CN112853229B - 高耐蚀性高磁感强度高电阻率的软磁合金及其制备方法 - Google Patents
高耐蚀性高磁感强度高电阻率的软磁合金及其制备方法 Download PDFInfo
- Publication number
- CN112853229B CN112853229B CN202110021372.2A CN202110021372A CN112853229B CN 112853229 B CN112853229 B CN 112853229B CN 202110021372 A CN202110021372 A CN 202110021372A CN 112853229 B CN112853229 B CN 112853229B
- Authority
- CN
- China
- Prior art keywords
- percent
- alloy
- equal
- less
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/04—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/773—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1227—Warm rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/166—Selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Combustion & Propulsion (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Abstract
本发明涉及一种高耐蚀性高饱和磁感应强度高电阻率的软磁合金,该合金的化学成分按重量%为:Co 9.0‑19.0,Cr 4.0‑12.0,Mo 1.0‑3.0,Al 1.0‑3.0,La 0.1‑0.3,C≤0.02,P≤0.02,S≤0.02,其余为Fe。本发明的软磁合金通过采用相应的处理工艺,具有优异的磁性能和耐蚀性的组合:合金饱和磁感应强度最高可达1.95T,电阻率可达0.8μΩm,为常规FeCo27软磁合金电阻率的5倍以上;耐腐蚀性能优异,腐蚀率和腐蚀深度仅为硅钢产品的1/44。与现有软磁合金相比,该合金的综合性能有明显改善,适应现代化器件高饱和磁感应强度高电阻率强耐腐蚀的发展趋势,进一步满足了应用需求。
Description
技术领域
本发明属于精密合金功能材料领域,特别涉及一种耐腐蚀性能优异高饱和磁感应强度高电阻率的软磁合金及其制备方法,可用于喷油嘴、生物燃料喷射器等对耐蚀性能要求较高的汽车部件以及高压或腐蚀氛围下高速切换的螺线管阀门等。
背景技术
现代汽车工业对电器电子控制装置的需求越来越高,对控制用软磁合金自然也提出了更高的性能要求,包括:为获得强磁场,以较小能量驱动电磁阀和喷油装置工作,合金需具有高饱和磁感应强度;为保证阀门和喷射装置快速响应,合金需具有高磁导率和低矫顽力;为提高电磁阀工作效率,降低软磁合金铁损,合金需具有高电阻率;为使部件可以在严苛的工作环境下服役,合金需具有优异的耐腐蚀性能。
常规软磁合金包括电工纯铁、硅钢和Fe-Cr系软磁不锈钢等,。电工纯铁常被用作磁路铁芯、电磁阀等,材料均匀稳定,但是耐蚀性较差。在低碳铁中加入硅可提高材料硬度和电阻率,即电工硅钢,用于制造电磁阀、继电器等,在腐蚀环境下使用需表面涂覆处理。Fe-Cr系软磁不锈钢耐腐蚀性能较好,但是铁损高,饱和磁感应强度和磁导率较低。例如,中国发明专利申请号201210549527.0(公开号CN103187135A)公开了‘一种高磁感应强度FeNiCo耐蚀软磁合金’,其成分(质量百分比)为:C≤0.02%,Si:0.2%~0.80%,Mn≤0.50%,Ni:29.00~35.00%,Co:25.00~32.00,Mo≤5.00,Cu≤0.50%,微量元素:0.001%~0.55%,其中稀土元素总量0.001%~0.05%,其余则为Fe和不可避免的夹杂。上述常规软磁合金,均无法兼顾优异的耐腐蚀性能、高饱和磁感应强度以及高电阻率,因此无法用于汽车工业的先进控制装置,如喷油嘴等。
发明内容
本发明的目的是针对现有硅钢片、1Cr13以及Ni46MoCu耐蚀软磁合金的不足,通过调整Cr、Co元素含量,添加稀土元素La并采用相应的热处理制度,得到一种耐腐蚀性能优异高饱和磁感应强度高电阻率的软磁合金及其制备方法,可用于喷油嘴、生物燃料喷射器等对耐蚀性能要求较高的汽车部件以及高压或腐蚀氛围下高速切换的螺线管阀门等。
为实现上述目的,本发明的技术方案如下:
一种高耐蚀性高磁感强度高电阻率的软磁合金,该合金的化学成分按重量百分比为:Co 9.0-19.0,Cr 4.0-12.0,Mo 1.0-3.0,Al 1.0-3.0,La 0.1-0.3,C≤0.02,P≤0.02,S≤0.02,其余为Fe。
该软磁合金采用如下步骤制备:真空感应熔炼合金→锻造方坯→热轧→温轧→加工取样→真空磁场热处理。
该合金具有以下磁性能和耐蚀性能的组合:
饱和磁感应强度Bs为1.76-1.94T,电阻率ρ为0.75-0.8μΩm;在96小时盐雾腐蚀后,腐蚀率W为0.0143-0.0149g/m2·h,腐蚀深度Dt为0.1813-0.1826μm。
一种如所述的高耐蚀性高磁感强度高电阻率的软磁合金的制备方法,该方法包括如下步骤:
a)按合金成分进行原料配比,采用真空感应炉熔炼合金,其中,合金成分按重量百分比为:Co 9.0-19.0,Cr 4.0-12.0,Mo 1.0-3.0,Al1.0-3.0,La 0.1-0.3,C≤0.02,P≤0.02,S≤0.02,余为Fe;
b)高温锻造为方坯;
c)对锻造的方坯进行连续热轧至厚度为2.5-3.5mm的板材;
d)对热轧板材进行温轧至厚度为0.2-0.4mm的板材;
e)加工取样;
f)将对合金进行真空磁场二级热处理,保温温度为750-1120℃,保温时间为700-740min,保温的同时加直流磁场。
在步骤b)中,锻造温度为1150±20℃。
在步骤f)中,真空一级热处理温度为1100±20℃,保温时间为120±10min,真空二级热处理温度为770±20℃,保温时间为600±10min,磁场强度为40±5Oe。
在步骤b)中,锻造温度优选为1148-1165℃。
步骤f)中,真空一级热处理温度优选为1100-1110℃,保温时间优选为115-120min,真空二级热处理温度优选775-785℃,保温时间优选为600-605min,磁场强度优选为39-42Oe。
一种如所述的高耐蚀性高磁感强度高电阻率的软磁合金的用途,其终:
1)用于汽车喷油嘴、生物燃料喷射器;
2)用于高压或腐蚀氛围下高速切换的螺线管阀门。
本发明的有益效果在于:
本发明与现有技术相比电阻率更高且耐腐蚀性能有明显改善,合金饱和磁感应强度最高可达1.95T,电阻率可达0.8μΩm,为常规FeCo27软磁合金电阻率的5倍以上。耐腐蚀性能优异,腐蚀率和腐蚀深度仅为硅钢产品的1/44。比现有的可用作汽车部件喷油嘴、螺线管阀门等的耐蚀软磁合金相比,如现有技术CN 103187135A的高磁感应强度FeNiCo耐蚀软磁合金,其饱和磁感应强度为1.55T,远低于本发明;其电阻率为0.62μΩm,本发明为0.8μΩm;按照GJB150.11盐雾试验,其合金的50小时腐蚀速率为0.02mm/a,本发明96小时平均腐蚀速率为0.016mm/a,有很明显的优势。总之,本发明合金的综合性能有明显改善,适应现代化器件高饱和磁感应强度高电阻率强耐腐蚀的发展趋势,进一步满足了应用需求。
附图说明
图1 本发明合金96小时盐雾腐蚀试样后表面形态;
图2 常规硅钢96小时盐雾腐蚀试样后表面形态;
图3 1C13合金96小时盐雾腐蚀试样后表面形态。
具体实施方式
一种耐腐蚀性能优异高饱和磁感应强度高电阻率的软磁合金,该合金的化学组成成分(wt.%)为Co 9.0-19.0,Cr 4.0-12.0,Mo 1.0-3.0,Al 1.0-3.0,La 0.1-0.3,C≤0.02,P≤0.02,S≤0.02,余为Fe。
该软磁合金采用如下步骤制备:真空感应熔炼合金→锻造方坯→热轧→温轧→加工取样→真空磁场热处理→性能检测。
该合金具有以下优异的综合性能:合金饱和磁感应强度最高可达1.95T,电阻率可达0.8μΩm,为常规FeCo27软磁合金电阻率的5倍以上。耐腐蚀性能优异,腐蚀率和腐蚀深度仅为硅钢产品的1/44。
该软磁合金的制备方法,包括如下步骤:
a)将原料进行配比,采用真空感应炉熔炼合金,其中,原料配比(wt.%)为Co 9.0-19.0,Cr 4.0-12.0,Mo 1.0-3.0,Al 1.0-3.0,La 0.1-0.3,C≤0.02,P≤0.02,S≤0.02,余为Fe;
b)高温锻造;
c)对锻造块材进行连续热轧至2.5-3.5mm;
d)温轧加工板材至0.2-0.4mm;
e)加工取样;
f)将合金真空二级热处理,保温,同时,加直流磁场;
g)将按照a)-f)步处理过的合金试样进行相应的性能检测。
步骤b)中,锻造温度为1150±20℃。
步骤f)中,真空一级热处理温度为1100±20℃,保温时间为120±10min,真空二级热处理温度为770±20℃,保温时间为600±10min,磁场强度为40±5Oe。
步骤b)中,锻造温度优选为1148-1165℃。
步骤f)中,真空一级热处理温度优选为1100-1110℃,保温时间优选为115-120min,真空二级热处理温度优选775-785℃,保温时间优选为600-605min,磁场强度优选为39-42Oe。
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本发明涉及的耐腐蚀性能优异高饱和磁感应强度高电阻率的软磁合金,该合金的化学组成成分(wt.%)为Co 9.0-19.0,Cr 4.0-12.0,Mo 1.0-3.0,Al 1.0-3.0,La 0.1-0.3,C≤0.02,P≤0.02,S≤0.02,余为Fe。
上述各元素的作用及组成成分的依据如下:
Co:9.0-19.0%,可有效提高合金饱和磁感应强度。
Cr:4.0-12.0%,Cr可以使合金变成易于钝化状态,有效提高合金腐蚀性。
Mo:1.0-3.0%,Mo的添加增加了合金对氧的亲和力而且阻碍了Cl离子的竞争吸附,在腐蚀性环境中防止了钝化膜被局部击穿,从而提高了合金的抗点蚀能力。可加强钝化膜的稳定性,促使钝化膜中的Cr更易富集。
Al:1.0-3.0%,提高合金加工性能。
La:0.1-0.3%,稀土元素,可以改变夹杂物的形态,细化晶粒,提高合金磁性能以及加工性能。
杂质元素C、S、P的含量控制在0.02wt.%以内,能够保证合金具有良好的冶金质量和纯洁度。
上述耐蚀软磁合金制备方法的工艺流程包括:真空感应熔炼合金→锻造方坯→热轧→温轧→加工取样→真空磁场热处理→性能检测。
本发明涉及的耐腐蚀性能优异高饱和磁感应强度高电阻率的软磁合金的具体制备方法,包括如下步骤:
a)将原料进行配比,采用真空感应炉熔炼合金;
b)高温锻造,锻造温度1150±20℃;
c)对锻造块材进行连续热轧至2.5-3.5mm;
d)温轧加工板材至0.2-0.4mm;
e)加工取样;
f)将合金在1100±20℃真空一级热处理,保温120±10min,在770±20℃真空二级热处理,保温600±10min,同时,加直流磁场,磁场强度为40±5Oe;
g)将按照a)-f)步处理过的合金试样进行相应的性能检测。
实施例
采用本发明化学组成成分制备兼顾优异耐腐蚀性能和高饱和磁感应强度的FeCo软磁合金,其化学成分如表1如示(实施例1、实施例2和实施例3)。为了方便对比,将现有技术制备的硅钢(对比例1)和1Cr13合金(对比例2)也同时列入表1中。
表1熔炼合金的化学成分(wt.%)
Co | Cr | Mo | Al | Mn | Si | La | C | P | S | Fe | |
实施例1 | 19.0 | 12.0 | 1.0 | 1.0 | - | - | 0.1 | 0.02 | 0.010 | 0.010 | 余量 |
实施例2 | 14.0 | 8.0 | 2.0 | 2.0 | - | - | 0.2 | 0.02 | 0.010 | 0.008 | 余量 |
实施例3 | 9.0 | 4.0 | 3.0 | 3.0 | - | - | 0.3 | 0.02 | 0.005 | 0.009 | 余量 |
对比例1 | - | - | - | 7.0 | 0.15 | 4.0 | - | 0.02 | 0.009 | 0.010 | 余量 |
对比例2 | - | 12.0 | - | - | 0.8 | 0.8 | - | 0.02 | 0.008 | 0.011 | 余量 |
对上述成分的合金采用的制备工艺:真空感应熔炼合金→锻造方坯→热轧→温轧→加工取样→真空磁场热处理→性能检测。具体工艺参数,如表2所示。
表2熔炼合金的工艺参数
经过上述工艺制备的耐蚀软磁合金综合性能如表3所示,通过调整成分以及热处理工艺,合金综合性能有明显的改善,作为常规硅钢和1Cr13耐蚀软磁合金的替代产品,本发明合金的饱和磁感应强度高,电阻率高,耐蚀性能更是显示出明显优势。采用GJB150.11A盐雾腐蚀实验,96小时后合金表面形态如图1,对比例1硅钢表面如图2,对比例2 1Cr13合金表面如图3。
表3不同成分合金综合性能
组号 | B<sub>s</sub>(T) | ρ(μΩm) | W(g/m<sup>2</sup>·h) | Dt(μm) |
实施例1 | 1.94 | 0.79 | 0.0146 | 0.1820 |
实施例2 | 1.89 | 0.75 | 0.0143 | 0.1813 |
实施例3 | 1.76 | 0.80 | 0.0149 | 0.1826 |
对比例1 | 1.80 | 0.50 | 0.6336 | 7.9514 |
对比例2 | 1.40 | 0.75 | 0.0512 | 0.6332 |
综上,本发明通过合理的成分设计配合适当的制备工艺,制备了一种高饱和磁感应强度低成本的FeCo软磁合金。合金饱和磁感应强度最高可达1.95T,电阻率可达0.8μΩm,为常规FeCo27软磁合金电阻率的5倍以上。耐腐蚀性能优异,腐蚀率和腐蚀深度仅为硅钢产品的1/44。比现有的可用作汽车部件喷油嘴、螺线管阀门等的耐蚀软磁合金相比,该合金的综合性能有明显改善,适应现代化器件高饱和磁感应强度高电阻率强耐腐蚀的发展趋势,进一步满足了应用需求。
Claims (6)
1.一种高耐蚀性高磁感强度高电阻率的软磁合金,其特征在于:
该合金的化学成分按重量百分比为:Co 9.0-19.0,Cr 4.0-12.0,Mo 1.0-3.0,Al 1.0-3.0,La 0.1-0.3,C≤0.02,P≤0.02,S≤0.02,其余为Fe;
该合金具有以下磁性能和耐蚀性能的组合:
饱和磁感应强度Bs为1.76-1.94T,电阻率ρ为0.75-0.8μΩm;在96小时盐雾腐蚀后,腐蚀率W为0.0143-0.0149g/m2·h,腐蚀深度Dt为0.1813-0.1826μm;
所述的高耐蚀性高磁感强度高电阻率的软磁合金的制备方法,包括如下步骤:
a)按合金成分进行原料配比,采用真空感应炉熔炼合金,其中,合金成分按重量百分比为:Co 9.0-19.0,Cr 4.0-12.0,Mo 1.0-3.0,Al 1.0-3.0,La 0.1-0.3,C≤0.02,P≤0.02,S≤0.02,余为Fe;
b)高温锻造为方坯;
c)对锻造的方坯进行连续热轧至厚度为2.5-3.5mm的板材;
d)对热轧板材进行温轧至厚度为0.2-0.4mm的板材;
e)加工取样;
f)将对合金进行真空磁场二级热处理,保温温度为750-1120℃,保温时间为700-740min,保温的同时加直流磁场;其中,真空一级热处理温度为1100±20℃,保温时间为120±10min,真空二级热处理温度为770±20℃,保温时间为600±10min,磁场强度为40±5Oe。
2.一种如权利要求1所述的高耐蚀性高磁感强度高电阻率的软磁合金的制备方法,其特征在于:
该方法包括如下步骤:
a)按合金成分进行原料配比,采用真空感应炉熔炼合金,其中,合金成分按重量百分比为:Co 9.0-19.0,Cr 4.0-12.0,Mo 1.0-3.0,Al 1.0-3.0,La 0.1-0.3,C≤0.02,P≤0.02,S≤0.02,余为Fe;
b)高温锻造为方坯;
c)对锻造的方坯进行连续热轧至厚度为2.5-3.5mm的板材;
d)对热轧板材进行温轧至厚度为0.2-0.4mm的板材;
e)加工取样;
f)将对合金进行真空磁场二级热处理,保温温度为750-1120℃,保温时间为700-740min,保温的同时加直流磁场;其中,真空一级热处理温度为1100±20℃,保温时间为120±10min,真空二级热处理温度为770±20℃,保温时间为600±10min,磁场强度为40±5Oe。
3.如权利要求2所述的制备方法,其特征在于:
在步骤b)中,锻造温度为1150±20℃。
4.如权利要求2所述的制备方法,其特征在于:
在步骤b)中,锻造温度为1148-1165℃。
5.如权利要求2所述的制备方法,其特征在于:
步骤f)中,真空一级热处理温度为1100-1110℃,保温时间为115-120min,真空二级热处理温度为775-785℃,保温时间为600-605min,磁场强度为39-42Oe。
6.一种如权利要求1所述的高耐蚀性高磁感强度高电阻率的软磁合金的用途,其特征在于:
1)用于汽车喷油嘴、生物燃料喷射器;
2)用于高压或腐蚀氛围下高速切换的螺线管阀门。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110021372.2A CN112853229B (zh) | 2021-01-08 | 2021-01-08 | 高耐蚀性高磁感强度高电阻率的软磁合金及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110021372.2A CN112853229B (zh) | 2021-01-08 | 2021-01-08 | 高耐蚀性高磁感强度高电阻率的软磁合金及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112853229A CN112853229A (zh) | 2021-05-28 |
CN112853229B true CN112853229B (zh) | 2022-03-08 |
Family
ID=76005200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110021372.2A Active CN112853229B (zh) | 2021-01-08 | 2021-01-08 | 高耐蚀性高磁感强度高电阻率的软磁合金及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112853229B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113564465A (zh) * | 2021-07-05 | 2021-10-29 | 北京科技大学 | 一种兼具拉伸和冲击韧性的锻造FeCo合金及制备方法 |
CN118272734B (zh) * | 2024-05-31 | 2024-08-20 | 西安钢研功能材料股份有限公司 | 一种高强耐腐蚀软磁合金及其棒材的制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070176025A1 (en) * | 2006-01-31 | 2007-08-02 | Joachim Gerster | Corrosion resistant magnetic component for a fuel injection valve |
JP6501005B1 (ja) * | 2018-01-30 | 2019-04-17 | Tdk株式会社 | 軟磁性合金および磁性部品 |
CN111564273A (zh) * | 2020-04-23 | 2020-08-21 | 钢铁研究总院 | 一种低成本高饱和磁感应强度的FeNi软磁合金及其制备方法 |
-
2021
- 2021-01-08 CN CN202110021372.2A patent/CN112853229B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112853229A (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112853229B (zh) | 高耐蚀性高磁感强度高电阻率的软磁合金及其制备方法 | |
CN110607479B (zh) | 气门弹簧用不锈钢及其钢丝的制备方法 | |
EP2891728A1 (en) | High magnetic induction oriented silicon steel and manufacturing method thereof | |
CN108122654B (zh) | 一种晶界扩散重稀土钕铁硼磁材及其制备方法 | |
CN103725995A (zh) | 一种取向高硅电工钢的制备方法 | |
CN110284018A (zh) | 一种环保高导弹性耐蚀铜合金及其板带材的生产方法 | |
US5769974A (en) | Process for improving magnetic performance in a free-machining ferritic stainless steel | |
CN109295387B (zh) | 一种耐腐蚀性能良好的双相不锈钢板及其制造方法 | |
CN106756491B (zh) | 一种焊接性和磁性优良的无取向电工钢及生产方法 | |
CN108456767B (zh) | 一种取向高硅钢极薄带材的制备方法 | |
CN111564273A (zh) | 一种低成本高饱和磁感应强度的FeNi软磁合金及其制备方法 | |
CN113020257B (zh) | 一种消除热轧过程中耐候钢板坯表面翘皮缺陷的方法 | |
CN113674984B (zh) | 一种FeSiAlZrScSr磁粉芯的制备方法 | |
CN104233063A (zh) | 一种搪后高强度搪玻璃用钢板及其制造方法 | |
CN117778905A (zh) | 一种高强度高塑性中锰钢及生产方法 | |
CN102127708A (zh) | 一种低温板坯加热生产取向电工钢的方法 | |
GB2451219A (en) | Soft magnetic iron-cobalt based alloy | |
CN112760565B (zh) | 一种蜂鸣器用Fe-Ni-Mo合金及其制备方法 | |
CN106636909A (zh) | 一种耐腐蚀软磁铁素体不锈钢 | |
CN111155023B (zh) | 高韧性高强度无取向高硅钢的制备方法 | |
CN1162564C (zh) | 具有极低矫顽力的冷轧电磁纯铁板带的生产方法 | |
CN1370850A (zh) | 高磁感系列无取向电工钢及生产方法 | |
CN105525222A (zh) | 一种高效节能冷镦用钢热轧盘条及其生产方法 | |
CN108179360A (zh) | 一种锡铜协同作用的超纯铁素体不锈钢及其制备方法 | |
CN114645202B (zh) | 一种高取向度GOSS织构Fe-3%Si材料的获得方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |