CN112853345B - 一种提高钢轨焊缝强度的材料的激光制备方法 - Google Patents

一种提高钢轨焊缝强度的材料的激光制备方法 Download PDF

Info

Publication number
CN112853345B
CN112853345B CN202110015264.4A CN202110015264A CN112853345B CN 112853345 B CN112853345 B CN 112853345B CN 202110015264 A CN202110015264 A CN 202110015264A CN 112853345 B CN112853345 B CN 112853345B
Authority
CN
China
Prior art keywords
laser
steel rail
welding seam
welding
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110015264.4A
Other languages
English (en)
Other versions
CN112853345A (zh
Inventor
杨胶溪
马文雨
刘哲
朱清
武飞宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110015264.4A priority Critical patent/CN112853345B/zh
Publication of CN112853345A publication Critical patent/CN112853345A/zh
Application granted granted Critical
Publication of CN112853345B publication Critical patent/CN112853345B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/068Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts repairing articles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种提高钢轨焊缝强度的材料的激光制备方法,属于激光加工领域。材料的成分为:C:0.25~0.50wt%、Si:0.80~2.25wt%、Mn:0.95~2.10wt%、Ni:0.90~4.20wt%、Cr:8.50~12.50wt%、Mo:0.75~3.20wt%、V:1.20~2.10wt%、Al:0.50~1.50wt%、Ta:0.30~0.80wt%。还提供了其制备方法。本发明是根据无缝钢轨闪光焊、铝热焊后焊缝存在多种焊接缺陷、滚动疲劳强度低等缺陷,在焊缝处激光沉积具有较高的硬度、耐磨性与辊压承载性能的强化层,提高钢轨使用寿命。

Description

一种提高钢轨焊缝强度的材料的激光制备方法
技术领域
本发明涉及一种提高钢轨焊缝强度的材料及激光制备方法,其特征在于在闪光焊、铝热焊钢轨的焊缝区激光沉积性能匹配的材料,属于激光加工制造领域。
背景技术
铁路钢轨是铁路线路的核心部件,钢轨铝热焊、闪光焊是铁路无缝线路钢轨焊接的重要技术,是铁路线路钢轨在线焊接、原位抢修和断轨抢修的重要手段之一,但焊缝接头中会出现许多焊接缺陷,同时热处理状态与母材存在差异,因此焊接焊缝是无缝铁路中比较薄弱的环节。
无缝铁路焊接后损伤类型主要有踏面伤损、横向裂纹、轨腰纵向裂纹和疲劳裂纹的脆性断裂,焊缝及热影响区主要缺陷为过热区带状偏析、过热区晶界成分偏析、灰斑缺陷和焊缝夹渣等,滚动疲劳强度低,容易出现焊缝裂纹。焊缝强度、硬度、耐磨性能与冲击韧性较差,影响钢轨的服役寿命、列车运行的平顺性及列车行驶安全。在闪光焊、铝热焊钢轨的焊缝区激光沉积性能匹配的材料可有效提高硬度、耐磨性能与承载性能,对延长钢轨使用寿命与提高列车行驶安全具有重要意义。
激光沉积技术是利用高能激光束作用于金属基体,熔融态合金粉进入到基体熔池中,在基体表面沉积不同厚度的功能强化层,是材料表面改性技术的一个重要研究方向。在Fe基自熔性粉末体系中添加Si、Mn、Mo、Ni、Al、V、Ta等元素提高焊缝强化材料机械性能与力学性能。
发明内容
本发明涉及一种提高钢轨焊缝强度的材料及激光制备方法,用该工艺处理得到的焊缝处强化层具有较高的硬度、耐磨性与辊压承载性能。
一种钢轨焊接焊缝强化材料激光沉积方法,其特征在于在闪光焊、铝热焊钢轨的焊缝区激光沉积性能匹配的材料,材料的成分为:C:0.25~0.50wt%、Si:0.80~2.25wt%、Mn:0.95~2.10wt%、Ni:0.90~4.20wt%、Cr:8.50~12.50wt%、Mo:0.75~3.20wt%、V:1.20~2.10wt%、Al:0.50~1.50wt%、Ta:0.30~0.80wt%,余量为Fe。
按上述强化层合金粉末按质量百分比进行选取,直径约为70~150um,将多元合金粉末在球磨机内混合一小时,实现多元粉体的均匀化,将合金粉末放置于真空干燥箱中,真空干燥箱温度为80℃,真空度为-0.06MPa,粉末干燥12h。
申请人发明这种提高钢轨焊缝强度的材料及激光制备方法,在钢轨焊缝处加工U型坡口,在U型坡口处激光沉积性能匹配的强化材料,强化层与钢轨基体呈现良好的冶金结合。在Fe基自熔性粉末粉末体系中添加Si、Mn、Mo、Ni、Al、V、Ta等元素提高强化层机械性能与力学性能,Si元素为强置换固溶强化元素,可溶于铁素体中提高强度,改善粉末的润湿性,Cr、Si、Mo元素可提高强化层硬度与耐磨性,Mn、Al元素可细化组织,提高强化层强度与韧性,Ni元素的添加可提高抗开裂性能,V、Ta元素可改善强化层韧性和强度,其制备过程包括以下步骤:
按照发明的强化层合金粉末质量百分比进行选取,直径约为70~150um,选取铝热焊或闪光焊后钢轨,在焊缝处加工U型坡口,坡口深度1.5~5mm,坡口宽度15~30mm;焊缝区采用离焦放大光斑的方式进行往复扫描局部预热,激光功率P=500~700W,圆形光斑直径8~12mm,激光扫描速率V=1~3m/min,Ar气保护气体流量为20~30L/min,扫描时间15~30分钟,预热温度为300~450℃。在坡口处激光沉积强化材料,激光沉积工艺参数为:激光功率P=1.5~4KW,圆形光斑直径d=2~5mm,激光扫描速度V=300~600mm/min,搭接率为30%~60%,送粉速率为20~60g/min,保护气体流量为15~25L/min。激光沉积强化材料之后,采用离焦放大光斑的方式对熔覆区材料进行往复扫描加热去除应力,激光功率P=900~1500W,圆形光斑直径8~12mm,激光扫描速率V=1~3m/min,熔覆区加热温度500~650℃、保护气体流量为20~30L/min,扫描时间15~30分钟。
按照此发明得到强化层特征为:沉积层冶金质量高,与钢轨呈现良好的冶金结合,无气孔、裂纹等缺陷。显微组织呈平面晶-胞晶-枝状晶分布,沉积层平均显微硬度为500HV0.2,沉积层物相包括Fe-Cr固溶体、Fe-Ni固溶体、Cr9.1Si0.9、Fe65Mn8Mo27等。本发明可多层沉积实现在焊缝处沉积不同厚度的强化层,强化层有效提高了钢轨焊缝处硬度、耐磨性能与辊压承载性能,延长钢轨的使用寿命。
本发明在激光沉积强化材料前对钢轨焊缝区局部预热300~450℃,激光沉积强化材料后采用激光离焦放大光斑的方式对熔覆区材料进行往复扫描加热,有效避免激光沉积过程中极快速加热与冷却形成马氏体组织,并去除了内部残余应力。强化层中Fe-Cr固溶体,Fe-Ni固溶体及弥散析出的Cr的碳化物等硬质相,对强化组织产生强化作用,提高钢轨焊缝处耐磨性与辊压承载性能。
本发明处理后的焊缝处强化层在经过8h辊压承载实验后未发现明显裂纹,焊缝处强化层磨损深度小,强化层具有较高的耐磨性能与辊压承载性能。
附图说明
图1是焊缝处强化层制备图
图2是强化层显微组织形貌
图3是强化层组织SEM形貌
图4是垂直强化层方向硬度分布曲线
图5是强化层水平方向硬度分布曲线
图6是滚压承载性能实验原理图
图7是实施例一滚压承载样品的磨损深度图
图8是实施例二滚压承载样品的磨损深度图
图9是实施例三滚压承载样品的磨损深度图
图10是实施例中钢轨滚压承载样品的磨损深度图
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。
实施例一
(1)焊缝区激光沉积性能匹配的材料成分为:C:0.25%、Si:0.80wt%、Mn:0.95wt%、Ni:0.90wt%、Cr:8.50wt%、Mo:0.75wt%、V:1.20wt%、Al:0.50wt%、Ta:0.30wt%、Fe:85.85wt%。按上述组分的质量百分比称量、配置原料,在球磨机中进行粉末混合1小时,实现多元粉体的均匀化,得到均匀粉末过筛后得到粒径较为相近的粉末,将合金粉末放置于真空干燥箱中,真空干燥箱温度为80℃,真空度为-0.06MPa,粉末干燥12h,放入送粉器中。
(2)选取贝氏体钢轨铝热焊贝氏体钢轨,去除表面油污等杂质,在焊缝处加工浅U型坡口,深度1.5mm,宽15mm;
(3)焊缝区采用离焦放大光斑的方式进行往复扫描局部预热,激光功率P=500W,圆形光斑直径8mm,激光扫描速率V=1m/min,Ar气保护气体流量为20L/min,扫描时间15分钟,预热温度为300℃。激光沉积工艺参数为:激光功率P=1.5KW,圆形光斑直径d=2mm,激光扫描速度V=300mm/min,搭接率为30%,送粉速率为20g/min,保护气体流量为15L/min。激光沉积强化材料之后,采用离焦放大光斑的方式对熔覆区材料进行往复扫描加热去除应力,激光功率P=900W,圆形光斑直径8mm,激光扫描速率V=1m/min,熔覆区加热温度500℃,保护气体流量为20L/min,扫描时间15分钟。对本实施例得到的熔覆涂层进行以下性能测试。
1、显微硬度
采用威尔逊VH1102显微硬度计对焊缝处强化层横截面沿垂直于强化层方向进行多点硬度测试。
2、滚压承载性能测试
用MMG-10型高温高速摩擦磨损试验机进行滚压承载性能测试(如图6所示),加载力为2000N,转速为200r/min,运行时间为8h。
实施例二
(1)实施例一相同的部分不再叙述,不同之处在于焊缝区激光沉积性能匹配的材料成分配比,C:0.40wt%、Si:1.50wt%、Mn:1.50wt%、Ni:2.10wt%、Cr:10.50wt%、Mo:2.50wt%、V:1.50wt%、Al:1.00wt%、Ta:0.50wt%、Fe:78.5wt%。
(2)焊缝区往复扫描局部预热激光功率P=600W,圆形光斑直径10mm,激光扫描速率V=2m/min,保护气体流量为25L/min,扫描时间20分钟,预热温度为400℃。激光沉积工艺参数为:激光功率P=2.5KW,圆形光斑直径d=3mm,激光扫描速度V=420mm/min,搭接率为40%,送粉速率为40g/min,Ar气保护气体流量为20L/min。激光沉积强化材料之后,采用离焦放大光斑的方式对熔覆区材料进行往复扫描加热去除应力,激光功率P=1200W,圆形光斑直径10mm,激光扫描速率V=2m/min,熔覆区加热温度600℃,保护气体流量为25L/min,扫描时间20分钟。
实施例三
(1)实施例一相同的部分不再叙述,不同之处在于焊缝区激光沉积性能匹配的材料成分配比:C:0.50wt%、Si:2.25wt%、Mn:2.10wt%、Ni:4.20wt%、Cr:12.50wt%、Mo:3.20wt%、V:2.10wt%、Al:1.50wt%、Ta:0.80wt%,Fe:70.85wt%。
(2)焊缝区往复扫描局部预热激光功率P=700W,圆形光斑直径12mm,激光扫描速率V=3m/min,保护气体流量为30L/min,扫描时间30分钟,预热温度为450℃。激光沉积工艺参数为:激光功率P=4KW,圆形光斑直径d=5mm,激光扫描速度V=600mm/min,搭接率为60%,送粉速率为60g/min,Ar气保护气体流量为25L/min。激光沉积强化材料之后,采用离焦放大光斑的方式对熔覆区材料进行往复扫描加热去除应力,激光功率P=1500W,圆形光斑直径12mm,激光扫描速率V=3m/min,熔覆区加热温度650℃,保护气体流量为30L/min,扫描时间30分钟。

Claims (1)

1.一种提高钢轨焊缝强度的材料的激光制备方法,其特征在于:材料的成分为:C:0.25~0.50wt%、Si:0.80~2.25wt%、Mn:0.95~2.10wt%、Ni:0.90~4.20wt%、Cr:8.50~12.50wt%、Mo:0.75~3.20wt%、V:1.20~2.10wt%、Al:0.50~1.50wt%、Ta:0.30~0.80wt%,余量为Fe;在钢轨焊缝处激光沉积的步骤如下:
(1)选取铝热焊或闪光焊后钢轨,在焊缝处加工U型坡口,深度1.5~5mm,坡口宽度15~30mm;
(2)焊缝区采用离焦放大光斑的方式进行往复扫描局部预热,激光功率P=500~700W,圆形光斑直径8~12mm,激光扫描速率V=1~3m/min,Ar气作为保护气体流量为20~30L/min,预热温度为300~450℃,之后在坡口处激光沉积强化材料,激光沉积工艺参数为:激光功率P=1.5~4KW,圆形光斑直径d=2~5mm,激光扫描速度V=300~600mm/min,搭接率为30%~60%,送粉速率为20~60g/min,保护气体流量为15~25L/min,扫描时间15~30分钟;
(3)激光沉积强化材料之后,采用离焦放大光斑的方式对熔覆区材料进行往复扫描加热去除应力,激光功率P=900~1500W,圆形光斑直径8~12mm,激光扫描速率V=1~3m/min,熔覆区加热温度500℃~650℃、保护气体流量为20~30L/min,扫描时间15~30分钟。
CN202110015264.4A 2021-01-06 2021-01-06 一种提高钢轨焊缝强度的材料的激光制备方法 Active CN112853345B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110015264.4A CN112853345B (zh) 2021-01-06 2021-01-06 一种提高钢轨焊缝强度的材料的激光制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110015264.4A CN112853345B (zh) 2021-01-06 2021-01-06 一种提高钢轨焊缝强度的材料的激光制备方法

Publications (2)

Publication Number Publication Date
CN112853345A CN112853345A (zh) 2021-05-28
CN112853345B true CN112853345B (zh) 2022-06-24

Family

ID=76004451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110015264.4A Active CN112853345B (zh) 2021-01-06 2021-01-06 一种提高钢轨焊缝强度的材料的激光制备方法

Country Status (1)

Country Link
CN (1) CN112853345B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113584971B (zh) * 2021-07-12 2023-05-09 武汉新瑞达激光工程有限责任公司 一种钢轨焊接接头的熔覆强韧化处理方法及其应用
CN114131191B (zh) * 2021-11-19 2024-06-18 中国航发北京航空材料研究院 变形高温合金冲击管与铸造高温合金导向叶片的焊接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012560A (zh) * 2007-01-17 2007-08-08 熊林勇 用感应加热熔涂合金技术强化火车钢轨和车轮表面方法
CN108456879A (zh) * 2018-01-23 2018-08-28 华中科技大学 一种激光-辅助热源高效复合熔覆强化钢轨的方法
CN110129674A (zh) * 2019-05-21 2019-08-16 北京工业大学 一种激光熔覆制备的梯度材料钢轨辙叉

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2614917A1 (de) * 2012-01-10 2013-07-17 Siemens Aktiengesellschaft Laserschweißen von nickelbasierten Superlegierungen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012560A (zh) * 2007-01-17 2007-08-08 熊林勇 用感应加热熔涂合金技术强化火车钢轨和车轮表面方法
CN108456879A (zh) * 2018-01-23 2018-08-28 华中科技大学 一种激光-辅助热源高效复合熔覆强化钢轨的方法
CN110129674A (zh) * 2019-05-21 2019-08-16 北京工业大学 一种激光熔覆制备的梯度材料钢轨辙叉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Research on extending the fatigue life of railway steel bridges by using intelligent control;Liu J,et al.;《CONSTRUCTION AND BUILDING MATERIALS》;20180429;第168卷;第532-546页 *

Also Published As

Publication number Publication date
CN112853345A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CN110129674B (zh) 一种激光熔覆制备的梯度材料钢轨辙叉
CN109468634B (zh) 一种激光熔覆技术恢复轧机阶梯垫精度的工艺方法
CN110273155A (zh) 一种激光熔覆再造工艺
CN112853345B (zh) 一种提高钢轨焊缝强度的材料的激光制备方法
JP5531845B2 (ja) フラッシュバット溶接部近傍の後熱処理方法
CN108381027B (zh) 用于制备高碳当量特厚钢板的真空焊接装置及其制备方法
CN109402631A (zh) 高硬度梯度增强冷轧辊及其表面激光熔覆涂层制备方法
CN112281082A (zh) 一种激光熔覆材料及火车铁轨激光熔覆修复工艺
CN103255412B (zh) 一种用于轧辊工作面的激光熔覆高硬度材料的工艺方法
CN113319272B (zh) 型钢输送辊耐磨层用金属陶瓷粉末材料及耐磨层的制作方法
CN108707894A (zh) 一种激光熔覆自润滑耐磨钴基合金所用粉料及工艺方法
CN109371396B (zh) 一种高碳硬面无裂纹大厚度冷轧辊激光修复方法
Mortazavian et al. Effect of heat treatment on microstructure and hardness of a worn rail repaired using laser powder deposition
CN110052610A (zh) 一种铸铁轧辊的增材制造方法
CN112680634A (zh) 结晶器足辊修复用镍基合金粉末材料及修复方法
CN111655874A (zh) 工具材料的再生方法及工具材料
CN105297009A (zh) 一种对中辊的激光熔覆修复工艺
CN110344048B (zh) 高锰钢辙叉的激光熔覆层及其制备方法和高锰钢辙叉
CN112743235B (zh) 一种球墨铸铁与低碳钢的激光焊接方法
CN114807926A (zh) 一种在蠕墨铸铁发动机气门座表面进行激光熔覆的方法
KR20230113539A (ko) 레이저 클래딩에 의한 열간 압연 밀 롤을 제조하는 방법
CN112301345A (zh) 铸钢轧辊用激光熔覆合金粉料及其激光熔覆方法
Konat et al. Effect of Welding Technique and Thermal Heatment Parameters on Abrasive Wear of Steel S355
CN105728979A (zh) 焊丝及其制备、应用该焊丝强化热作模具材料表面的方法
CN106567065A (zh) 修复后表面具有很好的热硬性的热轧辊的激光修复方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant