CN112848935A - 一种电动汽车大功率高效率无线充电自适应实现方法 - Google Patents

一种电动汽车大功率高效率无线充电自适应实现方法 Download PDF

Info

Publication number
CN112848935A
CN112848935A CN202110356416.7A CN202110356416A CN112848935A CN 112848935 A CN112848935 A CN 112848935A CN 202110356416 A CN202110356416 A CN 202110356416A CN 112848935 A CN112848935 A CN 112848935A
Authority
CN
China
Prior art keywords
coil
charging
wireless charging
electric automobile
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110356416.7A
Other languages
English (en)
Other versions
CN112848935B (zh
Inventor
杨凌升
刘鸿
徐诗豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN202110356416.7A priority Critical patent/CN112848935B/zh
Publication of CN112848935A publication Critical patent/CN112848935A/zh
Application granted granted Critical
Publication of CN112848935B publication Critical patent/CN112848935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种电动汽车大功率高效率无线充电自适应实现方法,包括步骤1、检测并计算带整流电路的电动汽车无线充电系统中充电线圈与汽车线圈的耦合系数k;步骤2、判断k是否大于耦合系数阈值kth,若是,则进入步骤3,否则返回步骤1,调整充电线圈位置,改变耦合系数k值;步骤3、计算k对应的输出功率最优频率f1;步骤4、将充电频率调整为f1。考虑在频带范围中的分频现象问题,实现电动汽车大功率高效率自适应无线充电。

Description

一种电动汽车大功率高效率无线充电自适应实现方法
技术领域
本发明属于电动汽车充电技术领域,具体涉及一种电动汽车大功率高效率无线充电自适应实现方法。
背景技术
对于电动车无线充电系统,如何实现高输出功率以及高能量传输效率是现实应用中必须考虑的问题。
在最基础的电磁互感电路中,存在零电抗频率(ZRF),即从电路的初级侧看,整个电路的电抗为零,此时整个系统可以实现高效率能量传输。
通过调研发现,现有的电动汽车无线充电研究中没考虑在频带范围中的分频现象问题。
发明内容
本发明所要解决的技术问题是针对上述现有技术的不足,提供一种电动汽车大功率高效率无线充电自适应实现方法。
为实现上述技术目的,本发明采取的技术方案为:
一种电动汽车大功率高效率无线充电自适应实现方法,其特征在于,包括:
步骤1、检测并计算带整流电路的电动汽车无线充电系统中充电线圈与汽车线圈的耦合系数k;
步骤2、判断k是否大于耦合系数阈值kth,若是,则进入步骤3,否则返回步骤1,调整充电线圈位置,改变耦合系数k值;
步骤3、计算k对应的输出功率最优频率f1
步骤4、将充电频率调整为f1
为优化上述技术方案,采取的具体措施还包括:
上述的步骤1所述充电线圈与汽车线圈均为方形线圈,为直径1.5mm规格的利兹线圈,匝数上下33匝。
上述的带整流电路的电动汽车无线充电系统包括:
电磁互感电路和整流电路;
所述电磁互感电路包括:
主从充电线圈即充电线圈和汽车线圈,其自感分别为L1、L2
分别与主从充电线圈串联的谐振电容器,其电容分别为C1、C2
充电线圈和汽车线圈,其线圈电阻分别为rl1、rl2
和电源Vin
所述整流电路包括:
二极管D1~D4、电容器C3和负载电阻,电阻值为Rout
上述的步骤1具体为:
根据充电线圈和汽车线圈规格,得到对应的线圈自感L1、L2,线圈匝数N1、N2,线圈等效半径r1、r2,以及充电线圈和汽车线圈的相对位置参数;
结合诺依曼公式得到充电线圈和汽车线圈的耦合系数k。
上述的步骤2所述耦合系数阈值kth为:
Figure BDA0003004079110000021
α=L1C1=L2C2
Figure BDA0003004079110000022
上述的步骤3所述k对应的输出功率最优频率f1为:
Figure BDA0003004079110000023
本发明具有以下有益效果:
本发明提出了在最佳负载阻抗下的频率选择方法,从而可以在确保无线供能系统传输效率高的同时,得到较大的输出功率,从而更加适应电动汽车使用。
附图说明
图1为电动汽车无线充电系统图;
图2带整流电路的电动汽车无线充电系统图;
图3为实施例中k=0.1时的输入阻抗的实部虚部;
图4为实施例中k=0.15时的输入阻抗的实部虚部;
图5为实施例中k=0.2时的输入阻抗的实部虚部;
图6为实施例中k=0.1时传输效率η和输出功率Pout
图7为实施例中k=0.15时传输效率η和输出功率Pout
图8为实施例中k=0.2时传输效率η和输出功率Pout
图9为实施例中f0、f1、f2与k值关系;
图10本发明方法流程图;
图11为实施例中方形线圈尺寸和相对位置参数。
具体实施方式
以下结合附图对本发明的实施例作进一步详细描述。
本发明将图1电动汽车无线充电系统等效为图2所示的电路图。
在电磁互感电路图(图2虚线框外部分)中,其中L1、L2是主从充电线圈的自感,C1、C2是谐振电容器,rl1、rl2是线圈电阻、Rout是负载电阻,Vin是电源,
Figure BDA0003004079110000031
是线圈互感,i1、i2分别是两侧的电流大小,k是线圈的耦合系数,ω=2πf。
虚线框内是为了将交流转化为直流的整流电路,二极管D1~D4为理想二极管,二极管可以使得输出电压变为正弦波的绝对值,C3是与Rout并联的电容器,电容器的大小相对较大时,使得输出电压变为矩形波,将整个整流电路等效为电阻R,可以得出当整体电路传输效率最高时,R与Rout关系为:
Figure BDA0003004079110000032
利用基尔霍夫定律可以得到以下公式:
Figure BDA0003004079110000033
所以由(1)矩阵可以得到(2)公式:
Figure BDA0003004079110000034
根据公式(2)求解可得i1、i2的值(3)、(4):
Figure BDA0003004079110000041
Figure BDA0003004079110000042
将其中式子用(5)数值代入:
Figure BDA0003004079110000043
并且电路中各个其他的值定义如下:
Figure BDA0003004079110000044
本发明中选定了线圈为方形线圈(与圆形线圈相比,同等尺寸下可取的更高的传输效率),如传输线圈的线缆规格及长度(匝数)都已经确定,一般线圈面积确定即可确定,其ZRF频率f0确定为是一个定值。
对无线传输系统来说,存在一个kth值,通过改变k值,只有k>kth的时候,电路会产生分频现象。即系统会出现三个ZRF频率。在三个频率下,整个电路的输出效率可以达到最大值,通过对比三个频率ZRF,可以得到在中心f0处,输出效率可以到达最大,但f1、f2的输出效率与之相比相差不多,但是在f1、f2处的输出功率比f0大的多。
f0左右两边的f1和f2随着k值(线圈耦合系数)的变化而变化。
具体计算数值见公式(7)。
本发明通过以81.38kHz~90.00kHz为例,讨论频带范围的分频现象研究,提出在此频带范围找出对应的k值范围,通过k值进行频率选择,在标准频带范围中找到一个ZRF,使得整个电路的输出效率较大并且输出功率达到最大的效果。
具体的,本发明一种电动汽车大功率高效率无线充电自适应实现方法,包括:
步骤1、检测并计算带整流电路的电动汽车无线充电系统中充电线圈与汽车线圈的耦合系数k;
步骤2、判断k是否大于耦合系数阈值kth,若是,则进入步骤3,否则返回步骤1,调整充电线圈位置,改变耦合系数k值;
步骤3、计算k对应的输出功率最优频率f1
步骤4、将充电频率调整为f1
实施例中,步骤1所述充电线圈与汽车线圈均为方形线圈,为直径1.5mm规格的利兹线圈,匝数上下33匝。这些为优选项,可以改变。
所述步骤1具体为:
根据充电线圈和汽车线圈规格,得到对应的线圈自感L1、L2,线圈匝数N1、N2,线圈等效半径r1、r2,以及充电线圈和汽车线圈的相对位置参数;
结合诺依曼公式得到充电线圈和汽车线圈的耦合系数k。
步骤2所述耦合系数阈值kth为:
Figure BDA0003004079110000051
α=L1C1=L2C2
Figure BDA0003004079110000052
步骤3所述k对应的输出功率最优频率f1为:
Figure BDA0003004079110000053
实施例:选定了线圈为方形线圈(同等尺寸下可取的更高的传输效率),直径1.5mm规格的利兹线圈,匝数上下33匝。
以举例线圈为例(可按照实际需求调整)对于电路中的各个指标取值如下表格:
电路指标 取值
L<sub>1</sub>、L<sub>2</sub> 395μH
C<sub>1</sub>、C<sub>2</sub> 1000Pf
r<sub>l1</sub>、r<sub>l2</sub> 0.04Ω
R<sub>out</sub> 37Ω
V<sub>in</sub> 220V
C<sub>3</sub> 10μf
利用上述的数值首先得到式子(7)定义的值与频率的关系如图3-5所示。
由输入阻抗与频率的关系曲线可以看出,k值逐渐变大,出现ZRF的情况越明显,只有k值大于某一个点才会出现三个ZRF的现象。并且从图5可以明显看出,在81.38kHz~90.00kHz中有一个ZRF频率点。下面依旧根据表格的数值条件得到输出效率与功率的值与频率的关系图6-8所示;
从图6-8可以看出,k值的变化对于三个ZRF点(f0、f1、f2)上的效率影响很小,但是对于f0左右两边的f1、f2点上的输出功率可以看出,f1、f2点上的输出功率明显比f0点大的多,所以当k值确定时,将频率设置为f1、f2,可以达到高效率99.5%,高输出功率1.8kW的效果。
由于给定了频率的范围在81.38kHz~90.00kHz,所以得得到出频率与k值的关系图,要想得到ZRF点,即可知Im[i1]=0,通过式(6)的i1提取虚部可以得到下面三个式子:
Figure BDA0003004079110000061
根据式(7)可以得到频率与k值的关系图如图9;
在图9中可以得到,当k值大于kth时,电路会产生分频现象,即产生三个ZRF点,并且此时取f1、f2的对应频率产生的电路效率高且输出功率高。
其中
Figure BDA0003004079110000062
当电动汽车停在充电处时,由于充电线圈和汽车线圈规格固定(或可根据车型号以及充电点充电线圈型号,先行从数据库中调取),可以得到对应的L1、L2,线圈匝数N1、N2,以及线圈等效半径r1、r2,以及图11各种相对位置的参数。
根据诺依曼公式可得任意位置两方形线圈之间互感:
其中
Figure BDA0003004079110000063
利用互感,和已知的L1、L2可得到耦合系数k,并带入图10中进行自适应优化。
k的计算公式:
Figure BDA0003004079110000064
M为互感,由下文长公式计算得到。
Figure BDA0003004079110000071
根据上述公式计算两个线圈的互感M的,算出互感M后,因为两个线圈的自感可以由前面线圈的匝数推得,则可以算出主从线圈间的耦合系数k。简单而言,L1,L2由规格决定,可看做已知。M算出后就可以得到k。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (6)

1.一种电动汽车大功率高效率无线充电自适应实现方法,其特征在于,包括:
步骤1、检测并计算带整流电路的电动汽车无线充电系统中充电线圈与汽车线圈的耦合系数k;
步骤2、判断k是否大于耦合系数阈值kth,若是,则进入步骤3,否则返回步骤1,调整充电线圈位置,改变耦合系数k值;
步骤3、计算k对应的输出功率最优频率f1
步骤4、将充电频率调整为f1
2.根据权利要求1所述的一种电动汽车大功率高效率无线充电自适应实现方法,其特征在于,步骤1所述充电线圈与汽车线圈均为方形线圈,为直径1.5mm规格的利兹线圈,匝数上下33匝。
3.根据权利要求1或2所述的一种电动汽车大功率高效率无线充电自适应实现方法,其特征在于,所述带整流电路的电动汽车无线充电系统包括:
电磁互感电路和整流电路;
所述电磁互感电路包括:
主从充电线圈即充电线圈和汽车线圈,其自感分别为L1、L2
分别与主从充电线圈串联的谐振电容器,其电容分别为C1、C2
充电线圈和汽车线圈,其线圈电阻分别为rl1、rl2
和电源Vin
所述整流电路包括:
二极管D1~D4、电容器C3和负载电阻,电阻值为Rout
4.根据权利要求3所述的一种电动汽车大功率高效率无线充电自适应实现方法,其特征在于,所述步骤1具体为:
根据充电线圈和汽车线圈规格,得到对应的线圈自感L1、L2,线圈匝数N1、N2,线圈等效半径r1、r2,以及充电线圈和汽车线圈的相对位置参数;
结合诺依曼公式得到充电线圈和汽车线圈的耦合系数k。
5.根据权利要求3所述的一种电动汽车大功率高效率无线充电自适应实现方法,其特征在于,步骤2所述耦合系数阈值kth为:
Figure FDA0003004079100000011
α=L1C1=L2C2
Figure FDA0003004079100000012
6.根据权利要求3所述的一种电动汽车大功率高效率无线充电自适应实现方法,其特征在于,步骤3所述k对应的输出功率最优频率f1为:
Figure FDA0003004079100000021
δ=k2-1。
CN202110356416.7A 2021-04-01 2021-04-01 一种电动汽车大功率高效率无线充电自适应实现方法 Active CN112848935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110356416.7A CN112848935B (zh) 2021-04-01 2021-04-01 一种电动汽车大功率高效率无线充电自适应实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110356416.7A CN112848935B (zh) 2021-04-01 2021-04-01 一种电动汽车大功率高效率无线充电自适应实现方法

Publications (2)

Publication Number Publication Date
CN112848935A true CN112848935A (zh) 2021-05-28
CN112848935B CN112848935B (zh) 2023-04-25

Family

ID=75991996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110356416.7A Active CN112848935B (zh) 2021-04-01 2021-04-01 一种电动汽车大功率高效率无线充电自适应实现方法

Country Status (1)

Country Link
CN (1) CN112848935B (zh)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130002034A1 (en) * 2009-09-18 2013-01-03 Kabushiki Kaisha Toshiba Wireless power transmitter
US20130020862A1 (en) * 2011-07-21 2013-01-24 Ut-Battelle, Llc Regulation control and energy management scheme for wireless power transfer
US20150364944A1 (en) * 2014-06-17 2015-12-17 Qualcomm Incorporated Methods and systems for object detection and sensing for wireless charging systems
CN105308830A (zh) * 2013-04-16 2016-02-03 日东电工株式会社 无线电力传输装置、无线电力传输装置的发热控制方法以及无线电力传输装置的制造方法
US20160059713A1 (en) * 2013-04-11 2016-03-03 Schneider Electric Industries Sas Method for charging a vehicle battery by induction
CN106248901A (zh) * 2016-08-19 2016-12-21 南京信息工程大学 一种利用鱼类活动电位功率变化监测水中有毒物质的方法
CN106972647A (zh) * 2017-05-02 2017-07-21 华中科技大学 一种提高动态无线充电平均效率的方法
CN107038323A (zh) * 2017-06-05 2017-08-11 江南大学 一种用于电动汽车无线充电系统磁耦合结构优化方法
US20180015832A1 (en) * 2016-07-12 2018-01-18 Denso International America, Inc. Vehicular Wireless Power Transfer System With Performance Monitoring
US20180076671A1 (en) * 2016-09-14 2018-03-15 Qualcomm Incorporated Dynamic mutual sensing foreign object detection loops
CN108683229A (zh) * 2018-05-31 2018-10-19 西安理工大学 一种电动汽车无线充电副边输出控制系统及其控制方法
CN108767995A (zh) * 2018-04-27 2018-11-06 山东时通运泰新能源科技有限公司 一种电动汽车移动式无线电能充电系统及其调控方法
CN208164783U (zh) * 2018-03-28 2018-11-30 西北工业大学 一种高效率电动汽车无线充电装置
CN109429538A (zh) * 2016-06-13 2019-03-05 曼珀斯有限公司 根据阻抗变化可自动调整的无线功率发送器
CN109895640A (zh) * 2019-02-26 2019-06-18 西安理工大学 一种电动汽车无线充电两级控制系统及控制方法
CN110014893A (zh) * 2017-09-29 2019-07-16 上海寰晟新能源科技有限公司 基于电动汽车多路磁耦合式无线充电系统
CN111371196A (zh) * 2020-04-16 2020-07-03 中国矿业大学 浮频实本征态磁耦合无线电能传输系统及其设计方法
CN111439142A (zh) * 2020-05-26 2020-07-24 中国人民解放军火箭军工程大学 适用于无人机的电磁谐振耦合式无线充电效率优化方法
US20200350816A1 (en) * 2019-05-03 2020-11-05 Witricity Corporation Active Harmonics Cancellation
CN112564306A (zh) * 2020-11-26 2021-03-26 国网浙江省电力有限公司杭州供电公司 一种电动汽车无线充电系统最优电容补偿参数选择方法
CN112583132A (zh) * 2020-11-26 2021-03-30 国网浙江省电力有限公司杭州供电公司 一种无线充电系统中磁耦合器电容补偿参数的调整方法
US20210249904A1 (en) * 2019-07-12 2021-08-12 Jiangnan University Impedance matching network optimization method for wireless power transfer system under maximum efficiency tracking

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130002034A1 (en) * 2009-09-18 2013-01-03 Kabushiki Kaisha Toshiba Wireless power transmitter
US20130020862A1 (en) * 2011-07-21 2013-01-24 Ut-Battelle, Llc Regulation control and energy management scheme for wireless power transfer
US20160059713A1 (en) * 2013-04-11 2016-03-03 Schneider Electric Industries Sas Method for charging a vehicle battery by induction
CN105308830A (zh) * 2013-04-16 2016-02-03 日东电工株式会社 无线电力传输装置、无线电力传输装置的发热控制方法以及无线电力传输装置的制造方法
US20150364944A1 (en) * 2014-06-17 2015-12-17 Qualcomm Incorporated Methods and systems for object detection and sensing for wireless charging systems
CN109429538A (zh) * 2016-06-13 2019-03-05 曼珀斯有限公司 根据阻抗变化可自动调整的无线功率发送器
US20180015832A1 (en) * 2016-07-12 2018-01-18 Denso International America, Inc. Vehicular Wireless Power Transfer System With Performance Monitoring
CN106248901A (zh) * 2016-08-19 2016-12-21 南京信息工程大学 一种利用鱼类活动电位功率变化监测水中有毒物质的方法
US20180076671A1 (en) * 2016-09-14 2018-03-15 Qualcomm Incorporated Dynamic mutual sensing foreign object detection loops
CN106972647A (zh) * 2017-05-02 2017-07-21 华中科技大学 一种提高动态无线充电平均效率的方法
CN107038323A (zh) * 2017-06-05 2017-08-11 江南大学 一种用于电动汽车无线充电系统磁耦合结构优化方法
CN110014893A (zh) * 2017-09-29 2019-07-16 上海寰晟新能源科技有限公司 基于电动汽车多路磁耦合式无线充电系统
CN208164783U (zh) * 2018-03-28 2018-11-30 西北工业大学 一种高效率电动汽车无线充电装置
CN108767995A (zh) * 2018-04-27 2018-11-06 山东时通运泰新能源科技有限公司 一种电动汽车移动式无线电能充电系统及其调控方法
CN108683229A (zh) * 2018-05-31 2018-10-19 西安理工大学 一种电动汽车无线充电副边输出控制系统及其控制方法
CN109895640A (zh) * 2019-02-26 2019-06-18 西安理工大学 一种电动汽车无线充电两级控制系统及控制方法
US20200350816A1 (en) * 2019-05-03 2020-11-05 Witricity Corporation Active Harmonics Cancellation
US20210249904A1 (en) * 2019-07-12 2021-08-12 Jiangnan University Impedance matching network optimization method for wireless power transfer system under maximum efficiency tracking
CN111371196A (zh) * 2020-04-16 2020-07-03 中国矿业大学 浮频实本征态磁耦合无线电能传输系统及其设计方法
CN111439142A (zh) * 2020-05-26 2020-07-24 中国人民解放军火箭军工程大学 适用于无人机的电磁谐振耦合式无线充电效率优化方法
CN112564306A (zh) * 2020-11-26 2021-03-26 国网浙江省电力有限公司杭州供电公司 一种电动汽车无线充电系统最优电容补偿参数选择方法
CN112583132A (zh) * 2020-11-26 2021-03-30 国网浙江省电力有限公司杭州供电公司 一种无线充电系统中磁耦合器电容补偿参数的调整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卢闻州;沈锦飞;方楚良;: "磁耦合谐振式无线电能传输电动汽车充电系统研究" *

Also Published As

Publication number Publication date
CN112848935B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN111106676B (zh) Lcc-s型mc-wpt系统的磁耦合机构参数多目标优化方法
CN112701806B (zh) 适用于无线供电系统的双边lcc补偿网络参数设计方法
Wang et al. Widening the operating range of a wireless charging system using tapped transmitter winding and bifrequency pulse train control
CN108667300A (zh) 一种激磁电感可变llc谐振变压器
CN113629891A (zh) 一种电动汽车动态无线供电系统效率优化方法
CN112152330B (zh) 一种基于倍流整流&半桥逆变的ipt系统效率提升方法
CN113691028A (zh) 一种基于线圈位置优化排布的wpt效率提升系统
CN112848935A (zh) 一种电动汽车大功率高效率无线充电自适应实现方法
CN112257931A (zh) 双向无线充电系统补偿网络参数的优化方法及系统
Kudo et al. Contactless power transfer system suitable for low voltage and large current charging for EDLCs
CN115714542B (zh) 一种用于无线充电系统的双边lcc补偿网络参数调谐方法
CN109271732B (zh) 一种电动汽车动态无线充电系统的建模方法
Godoy et al. Wireless charging system with a non-conventional compensation topology for electric vehicles and other applications
Subramaniam et al. A Solution To Fast Battery Charging Technology With Bi-Directional Series Parallel Resonant Converter LCC In Grid to Vehicle Ambient
Ma et al. Efficiency optimization for LCC‐LC compensated inductive coupling power transfer system with load‐independent zero‐phase‐angle and constant voltage output
CN114503393A (zh) 一种充电机电路
Feng et al. Research on fast soft-starting methods for electric vehicle dynamic wireless charging system
Li et al. Study on wireless power transfer technology with series-series type of magnetic coupling resonance model
Kim et al. Design methodology of 500 W wireless power transfer converter for high power transfer efficiency
Çetin et al. Design of A Wireless Power Transfer Converter with LC/S Compensation for Electrical Vehicle Battery Charge Applications
Huang et al. Design of series/series-parallel compensated inductive power transfer converter as wireless grid to vehicle interface
Xiao et al. Conducted EMI analysis of double-side LCC compensated WPT system
Wang et al. Optimization Design for Wireless Power Transfer System under the Variation of Load and Coupling Coefficients
Wang et al. Characteristics comparison of typical secondary-side compensation topologies in wireless powering systems with constant-current primary-side
CN220985877U (zh) 一种感应加热电源匹配电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant