device, equipment and storage medium of a self-balancing car, aiming at solving the technical problem of how to realize the stable and precise steering control of the self-balancing car.
为实现上述目的,本发明提供了一种平衡车的运动控制方法,所述平衡车的运动控制方法包括:In order to achieve the above object, the present invention provides a motion control method of a self-balancing car, which includes:
获取预设路况下平衡车的当前姿态信息,并根据所述当前姿态信息确定所述平衡车的第一车轮平衡参数和第二车轮平衡参数;Obtaining current posture information of the self-balancing vehicle under preset road conditions, and determining a first wheel balance parameter and a second wheel balance parameter of the self-balancing vehicle according to the current posture information;
对所述第一车轮平衡参数和所述第二车轮平衡参数进行融合处理,获得目标平衡参数;performing fusion processing on the first wheel balance parameter and the second wheel balance parameter to obtain a target balance parameter;
根据所述目标平衡参数驱动所述平衡车的电机,以实现运动控制。Driving the motor of the balance car according to the target balance parameters to realize motion control.
可选地,所述获取预设路况下平衡车的当前姿态信息的步骤,包括:Optionally, the step of obtaining the current posture information of the self-balancing vehicle under preset road conditions includes:
获取预设路况下平衡车内加速度传感器的第一数据和陀螺仪的第二数据;Obtain the first data of the acceleration sensor in the balance vehicle and the second data of the gyroscope under preset road conditions;
根据所述第一数据获得实时角速度值,并根据所述第二数据获得角度值;obtaining a real-time angular velocity value according to the first data, and obtaining an angle value according to the second data;
根据所述实时角速度值和所述角度值确定所述平衡车的当前姿态信息。The current posture information of the balance car is determined according to the real-time angular velocity value and the angle value.
可选地,所述根据所述第一数据获得实时角速度值的步骤之前,还包括:Optionally, before the step of obtaining the real-time angular velocity value according to the first data, it also includes:
获取所述第一数据对应的第一数据类型;Obtain a first data type corresponding to the first data;
判断所述第一数据类型是否满足预设角速度类型条件;judging whether the first data type satisfies a preset angular velocity type condition;
在所述第一数据类型满足所述预设角速度类型条件时,执行所述根据所述第一数据获得实时角速度值的步骤。When the first data type satisfies the preset angular velocity type condition, the step of obtaining a real-time angular velocity value according to the first data is performed.
可选地,所述获取所述第一数据对应的第一数据类型的步骤之前,还包括:Optionally, before the step of obtaining the first data type corresponding to the first data, it also includes:
获取所述第一数据对应的第一数据存储量;Acquiring a first data storage amount corresponding to the first data;
判断所述第一数据存储量是否满足预设数据存储条件;judging whether the first data storage capacity satisfies a preset data storage condition;
在所述第一数据存储量满足所述预设数据存储条件时,执行所述获取所述第一数据对应的第一数据类型的步骤。When the first data storage amount satisfies the preset data storage condition, the step of acquiring the first data type corresponding to the first data is performed.
可选地,所述根据所述第二数据获得角度值的步骤之前,还包括:Optionally, before the step of obtaining an angle value according to the second data, it also includes:
获取所述第二数据对应的第二数据类型;Obtain a second data type corresponding to the second data;
判断所述第二数据类型是否满足预设角度类型条件;judging whether the second data type satisfies a preset angle type condition;
在所述第二数据类型满足所述预设角度类型条件时,执行所述根据所述第二数据获得角度值的步骤。When the second data type satisfies the preset angle type condition, the step of obtaining an angle value according to the second data is executed.
可选地,所述获取所述第二数据对应的第二数据类型的步骤之前,还包括:Optionally, before the step of obtaining the second data type corresponding to the second data, it may further include:
获取所述第二数据对应的第二数据存储量;Acquiring a second data storage amount corresponding to the second data;
判断所述第二数据存储量是否满足预设数据存储条件;judging whether the second data storage capacity satisfies a preset data storage condition;
在所述第二数据存储量满足所述预设数据存储条件时,执行所述获取所述第二数据对应的第二数据类型的步骤。When the second data storage amount satisfies the preset data storage condition, the step of acquiring a second data type corresponding to the second data is performed.
可选地,所述根据所述第一数据获得实时角速度值的步骤,包括:Optionally, the step of obtaining a real-time angular velocity value according to the first data includes:
根据所述第一数据确定所述平衡车的角速度;determining the angular velocity of the balance car according to the first data;
对所述角速度进行积分处理,获得输出姿态倾角、姿态倾角偏差及噪声值;Integrating the angular velocity to obtain output attitude inclination, attitude inclination deviation and noise value;
根据所述输出姿态倾角、所述姿态倾角偏差及所述噪声值确定实时角速度值。A real-time angular velocity value is determined according to the output attitude inclination, the attitude inclination deviation and the noise value.
可选地,所述根据所述输出姿态倾角、所述姿态倾角偏差及所述噪声值确定实时角速度值的步骤,包括:Optionally, the step of determining the real-time angular velocity value according to the output attitude inclination, the attitude inclination deviation and the noise value includes:
根据所述输出姿态倾角、所述姿态倾角偏差及所述噪声值,通过预设角速度公式计算实时角速度值;calculating a real-time angular velocity value through a preset angular velocity formula according to the output attitude inclination, the attitude inclination deviation, and the noise value;
所述预设角速度公式为:The preset angular velocity formula is:
式中,Y1(t)为输出姿态倾角,Y2(t)为姿态倾角偏差,w(t)为噪声值,y1(t)为卡尔曼滤波器的估计值,y2(t)为卡尔曼滤波器的偏差值,ugyro(t)为实时角速度值。In the formula, Y 1 (t) is the output attitude inclination, Y 2 (t) is the attitude inclination deviation, w(t) is the noise value, y 1 (t) is the estimated value of the Kalman filter, y 2 (t) is the deviation value of the Kalman filter, and u gyro (t) is the real-time angular velocity value.
可选地,根据所述第二数据获取测量噪声值;Optionally, acquiring a measurement noise value according to the second data;
根据所述测量噪声值、所述卡尔曼滤波器的估计值及所述卡尔曼滤波器的偏差值,通过预设角度公式计算角度值;calculating an angle value through a preset angle formula according to the measurement noise value, the estimated value of the Kalman filter, and the deviation value of the Kalman filter;
所述预设角度公式为:The preset angle formula is:
式中,v(t)测量噪声值,z(t)为角度值。In the formula, v(t) measures the noise value, and z(t) is the angle value.
可选地,所述根据所述当前姿态信息确定所述平衡车的第一车轮平衡参数和第二车轮平衡参数的步骤,包括:Optionally, the step of determining the first wheel balance parameter and the second wheel balance parameter of the self-balancing car according to the current attitude information includes:
对所述当前姿态信息进行分析,获得所述平衡车的行驶状态;Analyzing the current attitude information to obtain the driving state of the self-balancing vehicle;
根据所述行驶状态确定所述平衡车的第一车轮平衡参数和第二车轮平衡参数。A first wheel balance parameter and a second wheel balance parameter of the self-balancing vehicle are determined according to the driving state.
可选地,所述根据所述行驶状态确定所述平衡车的第一车轮平衡参数和第二车轮平衡参数的步骤,包括:Optionally, the step of determining the first wheel balance parameter and the second wheel balance parameter of the self-balancing car according to the driving state includes:
根据所述行驶状态从预设行驶状态映射关系表中查找对应的样本车轮平衡参数;Searching for corresponding sample wheel balance parameters from a preset driving state mapping relationship table according to the driving state;
根据所述样本车轮平衡参数确定第一样本车轮平衡参数和第二样本车轮平衡参数;determining a first sample wheel balance parameter and a second sample wheel balance parameter according to the sample wheel balance parameter;
所述预设行驶状态映射关系表中包括行驶状态和样本车轮平衡参数之间的对应关系。The preset driving state mapping relationship table includes the corresponding relationship between the driving state and the sample wheel balance parameters.
可选地,所述对所述第一车轮平衡参数和所述第二车轮平衡参数进行融合处理,获得目标平衡参数的步骤,包括:Optionally, the step of performing fusion processing on the first wheel balance parameter and the second wheel balance parameter to obtain a target balance parameter includes:
根据所述第一车轮平衡参数确定第一电机输出值,并根据所述第一电机输出值和所述第二车轮平衡参数确定第二电机输出值;determining a first motor output value according to the first wheel balance parameter, and determining a second motor output value according to the first motor output value and the second wheel balance parameter;
对所述第一电机输出值和所述第二电机输出值进行融合处理,获得目标平衡参数。Perform fusion processing on the first motor output value and the second motor output value to obtain target balance parameters.
此外,为实现上述目的,本发明还提出一种平衡车的运动控制装置,所述平衡车的运动控制装置包括:In addition, in order to achieve the above purpose, the present invention also proposes a motion control device for a self-balancing vehicle, which includes:
获取模块,用于获取预设路况下平衡车的当前姿态信息,并根据所述当前姿态信息确定所述平衡车的第一车轮平衡参数和第二车轮平衡参数;An acquisition module, configured to acquire current attitude information of the self-balancing car under preset road conditions, and determine the first wheel balance parameter and the second wheel balance parameter of the self-balancing car according to the current attitude information;
处理模块,用于对所述第一车轮平衡参数和所述第二车轮平衡参数进行融合处理,获得目标平衡参数;A processing module, configured to perform fusion processing on the first wheel balance parameter and the second wheel balance parameter to obtain a target balance parameter;
控制模块,用于根据所述目标平衡参数驱动所述平衡车的电机,以实现运动控制。The control module is used to drive the motor of the balance car according to the target balance parameters, so as to realize motion control.
可选地,所述获取模块,还用于获取预设路况下平衡车内加速度传感器的第一数据和陀螺仪的第二数据;Optionally, the obtaining module is also used to obtain the first data of the acceleration sensor in the balance vehicle and the second data of the gyroscope under preset road conditions;
所述获取模块,还用于根据所述第一数据获得实时角速度值,并根据所述第二数据获得角度值;The obtaining module is also used to obtain a real-time angular velocity value according to the first data, and obtain an angle value according to the second data;
所述获取模块,还用于根据所述实时角速度值和所述角度值确定所述平衡车的当前姿态信息。The acquiring module is further configured to determine the current attitude information of the balance car according to the real-time angular velocity value and the angle value.
可选地,所述获取模块,还用于根据所述第一数据确定所述平衡车的角速度;Optionally, the acquisition module is further configured to determine the angular velocity of the self-balancing vehicle according to the first data;
所述获取模块,还用于对所述角速度进行积分处理,获得输出姿态倾角、姿态倾角偏差及噪声值;The acquisition module is also used to perform integral processing on the angular velocity to obtain the output attitude inclination, attitude inclination deviation and noise value;
所述获取模块,还用于根据所述输出姿态倾角、所述姿态倾角偏差及所述噪声值确定实时角速度值。The acquiring module is further configured to determine a real-time angular velocity value according to the output attitude inclination, the attitude inclination deviation and the noise value.
可选地,所述获取模块,还用于对所述当前姿态信息进行分析,获得所述平衡车的行驶状态;Optionally, the acquisition module is also configured to analyze the current posture information to obtain the driving state of the self-balancing vehicle;
所述获取模块,还用于根据所述行驶状态确定所述平衡车的第一车轮平衡参数和第二车轮平衡参数。The obtaining module is further configured to determine a first wheel balance parameter and a second wheel balance parameter of the self-balancing vehicle according to the driving state.
可选地,所述获取模块,还用于根据所述行驶状态从预设行驶状态映射关系表中查找对应的样本车轮平衡参数;Optionally, the obtaining module is further configured to search for corresponding sample wheel balance parameters from a preset driving state mapping table according to the driving state;
所述获取模块,还用于根据所述样本车轮平衡参数确定第一样本车轮平衡参数和第二样本车轮平衡参数;The obtaining module is further configured to determine a first sample wheel balance parameter and a second sample wheel balance parameter according to the sample wheel balance parameter;
所述获取模块,还用于所述预设行驶状态映射关系表中包括行驶状态和样本车轮平衡参数之间的对应关系。The acquiring module is further configured to include the corresponding relationship between the driving state and the sample wheel balance parameters in the preset driving state mapping relationship table.
可选地,所述处理模块,还用于根据所述第一车轮平衡参数确定第一电机输出值,并根据所述第一电机输出值和所述第二车轮平衡参数确定第二电机输出值;Optionally, the processing module is further configured to determine a first motor output value according to the first wheel balance parameter, and determine a second motor output value according to the first motor output value and the second wheel balance parameter ;
所述处理模块,还用于对所述第一电机输出值和所述第二电机输出值进行融合处理,获得目标平衡参数。The processing module is further configured to perform fusion processing on the first motor output value and the second motor output value to obtain target balance parameters.
此外,为实现上述目的,本发明还提出一种平衡车的运动控制设备,所述设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的平衡车的运动控制程序,所述平衡车的运动控制程序配置为实现如上文所述的平衡车的运动控制方法的步骤。In addition, in order to achieve the above object, the present invention also proposes a motion control device for a self-balancing car, which includes: a memory, a processor, and a motion control system of the self-balancing car that is stored in the memory and can run on the processor. A control program, the motion control program of the self-balancing car is configured to implement the steps of the method for controlling the motion of the self-balancing car as described above.
此外,为实现上述目的,本发明还提出一种存储介质,所述存储介质上存储有平衡车的运动控制程序,所述平衡车的运动控制程序被处理器执行时实现如上文所述的平衡车的运动控制方法的步骤。In addition, in order to achieve the above object, the present invention also proposes a storage medium, on which the motion control program of the self-balancing car is stored, and when the motion control program of the self-balancing car is executed by the processor, the above-mentioned balance is realized. Steps of a method for controlling motion of a car.
本发明首先获取预设路况下平衡车的当前姿态信息,并根据当前姿态信息确定平衡车的第一车轮平衡参数和第二车轮平衡参数,然后对第一车轮平衡参数和第二车轮平衡参数进行融合处理,获得目标平衡参数,之后根据目标平衡参数驱动平衡车的电机,以实现运动控制。相较于现有技术,需要依靠身体的控制实现平衡车的左右平衡,而本发明是对获取的第一车轮平衡参数和第二车轮平衡参数进行融合处理,获得目标平衡参数,之后根据目标平衡参数驱动平衡车的电机,实现了平衡车平稳且精准的转向控制,进而提高了用户的骑行体验。The present invention first obtains the current posture information of the self-balancing vehicle under the preset road conditions, and determines the first wheel balance parameter and the second wheel balance parameter of the self-balancing vehicle according to the current posture information, and then performs a process on the first wheel balance parameter and the second wheel balance parameter Fusion processing to obtain the target balance parameters, and then drive the motor of the balance car according to the target balance parameters to achieve motion control. Compared with the existing technology, it is necessary to rely on the control of the body to realize the left and right balance of the self-balancing car. However, the present invention fuses the obtained first wheel balance parameters and the second wheel balance parameters to obtain the target balance parameters, and then according to the target balance The parameters drive the motor of the self-balancing car to achieve stable and precise steering control of the self-balancing car, thereby improving the user's riding experience.
附图说明Description of drawings
图1是本发明实施例方案涉及的硬件运行环境的平衡车的运动控制设备的结构示意图;Fig. 1 is a schematic structural diagram of a motion control device of a balance car in a hardware operating environment related to the solution of an embodiment of the present invention;
图2为本发明平衡车的运动控制方法第一实施例的流程示意图;Fig. 2 is a schematic flow chart of the first embodiment of the motion control method of the balance car of the present invention;
图3为本发明平衡车的运动控制方法第二实施例的流程示意图;Fig. 3 is a schematic flow chart of the second embodiment of the motion control method of the balance car of the present invention;
图4为本发明平衡车的运动控制方法第三实施例的流程示意图;Fig. 4 is a schematic flow chart of the third embodiment of the motion control method of the balance car of the present invention;
图5为本发明平衡车的运动控制装置第一实施例的结构框图。Fig. 5 is a structural block diagram of the first embodiment of the motion control device of the balance car of the present invention.
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization of the purpose of the present invention, functional characteristics and advantages will be further described in conjunction with the embodiments and with reference to the accompanying drawings.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
参照图1,图1为本发明实施例方案涉及的硬件运行环境的平衡车的运动控制设备结构示意图。Referring to FIG. 1 , FIG. 1 is a schematic structural diagram of a motion control device of a balance car in a hardware operating environment related to an embodiment of the present invention.
如图1所示,该平衡车的运动控制设备可以包括:处理器1001,例如中央处理器(Central Processing Unit,CPU),通信总线1002、用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如无线保真(WIreless-FIdelity,WI-FI)接口)。存储器1005可以是高速的随机存取存储器(RandomAccess Memory,RAM)存储器,也可以是稳定的非易失性存储器(Non-Volatile Memory,NVM),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。As shown in FIG. 1 , the motion control device of the balance car may include: a processor 1001 , such as a central processing unit (Central Processing Unit, CPU), a
本领域技术人员可以理解,图1中示出的结构并不构成对平衡车的运动控制设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。Those skilled in the art can understand that the structure shown in Figure 1 does not constitute a limitation on the motion control device of the balance car, and may include more or less components than shown in the figure, or combine some components, or different components layout.
如图1所示,作为一种存储介质的存储器1005中可以包括操作系统、数据存储模块、网络通信模块、用户接口模块以及平衡车的运动控制程序。As shown in FIG. 1 , the
在图1所示的平衡车的运动控制设备中,网络接口1004主要用于与网络服务器进行数据通信;用户接口1003主要用于与用户进行数据交互;本发明平衡车的运动控制设备中的处理器1001、存储器1005可以设置在平衡车的运动控制设备中,所述平衡车的运动控制设备通过处理器1001调用存储器1005中存储的平衡车的运动控制程序,并执行本发明实施例提供的平衡车的运动控制方法。In the motion control device of the balance car shown in Figure 1, the
本发明实施例提供了一种平衡车的运动控制方法,参照图2,图2为本发明平衡车的运动控制方法第一实施例的流程示意图。An embodiment of the present invention provides a motion control method for a self-balancing vehicle. Referring to FIG. 2 , FIG. 2 is a schematic flowchart of a first embodiment of the method for controlling the motion of a self-balancing vehicle according to the present invention.
本实施例中,所述平衡车的运动控制方法包括以下步骤:In this embodiment, the motion control method of the balance car includes the following steps:
步骤S10:获取预设路况下平衡车的当前姿态信息,并根据所述当前姿态信息确定所述平衡车的第一车轮平衡参数和第二车轮平衡参数。Step S10: Obtain the current posture information of the self-balancing vehicle under preset road conditions, and determine the first wheel balance parameter and the second wheel balance parameter of the self-balancing vehicle according to the current posture information.
易于理解的是,本实施例的执行主体可以是具有数据处理、网络通讯和程序运行等功能的平衡车的运动控制设备,也可以为其他具有相似功能的计算机设备等,本实施例并不加以限制。It is easy to understand that the execution subject of this embodiment may be a motion control device of a self-balancing vehicle with functions such as data processing, network communication, and program operation, or other computer equipment with similar functions. limit.
预设路况可以为用户骑行平衡车行驶的各种路面,可以为上坡路况,还可以为下坡路况等,本实施例并不加以限制。The preset road conditions may be various road surfaces on which the user rides the self-balancing vehicle, such as uphill road conditions, downhill road conditions, etc., which are not limited in this embodiment.
可以理解的是,平衡车的当前姿态信息可以为平衡车的实时角速度值和角度值等,获取预设路况下平衡车的当前姿态信息的步骤可以为,获取预设路况下平衡车内加速度传感器的第一数据和陀螺仪的第二数据,根据第一数据获得实时角速度值,并根据第二数据获得角度值,根据实时角速度值和角度值确定所述平衡车的当前姿态信息等。It can be understood that the current attitude information of the self-balancing car can be the real-time angular velocity value and angle value of the self-balancing car, and the step of obtaining the current attitude information of the self-balancing car under the preset road conditions can be: obtaining the acceleration sensor inside the self-balancing car under the preset road conditions The first data of the gyroscope and the second data of the gyroscope, the real-time angular velocity value is obtained according to the first data, and the angle value is obtained according to the second data, and the current attitude information of the self-balancing vehicle is determined according to the real-time angular velocity value and the angle value.
需要说明的是,本实施例利用其内部的陀螺仪和加速度传感器,来检测车体姿态的变化,也就是说,平衡车双轮两边控制系统通过高精度6轴姿态传感器采集各自的姿态信息,并利用伺服控制系统,精确地驱动电机进行相应的调整,以保持系统的平衡。It should be noted that this embodiment uses its internal gyroscope and acceleration sensor to detect changes in the posture of the car body, that is to say, the control system on both sides of the two wheels of the self-balancing vehicle collects respective posture information through a high-precision 6-axis posture sensor, And use the servo control system to accurately drive the motor to make corresponding adjustments to maintain the balance of the system.
第一数据可以为利用平衡车内加速度传感器采集的单个角速度或多个角速度等,第二数据可以为利用平衡车内陀螺仪采集的单个角度值或多个角度值等,本实施例并不加以限制。The first data can be a single angular velocity or multiple angular velocities collected by the acceleration sensor in the balance car, and the second data can be a single angle value or multiple angle values collected by the gyroscope in the balance car. This embodiment does not add limit.
为了能够获取精准的第一数据,根据第一数据获得实时角速度值的步骤之前,还需要获取第一数据对应的第一数据类型,然后判断第一数据类型是否满足预设角速度类型条件,在第一数据类型满足预设角速度类型条件时,根据第一数据获得实时角速度值等。In order to obtain accurate first data, before the step of obtaining the real-time angular velocity value according to the first data, it is necessary to obtain the first data type corresponding to the first data, and then determine whether the first data type satisfies the preset angular velocity type condition. When a data type satisfies the preset angular velocity type condition, a real-time angular velocity value and the like are obtained according to the first data.
第一数据类型可以为理解为角速度值对应的类型等,预设角速度类型条件可以为角速度对应的类型等,本实施例并不加以限制。The first data type may be understood as a type corresponding to an angular velocity value, etc., and the preset angular velocity type condition may be a type corresponding to an angular velocity, etc., which are not limited in this embodiment.
假设获取第一数据对应的第一数据类型为A类型,预设角速度类型条件同为A类型,然后判断第一数据类型A类型与预设角速度A类型是否一致,在第一数据类型A类型与预设角速度A类型一致时,根据第一数据获得实时角速度值等。Assume that the first data type corresponding to the acquired first data is type A, and the preset angular velocity type condition is also type A, and then judge whether the first data type A type is consistent with the preset angular velocity A type, and whether the first data type A type is consistent with the preset angular velocity type A When the types of the preset angular velocity A are consistent, the real-time angular velocity value and the like are obtained according to the first data.
获取第一数据对应的第一数据类型的步骤之前,还需要获取第一数据对应的第一数据存储量,判断第一数据存储量是否满足预设数据存储条件,在第一数据存储量满足预设数据存储条件时,获取第一数据对应的第一数据类型等。Before the step of obtaining the first data type corresponding to the first data, it is also necessary to obtain the first data storage volume corresponding to the first data, and determine whether the first data storage volume meets the preset data storage conditions. When data storage conditions are set, the first data type corresponding to the first data is obtained.
第一数据存储量可以为理解为单个角速度或多个角速度对应的存储大小等,预设数据存储条件可以为用户自定义设置,可以为5kb,还可以为5M等,本实施例并不加以限制。The first data storage capacity can be understood as the storage size corresponding to a single angular velocity or multiple angular velocities, etc. The preset data storage conditions can be user-defined settings, which can be 5kb, or 5M, etc., which are not limited in this embodiment .
假设获取第一数据对应的第一数据存储量为5kb,预设数据存储条件为5kb,则判断第一数据存储量是否与预设数据存储阈值一致,在第一数据存储量与预设数据存储阈值一致时,获取第一数据对应的第一数据类型等。Assuming that the first data storage capacity corresponding to the first data acquisition is 5kb, and the preset data storage condition is 5kb, then it is judged whether the first data storage capacity is consistent with the preset data storage threshold. When the thresholds are consistent, the first data type corresponding to the first data and the like are acquired.
进一步地,为了能够精准获取角度值,根据第二数据获得角度值的步骤之前,还需要获取第二数据对应的第二数据类型,然后判断第二数据类型是否满足预设角度类型条件,在第二数据类型满足预设角度类型条件时,根据第二数据获得角度值等。Furthermore, in order to accurately obtain the angle value, before the step of obtaining the angle value according to the second data, it is necessary to obtain the second data type corresponding to the second data, and then determine whether the second data type satisfies the preset angle type condition. When the second data type satisfies the preset angle type condition, the angle value and the like are obtained according to the second data.
第二数据类型可以为理解为角度值对应的类型等,预设角速度类型条件可以为角度对应的类型等,本实施例并不加以限制。The second data type may be understood as a type corresponding to an angle value, etc., and the preset angular velocity type condition may be a type corresponding to an angle, etc., which are not limited in this embodiment.
假设获取第二数据对应的第二数据类型为B类型,预设角度类型条件同为B类型,然后判断第二数据类型B类型与预设角度B类型是否一致,在第二数据类型B类型与预设角度B类型一致时,根据第二数据获得角度值等。Assume that the second data type corresponding to the acquired second data is type B, and the preset angle type condition is also type B, and then judge whether the second data type B type is consistent with the preset angle B type, and whether the second data type B type is consistent with the preset angle type B When the types of the preset angle B are consistent, the angle value and the like are obtained according to the second data.
获取第二数据对应的第二数据类型的步骤之前,还需要获取第二数据对应的第二数据存储量,判断第二数据存储量是否满足预设数据存储条件,在第二数据存储量满足预设数据存储条件时,获取所述第二数据对应的第二数据类型等。Before the step of obtaining the second data type corresponding to the second data, it is also necessary to obtain the second data storage amount corresponding to the second data, and judge whether the second data storage amount satisfies the preset data storage condition. When the data storage condition is set, the second data type corresponding to the second data is obtained.
第二数据存储量可以为理解为单个角度值或多个角度值对应的存储大小等,预设数据存储条件可以为用户自定义设置,可以为8kb,还可以为6M等,本实施例并不加以限制。The second data storage capacity can be understood as the storage size corresponding to a single angle value or multiple angle values, etc. The preset data storage conditions can be user-defined settings, which can be 8kb or 6M, etc. This embodiment does not be restricted.
假设获取第二数据对应的第二数据存储量为6M,预设数据存储条件为6M,则判断第二数据存储量是否与预设数据存储阈值一致,在第二数据存储量与预设数据存储阈值一致时,获取第二数据对应的第二数据类型等。Assuming that the second data storage amount corresponding to the second data acquisition is 6M, and the preset data storage condition is 6M, then it is judged whether the second data storage amount is consistent with the preset data storage threshold, and when the second data storage amount and the preset data storage When the thresholds are consistent, the second data type corresponding to the second data and the like are acquired.
根据第一数据获得实时角速度值的步骤可以为,根据第一数据确定平衡车的角速度,之后对角速度进行积分处理,获得输出姿态倾角、姿态倾角偏差及噪声值,最后根据输出姿态倾角、姿态倾角偏差及噪声值确定实时角速度值。The step of obtaining the real-time angular velocity value according to the first data can be as follows: determine the angular velocity of the self-balancing car according to the first data, and then perform integral processing on the angular velocity to obtain the output attitude inclination angle, attitude inclination angle deviation and noise value, and finally according to the output attitude inclination angle, attitude inclination angle The deviation and noise values determine the real-time angular velocity value.
根据输出姿态倾角、姿态倾角偏差及噪声值确定实时角速度值的方式可以为,根据输出姿态倾角、姿态倾角偏差及噪声值,通过预设角速度公式计算实时角速度值;The method of determining the real-time angular velocity value according to the output attitude inclination, attitude inclination deviation and noise value may be, according to the output attitude inclination, attitude inclination deviation and noise value, calculate the real-time angular velocity value through the preset angular velocity formula;
预设角速度公式为:The preset angular velocity formula is:
式中,Y1(t)为输出姿态倾角,Y2(t)为姿态倾角偏差,w(t)为噪声值,y1(t)为卡尔曼滤波器的估计值,y2(t)为卡尔曼滤波器的偏差值,ugyro(t)为实时角速度值。In the formula, Y 1 (t) is the output attitude inclination, Y 2 (t) is the attitude inclination deviation, w(t) is the noise value, y 1 (t) is the estimated value of the Kalman filter, y 2 (t) is the deviation value of the Kalman filter, and u gyro (t) is the real-time angular velocity value.
预设角速度公式可以为使用加速度传感器求解姿态角度时需要对输出的角速度作积分处理,可以根据加速度传感器的这种特点构建卡尔曼滤波器中的状态公式。The preset angular velocity formula can be used to integrate the output angular velocity when using the acceleration sensor to solve the attitude angle. The state formula in the Kalman filter can be constructed according to this characteristic of the acceleration sensor.
根据第二数据获得角度值的方式可以为,根据第二数据获取测量噪声值,然后根据测量噪声值、卡尔曼滤波器的估计值及卡尔曼滤波器的偏差值,通过预设角度公式计算角度值;The method of obtaining the angle value according to the second data may be to obtain the measurement noise value according to the second data, and then calculate the angle through the preset angle formula according to the measurement noise value, the estimated value of the Kalman filter and the deviation value of the Kalman filter value;
预设角度公式为:The preset angle formula is:
式中,v(t)测量噪声值,z(t)为角度值。In the formula, v(t) measures the noise value, and z(t) is the angle value.
加速度计可以检测到运动时空间直角坐标系各个轴上的加速度分量,即可以得到当前运动的空间矢量,通过计算任意一轴与空间矢量的夹角便能够得到该方向当前的姿态角度。The accelerometer can detect the acceleration components on each axis of the space Cartesian coordinate system during motion, that is, the space vector of the current motion can be obtained, and the current attitude angle of the direction can be obtained by calculating the angle between any axis and the space vector.
根据当前姿态信息确定平衡车的第一车轮平衡参数和第二车轮平衡参数的步骤可以为,对当前姿态信息进行分析,获得平衡车的行驶状态,然后根据行驶状态确定平衡车的第一车轮平衡参数和第二车轮平衡参数等。The step of determining the first wheel balance parameter and the second wheel balance parameter of the self-balancing car according to the current attitude information may be: analyzing the current attitude information to obtain the driving state of the self-balancing car, and then determining the first wheel balance of the self-balancing car according to the driving state parameters and the second wheel balance parameters, etc.
根据行驶状态确定平衡车的第一车轮平衡参数和第二车轮平衡参数的方式可以为,根据行驶状态从预设行驶状态映射关系表中查找对应的样本车轮平衡参数,然后根据样本车轮平衡参数确定第一样本车轮平衡参数和第二样本车轮平衡参数,之后预设行驶状态映射关系表中包括行驶状态和样本车轮平衡参数之间的对应关系,预设行驶状态映射关系表内存在多个行驶状态和多个样本车轮平衡参数等。The method of determining the first wheel balance parameter and the second wheel balance parameter of the self-balancing vehicle according to the driving state may be to search the corresponding sample wheel balance parameters from the preset driving state mapping relationship table according to the driving state, and then determine according to the sample wheel balance parameters The first sample wheel balance parameter and the second sample wheel balance parameter, and then the preset driving state mapping relationship table includes the corresponding relationship between the driving state and the sample wheel balance parameters, and there are multiple driving states in the preset driving state mapping relationship table. state and multiple sample wheel balance parameters etc.
第一车轮平衡参数可以为平衡车左轮需要维持平衡所需要的参数等,第二车轮平衡参数可以平衡车右轮需要维持平衡需要的参数等,本实施例并不加以限制。The first wheel balance parameter may be a parameter required to maintain balance of the left wheel of the balance car, etc., and the second wheel balance parameter may be a parameter required to maintain balance of the right wheel of the balance car, etc., which are not limited in this embodiment.
行驶状态可以为加速状态、暂停状态及转向状态等,本实施例并不加以限制。The driving state may be an acceleration state, a pause state, a steering state, etc., which are not limited in this embodiment.
步骤S20:对所述第一车轮平衡参数和所述第二车轮平衡参数进行融合处理,获得目标平衡参数。Step S20: performing fusion processing on the first wheel balance parameter and the second wheel balance parameter to obtain a target balance parameter.
对第一车轮平衡参数和第二车轮平衡参数进行融合处理,获得目标平衡参数的方式可以为,根据第一车轮平衡参数确定第一电机输出值,并根据第一电机输出值和第二车轮平衡参数确定第二电机输出值,然后对第一电机输出值和第二电机输出值进行融合处理,获得目标平衡参数等。The first wheel balance parameter and the second wheel balance parameter are fused together to obtain the target balance parameter by determining the output value of the first motor according to the first wheel balance parameter, and determining the output value of the first motor according to the output value of the first motor and the second wheel balance parameter. The parameters determine the output value of the second motor, and then perform fusion processing on the output value of the first motor and the output value of the second motor to obtain target balance parameters and the like.
根据第一车轮平衡参数确定第一电机输出值的方式可以为将第一车轮平衡参数进行转换,获得对应的第一电机输出值,还可以为通过平衡控制算法计算出各自平衡所需要的第一电机输出值等。The way to determine the first motor output value according to the first wheel balance parameter can be to convert the first wheel balance parameter to obtain the corresponding first motor output value, or to calculate the first motor output value required by each balance through the balance control algorithm. Motor output value, etc.
获取第二电机输出值的步骤可以为,两边控制系统以500HZ的高频进行通讯和数据交换,得到对方控制计算所需要的第二电机输出值,还可以为根据第一电机输出值和第二车轮平衡参数确定第二电机输出值等,本实施例并不加以限制。The step of obtaining the output value of the second motor may be that the control systems on both sides communicate and exchange data at a high frequency of 500HZ to obtain the output value of the second motor required by the control calculation of the other party, or it may be based on the output value of the first motor and the second The wheel balance parameters determine the output value of the second motor, etc., which are not limited in this embodiment.
在具体实现中,需要通过自适应算法融合第一电机输出值和第二电机输出值,得到最终的输出电机值即目标平衡参数等。In a specific implementation, it is necessary to fuse the output value of the first motor and the output value of the second motor through an adaptive algorithm to obtain the final output motor value, that is, the target balance parameter and the like.
需要说明的是,平衡车控制算法相对现有技术,更加智能。针对不同的负载,不同的骑行路面,不同速度下的骑行,进行了参数优化和匹配。实时采集角度、角速度、行驶速度、当前电流、电压等参数,通过多传感器数据融合,智能识别出当前的骑行状态,并计算出最优参数,达到更好的骑行体验等。It should be noted that the balance car control algorithm is more intelligent than the existing technology. The parameters are optimized and matched for different loads, different riding road surfaces, and riding at different speeds. Real-time collection of parameters such as angle, angular velocity, driving speed, current current, voltage, etc. Through multi-sensor data fusion, it can intelligently identify the current riding state and calculate the optimal parameters to achieve a better riding experience.
步骤S30:根据所述目标平衡参数驱动所述平衡车的电机,以实现运动控制。Step S30: Drive the motor of the self-balancing car according to the target balance parameters to realize motion control.
应理解的是,将得到的目标平衡参数驱动平衡车的电机,以实现运动控制,除此之外,针对平衡车,还可以定制转向阻尼控制算法,实现了平稳且精准的转向控制。使平衡车骑行更加稳定和平滑。在不同负载和不同速度下,转向阻尼算法根据实时动态电压、电流以及速度计算当前最合适的补偿系数,然后通过阻尼滤波计算分别得到两边的转向控制输出,进而根据两边的转向控制输出驱动平衡车的电机,以实现运动控制等。It should be understood that the obtained target balance parameters are used to drive the motor of the self-balancing car to achieve motion control. In addition, for the self-balancing car, the steering damping control algorithm can also be customized to achieve smooth and precise steering control. Make the balance bike riding more stable and smooth. Under different loads and different speeds, the steering damping algorithm calculates the current most suitable compensation coefficient according to the real-time dynamic voltage, current and speed, and then obtains the steering control output on both sides through the damping filter calculation, and then drives the balance car according to the steering control output on both sides motors for motion control etc.
在本实施例中,首先获取预设路况下平衡车的当前姿态信息,并根据当前姿态信息确定平衡车的第一车轮平衡参数和第二车轮平衡参数,然后对第一车轮平衡参数和第二车轮平衡参数进行融合处理,获得目标平衡参数,之后根据目标平衡参数驱动平衡车的电机,以实现运动控制。相较于现有技术,需要依靠身体的控制实现平衡车的左右平衡,而本实施例是对获取的第一车轮平衡参数和第二车轮平衡参数进行融合处理,获得目标平衡参数,之后根据目标平衡参数驱动平衡车的电机,实现了平衡车平稳且精准的转向控制,进而提高了用户的骑行体验。In this embodiment, first obtain the current posture information of the self-balancing vehicle under preset road conditions, and determine the first wheel balance parameter and the second wheel balance parameter of the self-balancing vehicle according to the current posture information, and then perform the first wheel balance parameter and the second wheel balance parameter The wheel balance parameters are fused to obtain the target balance parameters, and then the motors of the self-balancing car are driven according to the target balance parameters to achieve motion control. Compared with the existing technology, it is necessary to rely on the control of the body to realize the left and right balance of the self-balancing car. However, in this embodiment, the obtained first wheel balance parameter and the second wheel balance parameter are fused to obtain the target balance parameter, and then according to the target The balance parameters drive the motor of the self-balancing car, which realizes the stable and precise steering control of the self-balancing car, thereby improving the riding experience of the user.
参考图3,图3为本发明平衡车的运动控制方法第二实施例的流程示意图。Referring to FIG. 3 , FIG. 3 is a schematic flowchart of a second embodiment of a motion control method of a self-balancing vehicle according to the present invention.
基于上述第一实施例,在本实施例中,所述步骤S10,还包括:Based on the first embodiment above, in this embodiment, the step S10 further includes:
步骤S101:获取预设路况下平衡车内陀螺仪的第一数据和加速度传感器的第二数据。Step S101: Obtain the first data of the gyroscope in the balance car and the second data of the acceleration sensor under a preset road condition.
预设路况可以为用户骑行平衡车行驶的各种路面,可以为上坡路况,还可以为下坡路况等,本实施例并不加以限制。The preset road conditions may be various road surfaces on which the user rides the self-balancing vehicle, such as uphill road conditions, downhill road conditions, etc., which are not limited in this embodiment.
可以理解的是,平衡车的当前姿态信息可以为平衡车的实时角速度值和角度值等,获取预设路况下平衡车的当前姿态信息的步骤可以为,获取预设路况下平衡车内加速度传感器的第一数据和陀螺仪的第二数据,根据第一数据获得实时角速度值,并根据第二数据获得角度值,根据实时角速度值和角度值确定所述平衡车的当前姿态信息等。It can be understood that the current attitude information of the self-balancing car can be the real-time angular velocity value and angle value of the self-balancing car, and the step of obtaining the current attitude information of the self-balancing car under the preset road conditions can be: obtaining the acceleration sensor inside the self-balancing car under the preset road conditions The first data of the gyroscope and the second data of the gyroscope, the real-time angular velocity value is obtained according to the first data, and the angle value is obtained according to the second data, and the current attitude information of the self-balancing vehicle is determined according to the real-time angular velocity value and the angle value.
需要说明的是,本实施例利用其内部的陀螺仪和加速度传感器,来检测车体姿态的变化,也就是说,平衡车双轮两边控制系统通过高精度6轴姿态传感器采集各自的姿态信息,并利用伺服控制系统,精确地驱动电机进行相应的调整,以保持系统的平衡。It should be noted that this embodiment uses its internal gyroscope and acceleration sensor to detect changes in the posture of the car body, that is to say, the control system on both sides of the two wheels of the self-balancing vehicle collects respective posture information through a high-precision 6-axis posture sensor, And use the servo control system to accurately drive the motor to make corresponding adjustments to maintain the balance of the system.
第一数据可以为利用平衡车内加速度传感器采集的单个角速度或多个角速度等,第二数据可以为利用平衡车内陀螺仪采集的单个角度值或多个角度值等,本实施例并不加以限制。The first data can be a single angular velocity or multiple angular velocities collected by the acceleration sensor in the balance car, and the second data can be a single angle value or multiple angle values collected by the gyroscope in the balance car. This embodiment does not add limit.
步骤S102:根据所述第一数据获得实时角速度值,并根据所述第二数据获得角度值。Step S102: Obtain a real-time angular velocity value according to the first data, and obtain an angle value according to the second data.
为了能够获取精准的第一数据,根据第一数据获得实时角速度值的步骤之前,还需要获取第一数据对应的第一数据类型,然后判断第一数据类型是否满足预设角速度类型条件,在第一数据类型满足预设角速度类型条件时,根据第一数据获得实时角速度值等。In order to obtain accurate first data, before the step of obtaining the real-time angular velocity value according to the first data, it is necessary to obtain the first data type corresponding to the first data, and then determine whether the first data type satisfies the preset angular velocity type condition. When a data type satisfies the preset angular velocity type condition, a real-time angular velocity value and the like are obtained according to the first data.
第一数据类型可以为理解为角速度值对应的类型等,预设角速度类型条件可以为角速度对应的类型等,本实施例并不加以限制。The first data type may be understood as a type corresponding to an angular velocity value, etc., and the preset angular velocity type condition may be a type corresponding to an angular velocity, etc., which are not limited in this embodiment.
假设获取第一数据对应的第一数据类型为A类型,预设角速度类型条件同为A类型,然后判断第一数据类型A类型与预设角速度A类型是否一致,在第一数据类型A类型与预设角速度A类型一致时,根据第一数据获得实时角速度值等。Assume that the first data type corresponding to the acquired first data is type A, and the preset angular velocity type condition is also type A, and then judge whether the first data type A type is consistent with the preset angular velocity A type, and whether the first data type A type is consistent with the preset angular velocity type A When the types of the preset angular velocity A are consistent, the real-time angular velocity value and the like are obtained according to the first data.
获取第一数据对应的第一数据类型的步骤之前,还需要获取第一数据对应的第一数据存储量,判断第一数据存储量是否满足预设数据存储条件,在第一数据存储量满足预设数据存储条件时,获取第一数据对应的第一数据类型等。Before the step of obtaining the first data type corresponding to the first data, it is also necessary to obtain the first data storage volume corresponding to the first data, and determine whether the first data storage volume meets the preset data storage conditions. When data storage conditions are set, the first data type corresponding to the first data is obtained.
第一数据存储量可以为理解为单个角速度或多个角速度对应的存储大小等,预设数据存储条件可以为用户自定义设置,可以为5kb,还可以为5M等,本实施例并不加以限制。The first data storage capacity can be understood as the storage size corresponding to a single angular velocity or multiple angular velocities, etc. The preset data storage conditions can be user-defined settings, which can be 5kb, or 5M, etc., which are not limited in this embodiment .
假设获取第一数据对应的第一数据存储量为5kb,预设数据存储条件为5kb,则判断第一数据存储量是否与预设数据存储阈值一致,在第一数据存储量与预设数据存储阈值一致时,获取第一数据对应的第一数据类型等。Assuming that the first data storage capacity corresponding to the first data acquisition is 5kb, and the preset data storage condition is 5kb, then it is judged whether the first data storage capacity is consistent with the preset data storage threshold. When the thresholds are consistent, the first data type corresponding to the first data and the like are acquired.
进一步地,为了能够精准获取角度值,根据第二数据获得角度值的步骤之前,还需要获取第二数据对应的第二数据类型,然后判断第二数据类型是否满足预设角度类型条件,在第二数据类型满足预设角度类型条件时,根据第二数据获得角度值等。Furthermore, in order to accurately obtain the angle value, before the step of obtaining the angle value according to the second data, it is necessary to obtain the second data type corresponding to the second data, and then determine whether the second data type satisfies the preset angle type condition. When the second data type satisfies the preset angle type condition, the angle value and the like are obtained according to the second data.
第二数据类型可以为理解为角度值对应的类型等,预设角速度类型条件可以为角度对应的类型等,本实施例并不加以限制。The second data type may be understood as a type corresponding to an angle value, etc., and the preset angular velocity type condition may be a type corresponding to an angle, etc., which are not limited in this embodiment.
假设获取第二数据对应的第二数据类型为B类型,预设角度类型条件同为B类型,然后判断第二数据类型B类型与预设角度B类型是否一致,在第二数据类型B类型与预设角度B类型一致时,根据第二数据获得角度值等。Assume that the second data type corresponding to the acquired second data is type B, and the preset angle type condition is also type B, and then judge whether the second data type B type is consistent with the preset angle B type, and whether the second data type B type is consistent with the preset angle type B When the types of the preset angle B are consistent, the angle value and the like are obtained according to the second data.
获取第二数据对应的第二数据类型的步骤之前,还需要获取第二数据对应的第二数据存储量,判断第二数据存储量是否满足预设数据存储条件,在第二数据存储量满足预设数据存储条件时,获取所述第二数据对应的第二数据类型等。Before the step of obtaining the second data type corresponding to the second data, it is also necessary to obtain the second data storage amount corresponding to the second data, and judge whether the second data storage amount satisfies the preset data storage condition. When the data storage condition is set, the second data type corresponding to the second data is obtained.
第二数据存储量可以为理解为单个角度值或多个角度值对应的存储大小等,预设数据存储条件可以为用户自定义设置,可以为8kb,还可以为6M等,本实施例并不加以限制。The second data storage capacity can be understood as the storage size corresponding to a single angle value or multiple angle values, etc. The preset data storage conditions can be user-defined settings, which can be 8kb or 6M, etc. This embodiment does not be restricted.
假设获取第二数据对应的第二数据存储量为6M,预设数据存储条件为6M,则判断第二数据存储量是否与预设数据存储阈值一致,在第二数据存储量与预设数据存储阈值一致时,获取第二数据对应的第二数据类型等。Assuming that the second data storage amount corresponding to the second data acquisition is 6M, and the preset data storage condition is 6M, then it is judged whether the second data storage amount is consistent with the preset data storage threshold, and when the second data storage amount and the preset data storage When the thresholds are consistent, the second data type corresponding to the second data and the like are acquired.
根据第一数据获得实时角速度值的步骤可以为,根据第一数据确定平衡车的角速度,之后对角速度进行积分处理,获得输出姿态倾角、姿态倾角偏差及噪声值,最后根据输出姿态倾角、姿态倾角偏差及噪声值确定实时角速度值。The step of obtaining the real-time angular velocity value according to the first data can be as follows: determine the angular velocity of the self-balancing car according to the first data, and then perform integral processing on the angular velocity to obtain the output attitude inclination angle, attitude inclination angle deviation and noise value, and finally according to the output attitude inclination angle, attitude inclination angle The deviation and noise values determine the real-time angular velocity value.
根据输出姿态倾角、姿态倾角偏差及噪声值确定实时角速度值的方式可以为,根据输出姿态倾角、姿态倾角偏差及噪声值,通过预设角速度公式计算实时角速度值。The method of determining the real-time angular velocity value according to the output attitude inclination, attitude inclination deviation and noise value may be, according to the output attitude inclination, attitude inclination deviation and noise value, calculate the real-time angular velocity value through a preset angular velocity formula.
预设角速度公式可以为使用加速度传感器求解姿态角度时需要对输出的角速度作积分处理,可以根据加速度传感器的这种特点构建卡尔曼滤波器中的状态公式。The preset angular velocity formula can be used to integrate the output angular velocity when using the acceleration sensor to solve the attitude angle. The state formula in the Kalman filter can be constructed according to this characteristic of the acceleration sensor.
根据第二数据获得角度值的方式可以为,根据第二数据获取测量噪声值,然后根据测量噪声值、卡尔曼滤波器的估计值及卡尔曼滤波器的偏差值,通过预设角度公式计算角度值。The method of obtaining the angle value according to the second data may be to obtain the measurement noise value according to the second data, and then calculate the angle through the preset angle formula according to the measurement noise value, the estimated value of the Kalman filter and the deviation value of the Kalman filter value.
加速度计可以检测到运动时空间直角坐标系各个轴上的加速度分量,即可以得到当前运动的空间矢量,通过计算任意一轴与空间矢量的夹角便能够得到该方向当前的姿态角度。The accelerometer can detect the acceleration components on each axis of the space Cartesian coordinate system during motion, that is, the space vector of the current motion can be obtained, and the current attitude angle of the direction can be obtained by calculating the angle between any axis and the space vector.
步骤S103:根据所述实时角速度值和所述角度值确定所述平衡车的当前姿态信息,并根据所述当前姿态信息确定所述平衡车的第一车轮平衡参数和第二车轮平衡参数。Step S103: Determine the current attitude information of the self-balancing car according to the real-time angular velocity value and the angle value, and determine the first wheel balance parameter and the second wheel balance parameter of the self-balancing car according to the current attitude information.
根据当前姿态信息确定平衡车的第一车轮平衡参数和第二车轮平衡参数的步骤可以为,对当前姿态信息进行分析,获得平衡车的行驶状态,然后根据行驶状态确定平衡车的第一车轮平衡参数和第二车轮平衡参数等。The step of determining the first wheel balance parameter and the second wheel balance parameter of the self-balancing car according to the current attitude information may be: analyzing the current attitude information to obtain the driving state of the self-balancing car, and then determining the first wheel balance of the self-balancing car according to the driving state parameters and the second wheel balance parameters, etc.
根据行驶状态确定平衡车的第一车轮平衡参数和第二车轮平衡参数的方式可以为,根据行驶状态从预设行驶状态映射关系表中查找对应的样本车轮平衡参数,然后根据样本车轮平衡参数确定第一样本车轮平衡参数和第二样本车轮平衡参数,之后预设行驶状态映射关系表中包括行驶状态和样本车轮平衡参数之间的对应关系,预设行驶状态映射关系表内存在多个行驶状态和多个样本车轮平衡参数等。The method of determining the first wheel balance parameter and the second wheel balance parameter of the self-balancing vehicle according to the driving state may be to search the corresponding sample wheel balance parameters from the preset driving state mapping relationship table according to the driving state, and then determine according to the sample wheel balance parameters The first sample wheel balance parameter and the second sample wheel balance parameter, and then the preset driving state mapping relationship table includes the corresponding relationship between the driving state and the sample wheel balance parameters, and there are multiple driving states in the preset driving state mapping relationship table. state and multiple sample wheel balance parameters etc.
第一车轮平衡参数可以为平衡车左轮需要维持平衡所需要的参数等,第二车轮平衡参数可以平衡车右轮需要维持平衡需要的参数等,本实施例并不加以限制。The first wheel balance parameter may be a parameter required to maintain balance of the left wheel of the balance car, etc., and the second wheel balance parameter may be a parameter required to maintain balance of the right wheel of the balance car, etc., which are not limited in this embodiment.
行驶状态可以为加速状态、暂停状态及转向状态等,本实施例并不加以限制。The driving state may be an acceleration state, a pause state, a steering state, etc., which are not limited in this embodiment.
在本实施中,首先获取预设路况下平衡车内加速度传感器的第一数据和陀螺仪的第二数据,然后根据第一数据获得实时角速度值,并根据第二数据获得角度值,最后根据实时角速度值和角度值确定所述平衡车的当前姿态信息,进而获取平衡车精准的姿态信息。In this implementation, first obtain the first data of the acceleration sensor in the balance car and the second data of the gyroscope under the preset road conditions, then obtain the real-time angular velocity value according to the first data, obtain the angle value according to the second data, and finally obtain the real-time The angular velocity value and the angle value determine the current attitude information of the self-balancing car, and then obtain accurate attitude information of the self-balancing car.
参考图4,图4为本发明平衡车的运动控制方法第三实施例的流程示意图。Referring to FIG. 4 , FIG. 4 is a schematic flowchart of a third embodiment of a motion control method of a self-balancing vehicle according to the present invention.
基于上述第一实施例,在本实施例中,所述步骤S20,还包括:Based on the first embodiment above, in this embodiment, the step S20 further includes:
步骤S201:根据所述第一车轮平衡参数确定第一电机输出值,并根据所述第一电机输出值和所述第二车轮平衡参数确定第二电机输出值。Step S201: Determine a first motor output value according to the first wheel balance parameter, and determine a second motor output value according to the first motor output value and the second wheel balance parameter.
根据第一车轮平衡参数确定第一电机输出值的方式可以为将第一车轮平衡参数进行转换,获得对应的第一电机输出值,还可以为通过平衡控制算法计算出各自平衡所需要的第一电机输出值等。The way to determine the first motor output value according to the first wheel balance parameter can be to convert the first wheel balance parameter to obtain the corresponding first motor output value, or to calculate the first motor output value required by each balance through the balance control algorithm. Motor output value, etc.
获取第二电机输出值的步骤可以为,两边控制系统以500HZ的高频进行通讯和数据交换,得到对方控制计算所需要的第二电机输出值,还可以为根据第一电机输出值和第二车轮平衡参数确定第二电机输出值等,本实施例并不加以限制。The step of obtaining the output value of the second motor may be that the control systems on both sides communicate and exchange data at a high frequency of 500HZ to obtain the output value of the second motor required by the control calculation of the other party, or it may be based on the output value of the first motor and the second The wheel balance parameters determine the output value of the second motor, etc., which are not limited in this embodiment.
步骤S202:对所述第一电机输出值和所述第二电机输出值进行融合处理,获得目标平衡参数。Step S202: Perform fusion processing on the first motor output value and the second motor output value to obtain target balance parameters.
在具体实现中,需要通过自适应算法融合第一电机输出值和第二电机输出值,得到最终的输出电机值即目标平衡参数等。In a specific implementation, it is necessary to fuse the output value of the first motor and the output value of the second motor through an adaptive algorithm to obtain the final output motor value, that is, the target balance parameter and the like.
需要说明的是,平衡车控制算法相对现有技术,更加智能。针对不同的负载,不同的骑行路面,不同速度下的骑行,进行了参数优化和匹配。实时采集角度、角速度、行驶速度、当前电流、电压等参数,通过多传感器数据融合,智能识别出当前的骑行状态,并计算出最优参数,达到更好的骑行体验等。It should be noted that the balance car control algorithm is more intelligent than the existing technology. The parameters are optimized and matched for different loads, different riding road surfaces, and riding at different speeds. Real-time collection of parameters such as angle, angular velocity, driving speed, current current, voltage, etc. Through multi-sensor data fusion, it can intelligently identify the current riding state and calculate the optimal parameters to achieve a better riding experience.
在本实施例中,首先根据第一车轮平衡参数确定第一电机输出值,并根据第一电机输出值和第二车轮平衡参数确定第二电机输出值,之后对第一电机输出值和第二电机输出值进行融合处理,获得目标平衡参数,进而获取精准的目标平衡参数,实现平衡车平稳且精准的转向控制。In this embodiment, the first motor output value is determined according to the first wheel balance parameter, and the second motor output value is determined according to the first motor output value and the second wheel balance parameter, and then the first motor output value and the second The output value of the motor is fused to obtain the target balance parameters, and then the accurate target balance parameters are obtained to realize the stable and precise steering control of the self-balancing car.
参照图5,图5为本发明平衡车的运动控制装置第一实施例的结构框图。Referring to FIG. 5 , FIG. 5 is a structural block diagram of the first embodiment of the motion control device of the self-balancing vehicle of the present invention.
如图5所示,本发明实施例提出的平衡车的运动控制装置包括:As shown in Figure 5, the motion control device of the balance car proposed by the embodiment of the present invention includes:
获取模块5001,用于获取预设路况下平衡车的当前姿态信息,并根据所述当前姿态信息确定所述平衡车的第一车轮平衡参数和第二车轮平衡参数;An
处理模块5002,用于对所述第一车轮平衡参数和所述第二车轮平衡参数进行融合处理,获得目标平衡参数;A
控制模块5003,用于根据所述目标平衡参数驱动所述平衡车的电机,以实现运动控制。The
在本实施例中,首先获取预设路况下平衡车的当前姿态信息,并根据当前姿态信息确定平衡车的第一车轮平衡参数和第二车轮平衡参数,然后对第一车轮平衡参数和第二车轮平衡参数进行融合处理,获得目标平衡参数,之后根据目标平衡参数驱动平衡车的电机,以实现运动控制。相较于现有技术,需要依靠身体的控制实现平衡车的左右平衡,而本实施例是对获取的第一车轮平衡参数和第二车轮平衡参数进行融合处理,获得目标平衡参数,之后根据目标平衡参数驱动平衡车的电机,实现了平衡车平稳且精准的转向控制,进而提高了用户的骑行体验。In this embodiment, first obtain the current posture information of the self-balancing vehicle under preset road conditions, and determine the first wheel balance parameter and the second wheel balance parameter of the self-balancing vehicle according to the current posture information, and then perform the first wheel balance parameter and the second wheel balance parameter The wheel balance parameters are fused to obtain the target balance parameters, and then the motors of the self-balancing car are driven according to the target balance parameters to achieve motion control. Compared with the existing technology, it is necessary to rely on the control of the body to realize the left and right balance of the self-balancing car. However, in this embodiment, the obtained first wheel balance parameter and the second wheel balance parameter are fused to obtain the target balance parameter, and then according to the target The balance parameters drive the motor of the self-balancing car, which realizes the stable and precise steering control of the self-balancing car, thereby improving the riding experience of the user.
进一步地,所述获取模块5001,还用于获取预设路况下平衡车内加速度传感器的第一数据和陀螺仪的第二数据;Further, the obtaining
所述获取模块5001,还用于根据所述第一数据获得实时角速度值,并根据所述第二数据获得角度值;The obtaining
所述获取模块5001,还用于根据所述实时角速度值和所述角度值确定所述平衡车的当前姿态信息。The
进一步地,所述获取模块5001,还用于获取所述第一数据对应的第一数据类型;Further, the acquiring
所述获取模块5001,还用于判断所述第一数据类型是否满足预设角速度类型条件;The acquiring
所述获取模块5001,还用于在所述第一数据类型满足所述预设角速度类型条件时,执行所述根据所述第一数据获得实时角速度值的操作。The obtaining
进一步地,所述获取模块5001,还用于获取所述第一数据对应的第一数据存储量;Further, the acquiring
所述获取模块5001,还用于判断所述第一数据存储量是否满足预设数据存储条件;The acquiring
所述获取模块5001,还用于在所述第一数据存储量满足所述预设数据存储条件时,执行所述获取所述第一数据对应的第一数据类型的操作。The obtaining
进一步地,所述获取模块5001,还用于获取所述第二数据对应的第二数据类型;Further, the acquiring
所述获取模块5001,还用于判断所述第二数据类型是否满足预设角度类型条件;The obtaining
所述获取模块5001,还用于在所述第二数据类型满足所述预设角度类型条件时,执行所述根据所述第二数据获得角度值的操作。The acquiring
进一步地,所述获取模块5001,还用于获取所述第二数据对应的第二数据存储量;Further, the acquiring
所述获取模块5001,还用于判断所述第二数据存储量是否满足预设数据存储条件;The acquiring
所述获取模块5001,还用于在所述第二数据存储量满足所述预设数据存储条件时,执行所述获取所述第二数据对应的第二数据类型的操作。The acquiring
进一步地,所述获取模块5001,还用于根据所述第一数据确定所述平衡车的角速度;Further, the obtaining
所述获取模块5001,还用于对所述角速度进行积分处理,获得输出姿态倾角、姿态倾角偏差及噪声值;The
所述获取模块5001,还用于根据所述输出姿态倾角、所述姿态倾角偏差及所述噪声值确定实时角速度值。The obtaining
进一步地,所述获取模块5001,还用于根据所述输出姿态倾角、所述姿态倾角偏差及所述噪声值,通过预设角速度公式计算实时角速度值;Further, the
所述预设角速度公式为:The preset angular velocity formula is:
式中,Y1(t)为输出姿态倾角,Y2(t)为姿态倾角偏差,w(t)为噪声值,y1(t)为卡尔曼滤波器的估计值,y2(t)为卡尔曼滤波器的偏差值,ugyro(t)为实时角速度值。In the formula, Y 1 (t) is the output attitude inclination, Y 2 (t) is the attitude inclination deviation, w(t) is the noise value, y 1 (t) is the estimated value of the Kalman filter, y 2 (t) is the deviation value of the Kalman filter, and u gyro (t) is the real-time angular velocity value.
进一步地,所述获取模块5001,还用于根据所述第二数据获取测量噪声值;Further, the acquiring
所述获取模块5001,还用于根据所述测量噪声值、所述卡尔曼滤波器的估计值及所述卡尔曼滤波器的偏差值,通过预设角度公式计算角度值;The
所述预设角度公式为:The preset angle formula is:
式中,v(t)测量噪声值,z(t)为角度值。In the formula, v(t) measures the noise value, and z(t) is the angle value.
进一步地,所述获取模块5001,还用于对所述当前姿态信息进行分析,获得所述平衡车的行驶状态;Further, the
所述获取模块5001,还用于根据所述行驶状态确定所述平衡车的第一车轮平衡参数和第二车轮平衡参数。The obtaining
进一步地,所述获取模块5001,还用于根据所述行驶状态从预设行驶状态映射关系表中查找对应的样本车轮平衡参数;Further, the
所述获取模块5001,还用于根据所述样本车轮平衡参数确定第一样本车轮平衡参数和第二样本车轮平衡参数;The obtaining
所述获取模块5001,还用于所述预设行驶状态映射关系表中包括行驶状态和样本车轮平衡参数之间的对应关系。The acquiring
进一步地,所述处理模块5002,还用于根据所述第一车轮平衡参数确定第一电机输出值,并根据所述第一电机输出值和所述第二车轮平衡参数确定第二电机输出值;Further, the
所述处理模块5002,还用于对所述第一电机输出值和所述第二电机输出值进行融合处理,获得目标平衡参数。The
本发明平衡车的运动控制装置的其他实施例或具体实现方式可参照上述各方法实施例,此处不再赘述。For other embodiments or specific implementations of the motion control device of the self-balancing vehicle of the present invention, reference may be made to the above-mentioned method embodiments, which will not be repeated here.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。It should be noted that, as used herein, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or system comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or system. Without further limitations, an element defined by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article or system comprising that element.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the above embodiments of the present invention are for description only, and do not represent the advantages and disadvantages of the embodiments.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器/随机存取存储器、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation. Based on this understanding, the technical solution of the present invention can be embodied in the form of software products in essence or in other words, the part that contributes to the prior art, and the computer software products are stored in a storage medium (such as read-only memory/random access memory, magnetic disk, optical disk), including several instructions to make a terminal device (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.) execute the methods described in various embodiments of the present invention.
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the patent scope of the present invention. Any equivalent structure or equivalent process transformation made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technical fields , are all included in the scope of patent protection of the present invention in the same way.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110045804.3A CN112874315B (en) | 2021-01-13 | 2021-01-13 | Motion control method, device and equipment of balance car and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110045804.3A CN112874315B (en) | 2021-01-13 | 2021-01-13 | Motion control method, device and equipment of balance car and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112874315A CN112874315A (en) | 2021-06-01 |
CN112874315B true CN112874315B (en) | 2022-11-04 |
Family
ID=76045854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110045804.3A Active CN112874315B (en) | 2021-01-13 | 2021-01-13 | Motion control method, device and equipment of balance car and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112874315B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109992327A (en) * | 2017-12-29 | 2019-07-09 | 深圳市优必选科技有限公司 | A robot control method, robot and storage medium |
CN110653814A (en) * | 2018-06-29 | 2020-01-07 | 深圳市优必选科技有限公司 | A robot control method, robot and device with storage function |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7590481B2 (en) * | 2005-09-19 | 2009-09-15 | Ford Global Technologies, Llc | Integrated vehicle control system using dynamically determined vehicle conditions |
CN102141814A (en) * | 2010-12-09 | 2011-08-03 | 北京理工大学 | Balance control method, balance control device and robot |
CN103019093B (en) * | 2011-09-26 | 2015-10-07 | 东莞易步机器人有限公司 | The preparation method of two-wheel vehicle used sensor fusion angle |
JP2016153746A (en) * | 2015-02-20 | 2016-08-25 | セイコーエプソン株式会社 | Measurement device, measurement method and measurement system |
CN105501356B (en) * | 2016-01-15 | 2018-09-11 | 厉学战 | A kind of two-wheel balance car |
CN107543546B (en) * | 2016-06-28 | 2021-03-05 | 沈阳新松机器人自动化股份有限公司 | Attitude calculation method and device for six-axis motion sensor |
DE202016008779U1 (en) * | 2016-09-01 | 2019-08-22 | Sandro Suess | Speed limit for a self-balancing vehicle |
CN108121334A (en) * | 2016-11-28 | 2018-06-05 | 沈阳新松机器人自动化股份有限公司 | A kind of self-balance robot motion control method and device |
CN209765335U (en) * | 2019-03-12 | 2019-12-10 | 黄山学院 | A two-wheel self-balancing mobile robot control system |
CN110334141B (en) * | 2019-05-30 | 2023-11-21 | 平安科技(深圳)有限公司 | Method, device, computer equipment and storage medium for data conversion |
-
2021
- 2021-01-13 CN CN202110045804.3A patent/CN112874315B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109992327A (en) * | 2017-12-29 | 2019-07-09 | 深圳市优必选科技有限公司 | A robot control method, robot and storage medium |
CN110653814A (en) * | 2018-06-29 | 2020-01-07 | 深圳市优必选科技有限公司 | A robot control method, robot and device with storage function |
Also Published As
Publication number | Publication date |
---|---|
CN112874315A (en) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liao et al. | An adaptive approach to real-time estimation of vehicle sideslip, road bank angles, and sensor bias | |
CN111731265B (en) | Method and system for predicting stability state of autonomous vehicle | |
CN113392518B (en) | Method and apparatus for estimating vehicle weight | |
CN112622876A (en) | Vehicle centroid position determination method, device, equipment and storage medium | |
CN111572551B (en) | Course angle calculation method, device, equipment and storage medium under parking condition | |
CN113788022A (en) | Vehicle control method and device, computer-readable storage medium and electronic equipment | |
CN112046491A (en) | Method and device for estimating cornering stiffness of wheel, vehicle and readable storage medium | |
CN112874315B (en) | Motion control method, device and equipment of balance car and storage medium | |
Gao et al. | Vehicle longitudinal velocity estimation with adaptive Kalman filter | |
CN118445919A (en) | Modeling and simulation method, device and medium for vehicle operation stability | |
CN108773378B (en) | Automobile running speed real-time estimation method and device based on mobile terminal | |
JP7351012B2 (en) | Vehicle weight estimation method, device, electronic device, storage medium and computer program | |
CN111798020B (en) | Information processing method and device, storage medium and electronic equipment | |
KR20230085609A (en) | Segway Robot Based on Reinforcement Learning and Its Method for Motion Control | |
CN119550996B (en) | Method for determining vehicle lateral speed, electronic device and vehicle | |
CN116788264B (en) | Vehicle transverse control method, device, equipment and medium | |
CN111221338A (en) | Path tracking method, device, equipment and storage medium | |
CN116653976A (en) | Road adhesion coefficient estimation method, device, medium and electronic equipment | |
CN114919652B (en) | Method, device, equipment and computer storage medium for controlling friction force along with speed | |
CN118149830B (en) | Adaptive navigation method, device and equipment based on vehicle non-holonomic constraints | |
CN119911280B (en) | Gradient determination method and device, new energy automobile and storage medium | |
CN119568173A (en) | Determination method for lateral speed of vehicle, electronic equipment and vehicle | |
Wenzel et al. | Hybrid genetic algorithms/extended kalman filter approach for vehicle state and parameter estimation | |
CN117533347A (en) | Instruction generation method, device and vehicle | |
CN120197476A (en) | Vehicle state prediction method, electronic device, and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 518000, 3rd Floor, Building A2, Nanshan Zhiyuan, No. 1001 Xueyuan Avenue, Changyuan Community, Taoyuan Street, Nanshan District, Shenzhen, Guangdong Province Patentee after: Shenzhen 3600 Smart Life Technology Co.,Ltd. Country or region after: China Address before: 518000 Room 201, building A, No. 1, Qian Wan Road, Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen, Guangdong (Shenzhen Qianhai business secretary Co., Ltd.) Patentee before: SHENZHEN QIHU INTELLIGENT TECHNOLOGY CO.,LTD. Country or region before: China |