CN112861006A - Recommendation method and system fusing meta-path semantics - Google Patents
Recommendation method and system fusing meta-path semantics Download PDFInfo
- Publication number
- CN112861006A CN112861006A CN202110198542.4A CN202110198542A CN112861006A CN 112861006 A CN112861006 A CN 112861006A CN 202110198542 A CN202110198542 A CN 202110198542A CN 112861006 A CN112861006 A CN 112861006A
- Authority
- CN
- China
- Prior art keywords
- user
- commodity
- node
- meta
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000014509 gene expression Effects 0.000 claims abstract description 44
- 230000004927 fusion Effects 0.000 claims description 22
- 239000011159 matrix material Substances 0.000 claims description 20
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims 2
- 230000002776 aggregation Effects 0.000 claims 1
- 238000004220 aggregation Methods 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本发明涉及计算机网络技术领域,特别涉及一种融合元路径语义的推荐方法及系统。The invention relates to the technical field of computer networks, in particular to a method and system for recommending semantic fusion meta-paths.
背景技术Background technique
随着互联网的快速发展,互联网用户每天面临着海量信息,在用户没有明确目的的情况下,从海量商品中选出用户可能感兴趣的商品进行推荐,能够极大地激发用户的潜在兴趣,并帮助用户在信息过载的情况下高效地做出决策,已经成为互联网发展的重要增长引擎。因此,推荐系统在各种互联网产品中发挥着越来越重要的作用。With the rapid development of the Internet, Internet users are faced with a large amount of information every day. In the absence of a clear purpose for the user, selecting products that may be of interest to the user for recommendation can greatly stimulate the potential interest of the user and help the user. Efficient decision-making by users in the case of information overload has become an important growth engine for the development of the Internet. Therefore, recommender systems play an increasingly important role in various Internet products.
尽管已有许多成功应用于推荐系统的算法,然而其中大部分算法专注于从单一用户-商品的交互记录(或加上简单的内容信息)中学习推荐策略。这将不可避免地面临数据稀疏、冷启动、过度推荐等问题。近年来,一些研究指出,将用户与用户之间、用户与商品之间的其他关系数据加以利用,可以帮助推荐系统解决上述的某一个或几个问题;一些研究将社交网络引入推荐系统,解决一些用户交易记录数据稀疏带来的问题;为了进一步利用更复杂的、异构的用户/商品关系数据,一些研究提出将异构信息网络(heterogeneousinformation network)引入推荐系统。异构信息网络包含多个类型的结点,不同类型的结点之间的边包含不同类型语义。常见的例子有书目信息网络、社交媒体网络、蛋白质网络等等。近年来,元路径概念被提出用于表示异构信息网络中丰富的语义信息,元路径是由不同类型的结点构成的序列,每条元路径记录了从初始结点到末尾结点所经过的边的类型与结点类型。不同的元路径包含着不同的语义信息,因此将此类丰富的语义信息引入推荐系统,有望解决推荐系统数据稀疏、冷启动、过度推荐等问题。Although many algorithms have been successfully applied to recommender systems, most of them focus on learning recommendation policies from single user-item interaction records (or plus simple content information). This will inevitably face the problems of data sparse, cold start, over-recommendation, etc. In recent years, some studies have pointed out that the use of other relationship data between users and users and between users and commodities can help recommender systems solve one or more of the above problems; some studies introduce social networks into recommender systems to solve The problem caused by the sparse data of some user transaction records; in order to further utilize more complex and heterogeneous user/commodity relationship data, some researches propose to introduce heterogeneous information network into the recommender system. The heterogeneous information network contains multiple types of nodes, and the edges between different types of nodes contain different types of semantics. Common examples are bibliographic information networks, social media networks, protein networks, and more. In recent years, the concept of meta-path has been proposed to represent the rich semantic information in heterogeneous information networks. A meta-path is a sequence composed of different types of nodes. Each meta-path records the path from the initial node to the end node. The edge type and node type of . Different meta-paths contain different semantic information, so introducing such rich semantic information into the recommender system is expected to solve the problems of data sparseness, cold start, and over-recommendation in the recommender system.
将元路径引入推进系统,由于异构信息网络中存在多个元路径,如何有效地融合多个元路径,从中提取一致的信息运用于下游任务,是利用元路径的关键。现有方法采用为不同路径分配不同的权重,然后分别将元路径语义融合到正则化项、预测函数或用户/商品潜在表示模块。尽管取得了不错的效果,然而这些方法仅通过权重系数对不同元路径进行简单的融合,模型对不同元路径语义的表达能力有限。此外,也鲜少工作研究如何同时利用元路径语义与结点内容/属性信息进行结点嵌入学习。Introducing the meta-path into the propulsion system, since there are multiple meta-paths in the heterogeneous information network, how to effectively integrate the multiple meta-paths and extract consistent information from them for downstream tasks is the key to utilizing the meta-path. Existing methods employ assigning different weights to different paths, and then fuse meta-path semantics into regularization terms, prediction functions, or user/item latent representation modules, respectively. Although they have achieved good results, these methods only simply fuse different meta-paths through weight coefficients, and the model has limited ability to express the semantics of different meta-paths. In addition, there is little work on how to use meta-path semantics and node content/attribute information simultaneously for node embedding learning.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明提出一种融合元路径语义的推荐方法及系统,能够将不同元路径蕴含的语义信息进行融合,得到一致的语义信息,并运用到用户/商品的嵌入学习或推荐策略中。In view of the deficiencies of the prior art, the present invention proposes a recommendation method and system for integrating meta-path semantics, which can fuse semantic information contained in different meta-paths to obtain consistent semantic information, which can be applied to user/commodity embedding learning or recommended strategy.
为了实现上述目的,本发明提出一种融合元路径语义的推荐方法,包括:基于异构信息网络及用户/商品评分数据集,计算所述用户/商品的相对重要性二部图;利用所述相对重要性二部图指导用户/商品结点之间的信息传播,得到所述用户/商品结点的嵌入表达;将所述用户/商品结点的嵌入表达进行变换得到用于推荐的所述用户/商品结点的最终嵌入表达,并将所述用户/商品结点的最终嵌入表达输入一推荐模型得到所述用户/商品的预测分数。In order to achieve the above object, the present invention proposes a recommendation method integrating meta-path semantics, including: calculating the relative importance bipartite graph of the user/product based on a heterogeneous information network and a user/product scoring data set; using the The relative importance bipartite graph guides the information dissemination between user/commodity nodes, and obtains the embedded expression of the user/commodity node; transforms the embedded expression of the user/commodity node to obtain the recommended The final embedded expression of the user/commodity node, and the final embedded expression of the user/commodity node is input into a recommendation model to obtain the prediction score of the user/commodity.
为了实现上述目的,本发明还提出一种融合元路径语义的推荐系统,包括:元路径早期融合模块,用于基于异构信息网络及用户/商品评分数据集,计算所述用户/商品的相对重要性二部图;元路径语义嵌入模块,用于利用所述相对重要性二部图指导用户/商品结点之间的信息传播,得到所述用户/商品结点的嵌入表达;推荐预测模块,用于将所述用户/商品结点的嵌入表达进行变换得到用于推荐的所述用户/商品结点的最终嵌入表达,并将所述用户/商品结点的最终嵌入表达输入一推荐模型得到所述用户/商品的预测分数。In order to achieve the above object, the present invention also proposes a recommendation system that integrates meta-path semantics, including: a meta-path early fusion module, which is used to calculate the relative user/commodity based on heterogeneous information networks and user/commodity scoring datasets. Importance bipartite graph; meta-path semantic embedding module for using the relative importance bipartite graph to guide information dissemination between user/commodity nodes to obtain the embedded expression of the user/commodity nodes; recommendation prediction module , which is used to transform the embedded expression of the user/commodity node to obtain the final embedded expression of the user/commodity node for recommendation, and input the final embedded expression of the user/commodity node into a recommendation model Get the predicted score for the user/item.
由以上方案可知,本发明的优点在于:将基于不同元路径的相似度进行早期融合,获得一致的语义,直接应用于用户/物品的表达学习过程中;借鉴信息传播机制与注意力模型,创新性地将基于元路径的语义作为结点间的注意力分值,所学嵌入能够同时保留结点内容信息和结点间的拓扑结构信息。另外,本发明提出了一个较宽泛的推荐模型,用户可自行设计各个模块的具体实现方式,例如采用不同的方式计算基于元路径的相似度矩阵,采用不同结构进行多个元路径的早期融合等,模型简单,易于搭建。同时,相较于现有方法,本发明的实际推荐效果更佳。It can be seen from the above scheme that the advantages of the present invention are: the similarity based on different meta-paths is fused at an early stage to obtain consistent semantics, which is directly applied to the expression learning process of users/items; By taking meta-path-based semantics as the attention score between nodes, the learned embedding can preserve both the node content information and the topology information between nodes. In addition, the present invention proposes a broader recommendation model, and users can design the specific implementation of each module by themselves, such as calculating the similarity matrix based on meta-paths in different ways, using different structures to perform early fusion of multiple meta-paths, etc. , the model is simple and easy to build. Meanwhile, compared with the existing method, the actual recommendation effect of the present invention is better.
附图说明Description of drawings
图1为本发明的融合元路径语义的推荐系统的框架示意图。FIG. 1 is a schematic diagram of the framework of the recommendation system integrating meta-path semantics according to the present invention.
图2为本发明的元路径早期融合模块的框架示意图。FIG. 2 is a schematic diagram of the framework of the meta-path early fusion module of the present invention.
图3为本发明的元路径语义嵌入模块的框架示意图。FIG. 3 is a schematic diagram of the framework of the meta-path semantic embedding module of the present invention.
其中,附图标记:Among them, reference numerals:
1:元路径1: meta path
2:相对重要性二部图2: Bipartite graph of relative importance
3:相似度矩阵3: Similarity matrix
4:前一轮的嵌入表达4: Embedding expression from the previous round
5:社区信息5: Community Information
6:当前轮的嵌入表达6: Embedding expression for the current round
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other under the condition of no conflict.
请参照图1所示,本发明提供的一种融合元路径语义的推荐方法主要包括三个步骤,即基于异构信息网络及用户/商品评分数据集,计算用户/商品的相对重要性二部图;利用相对重要性二部图指导用户/商品结点之间的信息传播,得到用户/商品结点的嵌入表达;将用户/商品结点的嵌入表达进行变换得到用于推荐的用户/商品结点的最终嵌入表达,并将用户/商品结点的最终嵌入表达输入一推荐模型得到用户/商品的预测分数。本发明提供的一种融合元路径语义的推荐系统主要包括三个模块,即元路径早期融合模块、元路径语义嵌入模块以及推荐预测模块(Recommender),此三个模块分别对应于上述的三个步骤,下面将具体介绍各个模块的作用。Referring to FIG. 1 , a recommendation method for integrating meta-path semantics provided by the present invention mainly includes three steps, namely, calculating the relative importance of users/commodities based on heterogeneous information networks and user/commodity rating datasets. Graph; use the relative importance bipartite graph to guide the information dissemination between user/commodity nodes to obtain the embedded expression of the user/commodity node; transform the embedded expression of the user/commodity node to obtain the recommended user/commodity node The final embedding expression of the node, and the final embedding expression of the user/item node is input into a recommendation model to obtain the prediction score of the user/item. A recommender system integrating meta-path semantics provided by the present invention mainly includes three modules, namely meta-path early fusion module, meta-path semantic embedding module and recommendation prediction module (Recommender), the three modules respectively correspond to the above three modules Steps, the following will introduce the role of each module in detail.
在本发明的实施例中,设用户集合为U,商品集合为I,评分数值集合为Y,其中|U|=m,|I|=n。为了简单,此处考虑评分数据,给定评分记录Π={u,v,yuv|u∈U,v∈I,yuv∈Y}。给定一个异构信息网络G=(V,E),其中结点类型集合为A,边类型为R,元路径是定义在结点类型与边类型上的路径模板,可由经过的结点类型表示:P=(A1A2...Al+1)。定义为结点类型Ai与结点类型Aj之间的邻接矩阵。根据不同应用场景,人工设计了L条元路径模板P1,P2,...,PL。本发明的融合元路径语义的推荐系统主要包括以下三个模块:In the embodiment of the present invention, it is assumed that the user set is U, the commodity set is I, and the score value set is Y, where |U|=m and |I|=n. For simplicity, the scoring data is considered here, given a scoring record Π={u,v,y uv |u∈U,v∈I,y uv∈Y }. Given a heterogeneous information network G=(V, E), where the node type set is A, the edge type is R, and the meta-path is a path template defined on the node type and edge type, which can be determined by the node type passed through. Representation: P=(A 1 A 2 . . . A l+1 ). definition is the adjacency matrix between node type A i and node type A j . According to different application scenarios, L meta-path templates P 1 , P 2 ,...,P L are manually designed. The recommendation system for integrating meta-path semantics of the present invention mainly includes the following three modules:
(一)元路径早期融合模块(1) Meta-path early fusion module
请参照图2所示,元路径早期融合模块的作用主要在于基于异构信息网络及用户/商品评分数据集,计算用户/商品的相对重要性二部图;将预处理好的不同语义的相似度矩阵进行自适应地融合。Please refer to Figure 2. The function of the early fusion module of the meta-path is mainly to calculate the relative importance of users/commodities based on the heterogeneous information network and the user/commodity scoring dataset; degree matrix for adaptive fusion.
首先,基于给定的异构信息网络以及L条元路径,预处理数据,计算用户/商品结点在不同元路径语义下的相似度矩阵。具体的相似度计算方法有多种,本发明采用PathCount相似性,具体计算方法为:沿着元路径,将每相邻两种类型结点之间的邻接矩阵连续相乘。该相似性正比于初始结点到末尾结点之间按照给定语义所经过的总路径数,设在第l条元路径下得到的用户/商品相似度矩阵为M(l)。定义一个辅助二部图BG(U,I,E,R),该辅助二部图的结点为用户和商品两种类型结点,只有用户结点与用户结点之间有连接。用户结点u与商品结点v之间连接的边具有特征向量ruv,定义为:First, based on the given heterogeneous information network and L meta-paths, the data is preprocessed, and the similarity matrix of user/commodity nodes under different meta-path semantics is calculated. There are many specific similarity calculation methods. The present invention adopts PathCount similarity, and the specific calculation method is as follows: along the meta-path, the adjacency matrix between each adjacent two types of nodes is calculated. Multiply continuously. The similarity is proportional to the total number of paths traversed between the initial node and the end node according to the given semantics, and the user/commodity similarity matrix obtained under the lth meta-path is M (l) . Define an auxiliary bipartite graph BG(U,I,E,R), the nodes of this auxiliary bipartite graph are user and commodity nodes, and only the user node and the user node are connected. The edge connecting the user node u and the commodity node v has a feature vector r uv , which is defined as:
其中,公式(1)中的是第l条元路径语义下第u个用户和第v个商品之间的相似度。本发明将ruv看作为用户u和商品v之间的复杂关系的多维表示。该辅助二部图的边集E定义为:在该辅助二部图上,一个顶点i的邻居集合定义为:Ν(i)={j|(i,j)∈E},i∈U∪I。Among them, in formula (1), is the similarity between the u-th user and the v-th item under the semantics of the l-th meta-path. The present invention views r uv as a multi-dimensional representation of the complex relationship between user u and item v. The edge set E of this auxiliary bipartite graph is defined as: On this auxiliary bipartite graph, the neighbor set of a vertex i is defined as: N(i)={j|(i,j)∈E}, i∈U∪I.
元路径早期融合模块将该辅助二部图上边的特征向量ruv映射为用户结点u和商品结点v之间的相对重要性,从而将多个元路径下的复杂的、不一致的相似性转变为一致语义下的相似性。进一步地,本发明具体采用了多层感知机(Multi-LayerPerceptron,MLP)将边的特征向量ruv映射为一个标量euv,并经过Softmax函数进行归一化处理:The meta-path early fusion module maps the feature vector r uv on the auxiliary bipartite graph to the relative importance between the user node u and the commodity node v, so as to convert the complex and inconsistent similarity under multiple meta-paths Transform into similarity under consistent semantics. Further, the present invention specifically adopts a multi-layer perceptron (Multi-Layer Perceptron, MLP) to map the feature vector r uv of the edge to a scalar e uv , and normalizes it through the Softmax function:
euv=MLP(ruv) (2)e uv =MLP(r uv ) (2)
如果仅仅按照公式(2)计算得到的值作为用户结点u和商品结点v之间的相对重要性,则用户结点u对商品结点v的重要性与商品结点v对用户结点u的相对重要性是相等的。而实际上,用户结点u和商品结点v二者各自的邻居结点及其数量均不相同,因此用户结点u对商品结点v的重要性与商品结点v对用户结点u的相对重要性也应该是不相等的,故本发明进一步采用如公式(3)、(4)所示将标量euv经过softmax函数进行归一化处理,并将得到的αuv定义为用户结点u对商品结点v的相对重要性,以及αvu定义为商品结点v对用户结点u的相对重要性。If only the value calculated according to formula (2) is used as the relative importance between the user node u and the commodity node v, the importance of the user node u to the commodity node v is the same as that of the commodity node v to the user node. The relative importance of u is equal. In fact, the user node u and the commodity node v have different neighbor nodes and their numbers, so the importance of the user node u to the commodity node v is the same as the commodity node v to the user node u. The relative importance of the The relative importance of point u to commodity node v, and α vu is defined as the relative importance of commodity node v to user node u.
将所有的αuv与αvu放在一起,并构造矩阵其中αU→I由所有用户到商品的相对重要性组成,αI→U由所有商品到用户的相对重要性组成。该矩阵α可看作为一个辅助二部图的加权邻接矩阵,本发明将其称为相对重要性二部图。该相对重要性二部图α将在下一元路径语义嵌入模块中用于指导用户/商品的嵌入更新。put all alpha uv with alpha vu and construct the matrix where α U→I consists of the relative importance of all users to items, and α I→U consists of the relative importance of all items to users. The matrix α can be regarded as a weighted adjacency matrix of an auxiliary bipartite graph, which is called a relative importance bipartite graph in the present invention. This relative importance bipartite graph α will be used in the next meta-path semantic embedding module to guide the user/item embedding update.
(二)元路径语义嵌入模块(2) Meta-Path Semantic Embedding Module
请参照图3所示,元路径语义嵌入模块的作用主要在于基于元路径早期融合模块输出的相对重要性二部图α,进行用户/商品结点的嵌入学习,学得的用户/商品结点可以同时保持结点的内容特征与结点之间的拓扑结构(即相对重要性二部图α对应的图的拓扑关系)。Please refer to Figure 3. The function of the meta-path semantic embedding module is mainly to perform the embedding learning of user/commodity nodes based on the relative importance bipartite graph α output by the meta-path early fusion module, and the learned user/commodity nodes At the same time, the content features of nodes and the topological structure between nodes (ie, the topological relationship of the graph corresponding to the relative importance bipartite graph α) can be maintained.
设用户结点的原始特征为其中每一行代表一个用户的p维原始特征,商品结点的原始特征为其中每一行代表一个商品的q维原始特征。首先,经过一个特征变换,将用户结点的原始特征商品结点的原始特征转换到同一个空间内,并将其进行拼接,得到用户/商品结点的初始特征矩阵 Let the original feature of the user node be Each row represents the p-dimensional original feature of a user, and the original feature of the commodity node is where each row represents the q-dimensional raw features of an item. First, after a feature transformation, the original features of the user node are transformed into Raw features of commodity nodes Convert to the same space and splicing it to get the initial feature matrix of the user/commodity node
其中,公式(5)中的分别代表待学习的用户/商品结点特征的变换矩阵。元路径语义嵌入模块通过信息传播机制进行用户/商品结点嵌入的更新,为了将元路径语义与结点特征进行融合,本发明设计利用元路径早期融合模块输出的相对重要性二部图α指导信息传播的进行。即,相对重要性二部图α作为一种注意力机制,指导着用户/商品结点之间的信息传播。设信息传播一共进行Γ轮迭代,每一轮迭代可分为两个过程进行,并且在此需要说明的是,可将得到的初始特征矩阵作为第一轮的用户/商品结点的嵌入表达。例如对于Γ轮迭代中的第t轮来说,首先,本发明采用一个聚合器(Aggregator)将每个结点i(用户/商品)的邻居结点的当下特征j∈Ν(i)进行聚合,得到聚合后的每个结点i的社区信息其中:Among them, in formula (5), respectively represent the transformation matrices of the user/commodity node features to be learned. The meta-path semantic embedding module updates the user/commodity node embedding through the information dissemination mechanism. In order to fuse the meta-path semantics and node features, the present invention uses the relative importance bipartite graph α output by the meta-path early fusion module to guide information dissemination. That is, the relative importance bipartite graph α acts as an attention mechanism to guide the information dissemination between user/commodity nodes. It is assumed that information propagation is carried out in a total of Γ rounds of iteration, and each round of iteration can be divided into two processes, and it should be noted here that the obtained initial feature matrix can be used as the embedding expression of the user/commodity nodes in the first round. For example, for the t-th round in the Γ round iteration, firstly, the present invention uses an aggregator (Aggregator) to combine the current features of the neighbor nodes of each node i (user/commodity) j∈N(i) is aggregated to obtain the aggregated community information of each node i in:
得到每个结点i的社区信息之后,再将每个结点i的前一轮的嵌入表达及其对应的社区信息一并通过一个过滤器(Filter),进行一次信息的筛选,并得到更新后的当前轮的每个结点i的嵌入表达 Get the community information of each node i After that, the embedding expression of the previous round of each node i is expressed and its corresponding community information Through a filter (Filter) together, filter the information once, and get the updated embedded expression of each node i of the current round
公式(6)的作用在于,通过一个聚合器将基于元路径的语义与结点的内容信息进行融合,借鉴注意力机制,巧妙地利用元路径语义信息指导结点的信息传播,从而使得学得的结点同时保留结点的内容信息与结点之间的拓扑关系。The function of formula (6) is to fuse the meta-path-based semantics with the content information of nodes through an aggregator, learn from the attention mechanism, and skillfully use meta-path semantic information to guide the information dissemination of nodes, so that the learned At the same time, the content information of the node and the topological relationship between the nodes are preserved.
(三)推荐预测模块(3) Recommendation prediction module
推荐预测模块的作用主要在于在元路径语义嵌入模块得到的更新后的结点(用户/商品)的嵌入表达HΓ(经过Γ轮迭代后)基础上,进行模型的下游预测任务。基于用户/商品结点的嵌入,本发明所提框架可以方便地进行分类、回归等预测任务,本发明聚焦于评分数据(预测分数),用于评价用户与商品之间的相对重要性,并相应设计了两个推荐预测模型。The role of the recommendation prediction module is mainly to perform the downstream prediction task of the model on the basis of the updated node (user/product) embedding expression H Γ (after Γ round iteration) obtained by the meta-path semantic embedding module. Based on the embedding of user/commodity nodes, the framework proposed in the present invention can easily perform prediction tasks such as classification and regression, and the present invention focuses on scoring data (prediction score ), used to evaluate the relative importance between users and products, and designed two recommendation prediction models accordingly.
首先,将结点(用户/商品)的嵌入表达HΓ经过一层全连接层,进行变换得到用于推荐的用户/商品的最终嵌入表达:i∈U∪I。基于此,本发明提出了两种推荐预测模型:线性模型与双线性模型。线性模型将用户的最终嵌入表达与商品的最终嵌入表达进行拼接后的向量进行加权得到预测分数加权系数为双线性模型利用一个对称正定矩阵,将用户的最终嵌入表达与商品的最终嵌入表达通过一个双线性函数映射得到预测分数双线性模型与线性模型相比,引入了二次交互,具有更多的灵活性。其中,First, the embedding expression H Γ of the node (user/item) is transformed through a fully connected layer to obtain the final embedding expression for the recommended user/item: i∈U∪I. Based on this, the present invention proposes two recommendation prediction models: a linear model and a bilinear model. The linear model weights the vector obtained by splicing the final embedding expression of the user and the final embedding expression of the item to obtain the prediction score The weighting factor is The bilinear model uses a symmetric positive definite matrix to map the final embedding expression of the user and the final embedding expression of the item through a bilinear function to obtain the prediction score Compared with the linear model, the bilinear model introduces quadratic interaction and has more flexibility. in,
线性模型: Linear model:
双线性模型: Bilinear model:
另外,针对评分数据(预测分数),本发明构建了回归损失并通过随机梯度下降法对模型进行优化。In addition, for scoring data (predicted score ), the present invention constructs a regression loss The model is optimized by stochastic gradient descent.
本发明在两个真实数据集MovieLens-1M和Yelp上进行了实验。采用的评价指标为常见的RMSE(均方根误差)和MAE(平均绝对误差)。对于任意一个用户,其RMSE和MAE的计算公式分别为:The present invention is experimented on two real datasets MovieLens-1M and Yelp. The evaluation indicators used are the common RMSE (root mean square error) and MAE (mean absolute error). For any user, the calculation formulas of its RMSE and MAE are:
其中m为测试样本的个数,yi和分别为该用户对第i个测试样本的真实评价得分与预测的该用户对第i个测试样本的评价得分。where m is the number of test samples, y i and are the user's real evaluation score for the i-th test sample and the predicted user's evaluation score for the i-th test sample.
实验对比了以下三大类对比方法:(1)将异构图中除用户/商品评分数据外的其他数据作为用户或商品的特征,如FM[11]和GCMC[12];(2)基于元路径的方法:如FMG[13]和HAN[14];(3)基于知识图谱嵌入的方法,如CKE[15]和KGAT[16]。The experiments compared the following three types of comparison methods: (1) other data than user/item rating data in heterogeneous graphs are used as features of users or items, such as FM [11] and GCMC [12]; (2) based on Meta-path methods: such as FMG [13] and HAN [14]; (3) methods based on knowledge graph embedding, such as CKE [15] and KGAT [16].
所采用的MovieLens-1M数据集(https://grouplens.org/datasets/movielens/)包含如下不同的结点类型:用户(user,简写为U),电影(movie,简写为M),性别(gender,简写为Gd),职业(occupation,简写为Ocp),电影类型(type,简写为T)。包含的关系有:UM(用户观看电影),UOcp(用户属于某个职业),UGd(用户属于某个性别),MT(电影属于某个类型)。人工设计的元路径为:UM、UMUM、UMTM、UMTMUM、UOcpUM、UGdUM。The MovieLens-1M dataset used (https://grouplens.org/datasets/movielens/) contains the following different node types: user (user, abbreviated as U), movie (movie, abbreviated as M), gender ( gender, abbreviated as Gd), occupation (occupation, abbreviated as Ocp), movie type (type, abbreviated as T). The included relationships are: UM (the user watches a movie), UOcp (the user belongs to a certain occupation), UGd (the user belongs to a certain gender), and MT (the movie belongs to a certain genre). The artificially designed meta-paths are: UM, UMUM, UMTM, UMTMUM, UOcpUM, UGdUM.
所采用的Yelp数据集(https://www.yelp.com/dataset challenge)包含如下不同的结点类型:用户(user,简写U),商户(business,简写B),夸奖(compliment,简写Comp),城市(city,简写Ci),类型(category,简写Cat)。包含如下关系:用户评价商户(UB),用户与用户是朋友(UU),用户进行夸奖(UComp),商户属于某个城市(BCi),商户属于某个类型(BCat)。人工设计了如下元路径:UB、UBUB、UUB、UCompUB、UBCiB、UBCatB、UBCatBUB。The Yelp dataset used (https://www.yelp.com/dataset challenge) contains the following different node types: user (user, abbreviated U), business (business, abbreviated B), compliment (compliment, abbreviated Comp) ), city (city, abbreviated Ci), type (category, abbreviated Cat). It includes the following relationships: user reviews merchants (UB), users are friends with users (UU), users praise (UComp), merchants belong to a certain city (BCi), and merchants belong to a certain type (BCat). The following meta-paths were manually designed: UB, UBUB, UUB, UCompUB, UBCiB, UBCatB, UBCatBUB.
将用户ID和商品ID的独热编码作为原始输入特征,特征维度k取128,最终特征维度d取24。总迭代轮数Γ取1。采用了Adam优化器,学习率设为0.001。在三种不同的训练/测试设置下进行了实验,训练样本数量/测试样本数量分别为:40%/60%、60%/40%、80%/20%。在两个数据集上的实验结果分别如表1和表2所示。The one-hot encoding of user ID and product ID is used as the original input feature, the feature dimension k is 128, and the final feature dimension d is 24. The total number of iteration rounds Γ is taken as 1. The Adam optimizer is used, and the learning rate is set to 0.001. Experiments were conducted under three different train/test settings with the number of training samples/test samples: 40%/60%, 60%/40%, 80%/20%. The experimental results on the two datasets are shown in Table 1 and Table 2, respectively.
表1Table 1
表1为在MovieLens-1M数据集上的实验结果。其中,↓表示数值越小,模型性能越好。加粗表示最优的实验结果,下划线表示现有方法中次优的实验结果。Table 1 shows the experimental results on the MovieLens-1M dataset. Among them, ↓ indicates that the smaller the value, the better the model performance. Bold indicates the optimal experimental result, and underline indicates the sub-optimal experimental result among existing methods.
表2Table 2
表2为在Yelp数据集上的实验结果。其中,↓表示数值越小,模型性能越好。加粗表示本发明最优的实验结果,下划线表示现有方法中次优的实验结果。由于Yelp数据集在训练集比例为40%和60%时非常稀疏,所对比两类基于知识图谱嵌入方法不适用,故没有进行比较,表中标记为‘-’。Table 2 shows the experimental results on the Yelp dataset. Among them, ↓ indicates that the smaller the value, the better the model performance. Bold indicates the optimal experimental result of the present invention, and underline indicates the sub-optimal experimental result in the existing method. Since the Yelp dataset is very sparse when the training set proportions are 40% and 60%, the two types of knowledge graph-based embedding methods are not applicable, so they are not compared, and are marked as '-' in the table.
由表1和表2的实验结果可知,与现有方法相比,本发明在两个真实数据集上均取得了领先的性能。It can be seen from the experimental results in Table 1 and Table 2 that compared with the existing methods, the present invention has achieved leading performance on both real data sets.
综上,本发明将基于不同元路径的相似度进行早期融合,获得一致的语义,直接应用于用户/物品的表达学习过程中;借鉴信息传播机制与注意力模型,创新性地将基于元路径的语义作为结点间的注意力分值,所学嵌入能够同时保留结点内容信息和结点间的拓扑结构信息。另外,本发明提出了一个较宽泛的推荐模型,用户可自行设计各个模块的具体实现方式,例如采用不同的方式计算基于元路径的相似度矩阵,采用不同结构进行多个元路径的早期融合等,模型简单,易于搭建。同时,相较于现有方法,本发明的实际推荐效果更佳。To sum up, the present invention will perform early fusion based on the similarity of different meta-paths, obtain consistent semantics, and directly apply it to the expression learning process of users/items; drawing on the information dissemination mechanism and attention model, innovatively based on meta-paths As the attention score between nodes, the learned embedding can retain both the node content information and the topology information between nodes. In addition, the present invention proposes a broader recommendation model, and users can design the specific implementation of each module by themselves, such as calculating the similarity matrix based on meta-paths in different ways, using different structures to perform early fusion of multiple meta-paths, etc. , the model is simple and easy to build. Meanwhile, compared with the existing method, the actual recommendation effect of the present invention is better.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110198542.4A CN112861006B (en) | 2021-02-22 | 2021-02-22 | Recommendation method and system integrating meta-path semantics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110198542.4A CN112861006B (en) | 2021-02-22 | 2021-02-22 | Recommendation method and system integrating meta-path semantics |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112861006A true CN112861006A (en) | 2021-05-28 |
CN112861006B CN112861006B (en) | 2023-06-23 |
Family
ID=75988526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110198542.4A Active CN112861006B (en) | 2021-02-22 | 2021-02-22 | Recommendation method and system integrating meta-path semantics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112861006B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113836425A (en) * | 2021-09-29 | 2021-12-24 | 平安科技(深圳)有限公司 | Movie recommendation method, device and equipment based on heteromorphic image attention network |
CN114722272A (en) * | 2022-03-15 | 2022-07-08 | 北京大学 | Inspection detection mechanism recommendation method and system |
CN114840777A (en) * | 2022-07-04 | 2022-08-02 | 杭州城市大脑有限公司 | Multi-dimensional endowment service recommendation method and device and electronic equipment |
CN114896514A (en) * | 2022-07-14 | 2022-08-12 | 西安电子科技大学 | Web API label recommendation method based on graph neural network |
CN115795177A (en) * | 2022-11-25 | 2023-03-14 | 人民网股份有限公司 | Social media content recommendation method and device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120030159A1 (en) * | 2010-07-30 | 2012-02-02 | Gravity Research & Development Kft. | Recommender Systems and Methods |
CN111310045A (en) * | 2020-02-16 | 2020-06-19 | 重庆邮电大学 | Network-embedded movie recommendation method based on meta-path |
CN112148931A (en) * | 2020-09-29 | 2020-12-29 | 河北工业大学 | Meta path learning method for high-order abnormal picture classification |
CN112182424A (en) * | 2020-11-11 | 2021-01-05 | 重庆邮电大学 | Social recommendation method based on integration of heterogeneous information and isomorphic information networks |
CN112364245A (en) * | 2020-11-20 | 2021-02-12 | 浙江工业大学 | Top-K movie recommendation method based on heterogeneous information network embedding |
-
2021
- 2021-02-22 CN CN202110198542.4A patent/CN112861006B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120030159A1 (en) * | 2010-07-30 | 2012-02-02 | Gravity Research & Development Kft. | Recommender Systems and Methods |
CN111310045A (en) * | 2020-02-16 | 2020-06-19 | 重庆邮电大学 | Network-embedded movie recommendation method based on meta-path |
CN112148931A (en) * | 2020-09-29 | 2020-12-29 | 河北工业大学 | Meta path learning method for high-order abnormal picture classification |
CN112182424A (en) * | 2020-11-11 | 2021-01-05 | 重庆邮电大学 | Social recommendation method based on integration of heterogeneous information and isomorphic information networks |
CN112364245A (en) * | 2020-11-20 | 2021-02-12 | 浙江工业大学 | Top-K movie recommendation method based on heterogeneous information network embedding |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113836425A (en) * | 2021-09-29 | 2021-12-24 | 平安科技(深圳)有限公司 | Movie recommendation method, device and equipment based on heteromorphic image attention network |
CN114722272A (en) * | 2022-03-15 | 2022-07-08 | 北京大学 | Inspection detection mechanism recommendation method and system |
CN114840777A (en) * | 2022-07-04 | 2022-08-02 | 杭州城市大脑有限公司 | Multi-dimensional endowment service recommendation method and device and electronic equipment |
CN114840777B (en) * | 2022-07-04 | 2022-09-27 | 杭州城市大脑有限公司 | Multi-dimensional endowment service recommendation method and device and electronic equipment |
CN114896514A (en) * | 2022-07-14 | 2022-08-12 | 西安电子科技大学 | Web API label recommendation method based on graph neural network |
CN114896514B (en) * | 2022-07-14 | 2022-09-30 | 西安电子科技大学 | A Web API Tag Recommendation Method Based on Graph Neural Network |
CN115795177A (en) * | 2022-11-25 | 2023-03-14 | 人民网股份有限公司 | Social media content recommendation method and device |
CN115795177B (en) * | 2022-11-25 | 2023-04-28 | 人民网股份有限公司 | Social media content recommendation method and device |
Also Published As
Publication number | Publication date |
---|---|
CN112861006B (en) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112861006A (en) | Recommendation method and system fusing meta-path semantics | |
CN113362131B (en) | Intelligent commodity recommendation method based on map model and integrating knowledge map and user interaction | |
CN103092911B (en) | A kind of mosaic society label similarity is based on the Collaborative Filtering Recommendation System of k nearest neighbor | |
Okawa et al. | Predicting opinion dynamics via sociologically-informed neural networks | |
CN108492200A (en) | A kind of user property estimating method and device based on convolutional neural networks | |
CN112364245B (en) | Top-K Movie Recommendation Method Based on Heterogeneous Information Network Embedding | |
CN114510653A (en) | Social group recommendation method, system, device and storage medium | |
Liu et al. | REDRL: A review-enhanced Deep Reinforcement Learning model for interactive recommendation | |
CN110781405B (en) | Document context perception recommendation method and system based on joint convolution matrix decomposition | |
CN113128667A (en) | Cross-domain self-adaptive graph convolution balance migration learning method and system | |
CN115481215A (en) | Partner prediction method and prediction system based on temporal partner knowledge graph | |
CN114817712A (en) | Project recommendation method based on multitask learning and knowledge graph enhancement | |
CN115587626A (en) | Heterogeneous Graph Neural Network Attribute Completion Method | |
Yin et al. | An efficient recommendation algorithm based on heterogeneous information network | |
CN117390267A (en) | Knowledge graph-based personalized multitask enhanced recommendation model | |
CN117056597A (en) | Noise enhancement-based comparison learning graph recommendation method | |
Wang et al. | Who are the best adopters? User selection model for free trial item promotion | |
Hassan et al. | Performance analysis of neural networks-based multi-criteria recommender systems | |
CN115221413B (en) | A sequential recommendation method and system based on interactive graph attention network | |
CN116542742A (en) | Heterogeneous dynamic social recommendation method based on multiple relation types | |
CN115936120A (en) | Information diffusion prediction system and method based on meta-knowledge learning | |
Liu et al. | Integrating gated recurrent unit in graph neural network to improve infectious disease prediction: an attempt | |
CN115168653A (en) | Cross-domain recommendation method and system based on inter-domain and intra-domain relationships | |
Tian et al. | UFIN: Universal feature interaction network for multi-domain click-through rate prediction | |
CN118840177A (en) | Commodity list recommendation method and system based on multiple different composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |