CN112843089B - Preparation method of ruthenium-based anti-tumor nano-drug for improving tumor microenvironment - Google Patents

Preparation method of ruthenium-based anti-tumor nano-drug for improving tumor microenvironment Download PDF

Info

Publication number
CN112843089B
CN112843089B CN202110126573.9A CN202110126573A CN112843089B CN 112843089 B CN112843089 B CN 112843089B CN 202110126573 A CN202110126573 A CN 202110126573A CN 112843089 B CN112843089 B CN 112843089B
Authority
CN
China
Prior art keywords
ruthenium
tumor
atovaquone
drug
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110126573.9A
Other languages
Chinese (zh)
Other versions
CN112843089A (en
Inventor
高大威
李春慧
丛聪
张旭武
刘志伟
李晓玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202110126573.9A priority Critical patent/CN112843089B/en
Publication of CN112843089A publication Critical patent/CN112843089A/en
Application granted granted Critical
Publication of CN112843089B publication Critical patent/CN112843089B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

The invention relates to a preparation method of a ruthenium-based anti-tumor nano-drug for improving a tumor microenvironment, which belongs to the technical field of nano-drugs, and comprises the steps of weighing soybean lecithin, cholesterol and atovaquone, adding absolute ethyl alcohol to dissolve the soybean lecithin, the cholesterol and the atovaquone to prepare a liposome lipid phase mixed solution containing the atovaquone, and then carrying out rotary evaporation on the liposome lipid phase mixed solution to form a membrane; re-suspending the ruthenium nanoparticles with water, adding a phosphate buffer solution into the re-suspended ruthenium nanoparticles, uniformly mixing, and adding tween 80 to obtain a ruthenium-containing water-phase mixed solution; adding the water phase mixed solution into the lipid phase membrane, mixing uniformly and performing ultrasonic treatment. The invention can block the respiratory chain of mitochondria and relieve the hypoxia condition of tumor tissues; the released nano enzyme can consume glucose at the tumor part by using increased oxygen, reduce the generation of ATP, generate hydrogen peroxide while performing starvation treatment on the tumor part, and generate hydroxyl free radicals by using the hydrogen peroxide in a tumor microenvironment to perform Fenton-like reaction, so that a good anti-tumor effect is realized; the preparation method is simple and easy to implement, and can be used for large-scale production.

Description

Preparation method of ruthenium-based anti-tumor nano-drug for improving tumor microenvironment
Technical Field
The invention relates to a preparation method of a ruthenium-based anti-tumor nano-drug for improving a tumor microenvironment, belonging to the technical field of nano-drugs.
Background
About 380 million new malignant tumors are developed in China every year, and about 30 ten thousand people die. Although the research on cancer has progressed, cancer is still one of the diseases with higher incidence. The common treatment modes at present are surgical treatment, chemotherapy, radiotherapy, targeted treatment, immunotherapy, gene therapy, phototherapy and the like. Although all the treatment methods can achieve certain effects, all the treatment methods have limitations or have certain toxic and side effects.
The nano enzyme has enzyme activity and nano material property as a promising natural enzyme substitute. Ruthenium (Ru) is a member of the platinum group metals, but its cost is low; the ruthenium-based nanoenzyme is a newly emerging nanoenzyme, glycolysis in tumor cells is active, glucose can be utilized to generate more energy and metabolites in a short time, and the ruthenium-based nanoenzyme can catalyze glucose and O2Reaction, consuming the energy source of the tumor cells. However, the reaction process needs oxygen to be involved, however, the research finds that the tumor tissue and the periphery are an extremely anoxic environment, and the insufficient oxygen content greatly limits the effect of the nano enzyme treatment.
Therefore, the method can be used for exploring the nano-drug with the anti-tumor effect, which can cut off the energy supply of the tumor based on blocking the glycolysis reaction in the tumor cell and can improve the tumor hypoxia environment, can realize good anti-tumor effect and has important social significance.
Disclosure of Invention
The technical problem to be solved by the invention is to provide a preparation method of ruthenium-based anti-tumor nano-drug for improving tumor microenvironment.
In order to solve the technical problems, the technical scheme adopted by the invention is as follows:
a preparation method of a ruthenium-based anti-tumor nano-drug for improving a tumor microenvironment is provided, wherein the ruthenium-based anti-tumor nano-drug is a clear and transparent ruthenium/atovaquone liposome, and the preparation method comprises the following steps:
(1) respectively weighing a certain amount of soybean lecithin, cholesterol and atovaquone, and dissolving with anhydrous ethanol to obtain liposome lipid phase mixed solution containing atovaquone;
(2) placing the liposome lipid phase mixed solution containing atovaquone prepared in the step (1) into a rotary evaporator for rotary evaporation to enable the lipid phase to form a film;
(3) after the ruthenium nanoparticles are resuspended by using a certain amount of water, a certain proportion of phosphate buffer is added into the ruthenium nanoparticles, a certain amount of tween 80 is added after the ruthenium nanoparticles are uniformly mixed, and the ruthenium-containing water-phase mixed solution is obtained after the ruthenium nanoparticles are uniformly mixed;
(4) adding the ruthenium-containing water-phase mixed solution obtained in the step (3) into the membrane prepared in the step (2);
(5) and (4) uniformly mixing the liquid obtained in the step (4), and performing ultrasonic treatment to obtain a clear and transparent ruthenium/atovaquone liposome.
The technical scheme of the invention is further improved as follows: the ratio of the soybean lecithin, the cholesterol, the atovaquone and the absolute ethyl alcohol in the lipid phase mixed solution in the step (1) is 40-70 mg: 4-7 mg: 0.85-1.5 mg: 8-12 mL.
The technical scheme of the invention is further improved as follows: and (3) in the step (2), the rotary evaporation temperature of the rotary evaporator is 40-50 ℃, and the rotary evaporation time is 0.5-4 h.
The technical scheme of the invention is further improved as follows: the volume ratio of the phosphate buffer solution, the water and the Tween 80 of the aqueous phase mixed solution containing ruthenium in the step (3) is 400-500: 9500-9600: 5-15.
The technical scheme of the invention is further improved as follows: the ruthenium nanoparticles in the step (3) are obtained by reducing ruthenium trichloride with sodium borohydride, and the size of the ruthenium nanoparticles is 5-20 nm.
The technical scheme of the invention is further improved as follows: the ultrasonic power in the step (5) is 200-800W, and the ultrasonic time is 5-20 min.
The technical scheme of the invention is further improved as follows: the average particle size of the ruthenium-based anti-tumor nano-drug is 150-250 nm.
Due to the adoption of the technical scheme, the invention has the technical progress that:
the invention can block the respiratory chain of mitochondria, thereby relieving the hypoxia condition of tumor tissues; the released nano enzyme can consume glucose at the tumor part by using increased oxygen, reduces the generation of ATP, generates hydrogen peroxide while performing starvation treatment on the tumor part, and generates hydroxyl radicals by performing Fenton-like reaction by using the hydrogen peroxide in the tumor microenvironment, thereby realizing good anti-tumor effect.
The invention has good biocompatibility, can realize the slow release of the drug through the liposome, and the released atovaquone can also influence the activity of the dihydrolactate dehydrogenase to prevent the synthesis of pyrimidine and further cause a lethal effect on tumor cells.
The Ru NPs in the ruthenium/atovaquone liposome are obtained by a simple one-step reduction method and are wrapped in the water phase of the liposome, and the preparation method is simple, convenient and feasible and can be produced in a large scale.
Drawings
FIG. 1 is a TEM image of ruthenium-based anti-tumor nano-drug obtained in example 1 of the present invention;
FIG. 2 is a particle size distribution diagram of ruthenium-based anti-tumor nano-drug obtained in example 1 of the present invention;
FIG. 3 is a zeta potential diagram of ruthenium-based anti-tumor nano-drug obtained in example 1 of the present invention;
FIG. 4 is a TEM image of the release of ruthenium nanoparticles and atovaquone under acidic conditions of the ruthenium-based anti-tumor nano-drug obtained in example 2 of the present invention;
FIG. 5 is a graph showing the cell viability of Hela cells after co-incubation with culture medium and ruthenium-based anti-tumor nano-drug obtained in example 3 of the present invention;
FIG. 6 shows the body weight change of mice after ruthenium-based anti-tumor nano-drug treatment obtained in example 2 of the present invention;
FIG. 7 shows the change of tumor weight after the ruthenium-based anti-tumor nano-drug obtained in example 3 of the present invention is treated.
Detailed Description
The technical solutions of the present invention will be described in detail below with reference to specific embodiments and drawings to facilitate understanding for those skilled in the art, but the present invention is not limited in any way. The specific conditions are not indicated in the implementation case, and the implementation is carried out according to the conventional conditions or the conditions suggested by the manufacturer; the reagents or instruments used are not indicated by the manufacturer, and are all conventional products available commercially.
Example 1
Weighing 40 mg of soybean lecithin, 4 mg of cholesterol and 0.85 g of atovaquone, adding 8mL of absolute ethyl alcohol to dissolve to obtain a liposome lipid phase mixed solution containing atovaquone, then placing the liposome lipid phase mixed solution on a rotary evaporator (Shanghai Shen Sheng science and technology Co., Ltd.), and carrying out rotary evaporation at 50 ℃ for 0.5 h, so that a lipid phase forms a film at the bottom of a bottle; uniformly mixing 400 mu L of phosphate buffer solution with pH of 6.5 and 9.6 mL of ultrapure water resuspended ruthenium nanoparticles, adding 5 mu L of Tween 80, uniformly mixing, adding the mixture into a lipid phase membrane, rotationally mixing for 30 min, and ultrasonically treating the obtained solution for 5 min under the condition of 800W by using a cell disruptor to obtain the ruthenium nanoparticle and atovaquone loaded nanoliposome Ru @ ATO @ Lip.
The morphology of the ruthenium and atovaquone loaded nanoliposome Ru @ ATO @ Lip is characterized by using a transmission electron microscope, as shown in figure 1, ruthenium nanoparticles are loaded in the liposome, and the particle size of the nanoliposome Ru @ ATO @ Lip is about 140 nm approximately. The ruthenium and atovaquone loaded nanoliposome Ru @ ATO @ Lip is characterized by a laser particle size analyzer, as shown in figure 2, the average particle size of the ruthenium and atovaquone loaded nanoliposome Ru @ ATO @ Lip is about 150 nm, and the result is consistent with that of a transmission electron microscope. As shown in FIG. 3, the zeta potential of the ruthenium nanoparticles was 18 mV, while the zeta potential of Ru @ ATO @ Lip was-7.5 mV. From the change in potential, it was confirmed that the ruthenium nanoparticles were encapsulated in the liposome.
Example 2
Weighing 52 mg of soybean lecithin, 5.6 mg of cholesterol and 1.0 mg of atovaquone, adding 10mL of absolute ethyl alcohol to dissolve to obtain a liposome lipid phase mixed solution containing atovaquone, then placing the liposome lipid phase mixed solution on a rotary evaporator (Shanghai Shen Sheng science and technology Co., Ltd.), and carrying out rotary evaporation at 45 ℃ for 2.5 h to form a lipid phase film at the bottom of a bottle; and uniformly mixing 450 mu L of phosphate buffer solution with the pH value of 6.5 and 9.55 mL of ruthenium nano particles resuspended in ultrapure water, adding 10 mu L of Tween 80, uniformly mixing, adding into a lipid phase, rotationally mixing for 35 min, and treating the obtained solution for 10 min under the condition of 500W by using a cell disruptor to obtain the ruthenium and atovaquone loaded nano liposome Ru @ ATO @ Lip.
The primary morphology characterization of the nanometer liposome Ru @ ATO @ Lip loaded with ruthenium and atovaquone is carried out by using a transmission electron microscope, so that the ruthenium nanometer particle is loaded in the liposome, and the particle size of the nanometer liposome Ru @ ATO @ Lip is about 140 nm approximately. The ruthenium and atovaquone loaded nano liposome Ru @ ATO @ Lip is characterized by a laser particle size analyzer, and the average particle size of the ruthenium and atovaquone loaded nano liposome Ru @ ATO @ Lip is about 150 nm and is consistent with the transmission electron microscope result. The laser particle size analyzer is used for characterizing the nanometer liposome Ru @ ATO @ Lip loaded with ruthenium and atovaquone, the zeta potential of the ruthenium nanometer particles is 18 mV, and the zeta potential of the Ru @ ATO @ Lip is-7.5 mV. The change of the potential can be used to show that the ruthenium nano-particles are coated in the liposome.
In order to prove that the ruthenium particles can generate Fenton-like reaction under acidic conditions, so that the liposome structure is damaged to achieve the purpose of drug release, a transmission electron microscope is adopted to perform morphological characterization on the ruthenium and atovaquone loaded nanoliposome Ru @ ATO @ Lip processed under acidic conditions, and as shown in figure 4, the damage of the nanoliposome Ru @ ATO @ Lip structure and the release of internal drugs can be seen under acidic conditions.
The antitumor effect of the ruthenium and atovaquone loaded nanoliposome Ru @ ATO @ Lip on a cervical cancer U14 tumor-bearing mouse is researched, the drug is administered for 14 days in a tail vein mode, the daily dosage is 200 mu L, the weight change of the mouse is recorded during the drug administration period, the result is shown in figure 6, and the weight change curve of the mouse shows that the mouse injected with the ruthenium and atovaquone loaded nanoliposome Ru @ ATO @ Lip has no obvious difference with the weight of a normal saline solution group, so that the nanoliposome Ru @ ATO @ Lip can not damage the body of the mouse, and the biological safety is high.
Example 3
Weighing 74 mg of soybean lecithin, 7.0 mg of cholesterol and 1.5 mg of atovaquone, adding 12 mL of absolute ethyl alcohol to dissolve to obtain a liposome lipid phase mixed solution containing atovaquone, then placing the liposome lipid phase mixed solution on a rotary evaporator (Shanghai Shen Sheng science and technology Co., Ltd.), and carrying out rotary evaporation at 40 ℃ for 4 hours, wherein the lipid phase forms a film at the bottom of a bottle; and uniformly mixing 500 mu L of phosphate buffer solution with pH6.5 and 9.5 mL of ultrapure water-resuspended ruthenium nanoparticles, adding 15 mu L of Tween 80, uniformly mixing, adding into a lipid phase, rotationally mixing for 30 min, and treating the obtained solution for 20 min under the condition of 200W by using a cell disruptor to obtain the ruthenium and atovaquone-loaded nanoliposome Ru @ ATO @ Lip.
The primary morphology characterization of the nano-liposome drug loaded with ruthenium and atovaquone is carried out by using a transmission electron microscope, and as can be seen from a transmission electron microscope result picture, the ruthenium nano-particle is loaded on the liposome, and the particle size of the nano-liposome Ru @ ATO @ Lip is about 140 nm approximately. The ruthenium and atovaquone loaded nano liposome Ru @ ATO @ Lip is characterized by a laser particle size analyzer, and the average particle size of the ruthenium and atovaquone loaded nano liposome Ru @ ATO @ Lip drug is about 150 nm and is consistent with the transmission electron microscope result. The laser particle size analyzer is used for characterizing the ruthenium and atovaquone loaded nano liposome Ru @ ATO @ Lip, the zeta potential of the ruthenium nano particles is 18 mV, and the zeta potential of the Ru @ ATO @ Lip is-7.5 mV., so that the ruthenium nano particles are encapsulated in the liposome according to the potential change condition.
In order to prove that the ruthenium particles can generate Fenton-like reaction under acidic conditions to damage the liposome structure and further achieve the purpose of drug release, a transmission electron microscope is adopted to perform morphology characterization on the ruthenium and atovaquone loaded nano liposome Ru @ ATO @ Lip processed under acidic conditions, and the damage of the nano liposome structure and the release of the internal drug can be seen from an electron microscope result picture.
HeLa cells are incubated with a culture medium and different groups of drugs (nano liposome Ru @ ATO @ Lip loaded with ruthenium and atovaquone, nano liposome Ru @ Lip loaded with ruthenium, nano liposome ATO @ Lip loaded with atovaquone, ruthenium and atovaquone) respectively to characterize the survival capability of the cells, as shown in figure 5, it can be seen that the single ruthenium and single atovaquone groups have a certain killing effect on the cells, but after being encapsulated in the liposome, the biological safety is improved, which indicates that the toxic and side effects of the drugs on normal cells can be reduced by the encapsulation of the liposome; after the liposome entraps ruthenium and atovaquone and hybridizes with a cell membrane, the cell survival rate is obviously reduced, which shows that the ruthenium and the atovaquone have the capability of mutually promoting and killing cancer cells.
In order to characterize the in vivo tumor treatment effect of the drug, the prepared nano drug, normal saline, Ru @ Lip and ATO @ Lip are respectively injected into a cervical cancer U14 tumor-bearing mouse, the administration is carried out for 14 days, and the daily administration amount is 200 mu L, as shown in figure 7, the tumor weight of the mouse injected with the nano liposome Ru @ ATO @ Lip loaded with ruthenium and atovaquone is obviously smaller than that of the normal saline group phase, which indicates that the nano liposome Ru @ ATO @ Lip loaded with ruthenium and atovaquone has good tumor inhibition effect.

Claims (7)

1. A preparation method of ruthenium-based anti-tumor nano-drug for improving tumor microenvironment is characterized in that: the ruthenium-based anti-tumor nano-drug is a clear and transparent ruthenium/atovaquone liposome, and the preparation method comprises the following steps:
(1) respectively weighing a certain amount of soybean lecithin, cholesterol and atovaquone, and dissolving with anhydrous ethanol to obtain liposome lipid phase mixed solution containing atovaquone;
(2) placing the liposome lipid phase mixed solution containing atovaquone prepared in the step (1) into a rotary evaporator for rotary evaporation to enable the lipid phase to form a film;
(3) after the ruthenium nanoparticles are resuspended by using a certain amount of water, a certain proportion of phosphate buffer is added into the ruthenium nanoparticles, a certain amount of tween 80 is added after the ruthenium nanoparticles are uniformly mixed, and the ruthenium-containing water-phase mixed solution is obtained after the ruthenium nanoparticles are uniformly mixed;
(4) adding the ruthenium-containing water-phase mixed solution obtained in the step (3) into the membrane prepared in the step (2);
(5) and (4) uniformly mixing the liquid obtained in the step (4), and performing ultrasonic treatment to obtain a clear and transparent ruthenium/atovaquone liposome.
2. The preparation method of the ruthenium-based anti-tumor nano-drug for improving the tumor microenvironment according to claim 1, which is characterized in that: the ratio of the soybean lecithin, the cholesterol, the atovaquone and the absolute ethyl alcohol in the lipid phase mixed solution in the step (1) is 40-70 mg: 4-7 mg: 0.85-1.5 mg: 8-12 mL.
3. The preparation method of the ruthenium-based anti-tumor nano-drug for improving the tumor microenvironment according to claim 1, which is characterized in that: and (3) in the step (2), the rotary evaporation temperature of the rotary evaporator is 40-50 ℃, and the rotary evaporation time is 0.5-4 h.
4. The preparation method of the ruthenium-based anti-tumor nano-drug for improving the tumor microenvironment according to claim 1, which is characterized in that: the volume ratio of the phosphate buffer solution, the water and the Tween 80 of the aqueous phase mixed solution containing ruthenium in the step (3) is 400-500: 9500-9600: 5-15.
5. The preparation method of the ruthenium-based anti-tumor nano-drug for improving the tumor microenvironment according to claim 1, which is characterized in that: the ruthenium nanoparticles in the step (3) are obtained by reducing ruthenium trichloride with sodium borohydride, and the size of the ruthenium nanoparticles is 5-20 nm.
6. The preparation method of the ruthenium-based anti-tumor nano-drug for improving the tumor microenvironment according to claim 1, which is characterized in that: the ultrasonic power in the step (5) is 200-800W, and the ultrasonic time is 5-20 min.
7. The preparation method of the ruthenium-based anti-tumor nano-drug for improving the tumor microenvironment according to claim 1, which is characterized in that: the average particle size of the ruthenium-based anti-tumor nano-drug is 150-250 nm.
CN202110126573.9A 2021-01-29 2021-01-29 Preparation method of ruthenium-based anti-tumor nano-drug for improving tumor microenvironment Active CN112843089B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110126573.9A CN112843089B (en) 2021-01-29 2021-01-29 Preparation method of ruthenium-based anti-tumor nano-drug for improving tumor microenvironment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110126573.9A CN112843089B (en) 2021-01-29 2021-01-29 Preparation method of ruthenium-based anti-tumor nano-drug for improving tumor microenvironment

Publications (2)

Publication Number Publication Date
CN112843089A CN112843089A (en) 2021-05-28
CN112843089B true CN112843089B (en) 2021-10-29

Family

ID=75986838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110126573.9A Active CN112843089B (en) 2021-01-29 2021-01-29 Preparation method of ruthenium-based anti-tumor nano-drug for improving tumor microenvironment

Country Status (1)

Country Link
CN (1) CN112843089B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056625A (en) * 2008-04-04 2011-05-11 免疫之光有限责任公司 Non-invasive systems and methods for in-situ photobiomodulation
CN106344924A (en) * 2016-11-14 2017-01-25 四川大学 Nano-formulation combined with metabolic block and drug resistant reverse application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150100A1 (en) * 2009-06-24 2010-12-29 Entarco Sa The use of spinosyns and spinosyn compositions against diseases caused by protozoans, viral infections and cancer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056625A (en) * 2008-04-04 2011-05-11 免疫之光有限责任公司 Non-invasive systems and methods for in-situ photobiomodulation
CN106344924A (en) * 2016-11-14 2017-01-25 四川大学 Nano-formulation combined with metabolic block and drug resistant reverse application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Anticancer Ruthenium(III) Complexes and Ru(III)-Containing Nanoformulations: An Update on the Mechanism of Action and Biological Activity;Claudia Riccardi,et al;《Pharmaceuticals》;20191231;第12卷;第1-46页 *
Preparation and Physicochemical Characterization of Atovaquone-Containing Liposomes;E.Cauchetier,et al;《DRUG DEVELOPMENT RESEARCH》;19991231;第47卷;第155-161页 *
钌配合物脂质体的制备及抗肿瘤机制的初步探讨;李天舒等;《今日药学》;20191130;第29卷(第11期);第732-736页 *

Also Published As

Publication number Publication date
CN112843089A (en) 2021-05-28

Similar Documents

Publication Publication Date Title
CN108042810A (en) Hydrogen Nano medication and preparation method thereof is released in a kind of acid response
Liu et al. Enhancing the photodynamic therapy efficacy of black phosphorus nanosheets by covalently grafting fullerene C 60
Li et al. Biocatalysis of MnO2-mediated nanosystem for enhanced multimodal therapy and real-time tracking
Pang et al. Aptamer modified MoS2 nanosheets application in targeted photothermal therapy for breast cancer
Li et al. A multifunctional nanoamplifier with self-enhanced acidity and hypoxia relief for combined photothermal/photodynamic/starvation therapy
Chen et al. Microneedle‐Assisted Transdermal Delivery of 2D Bimetallic Metal–Organic Framework Nanosheet‐Based Cascade Biocatalysts for Enhanced Catalytic Therapy of Melanoma
Wang et al. Progress and perspectives of platinum nanozyme in cancer therapy
CN113493223A (en) Preparation method and application of hollow manganese dioxide nanospheres
CN114470177A (en) Novel cerium mediated co-assembled multifunctional nanoenzyme (CHA @ GOx) for use in diabetic wound treatment
Han et al. The development of live microorganism-based oxygen shuttles for enhanced hypoxic tumor therapy
Deng et al. Film-facilitated formation of ferrocenecarboxylic acid-embedded metal-organic framework nanoparticles for sonodynamic osteosarcoma treatment
CN112843089B (en) Preparation method of ruthenium-based anti-tumor nano-drug for improving tumor microenvironment
CN110882389B (en) Titanium monoxide nano material and preparation method and application thereof
Zu et al. Oxygen-generating biocatalytic nanomaterials for tumor hypoxia relief in cancer radiotherapy
Gong et al. Self-stablized monodispersing nano-MOFs for controlled enzyme delivery
CN115252644A (en) Preparation method and application of nano-drug for enhancing anti-tumor effect by synergistic starvation therapy/chemodynamic therapy
CN115252788A (en) Multi-mode anti-tumor nano-drug carrier, drug delivery system, and preparation method and application thereof
CN112402632B (en) Nanoscale coordination polymer for radiotherapy sensitization and preparation method and application thereof
Wu et al. Manganese-based nanomaterials in diagnostics and chemodynamic therapy of cancers: new development
Ma et al. Microfactories for intracellular locally generated hydrogen therapy: advanced materials, challenges, and opportunities
He et al. One-pot synthesis of storage-stable, tumor-specific cascade DNA nanobioreactors for ultrasound-promoted synergistic therapy
CN110680921B (en) Degradable anti-tumor nano-medicament based on hunger therapy and preparation method and application thereof
Song et al. A large-pore mesoporous Au@ Pt@ Rh trimetallic nanostructure with hyperthermia-enhanced enzyme-mimic activities for immunomodulation-improved tumor catalytic therapy
CN113274398B (en) Nano self-assembly material for inhibiting tumor cell glycometabolism and preparation method and application thereof
CN115737600B (en) Continuous hydrogen-producing biological microsphere and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant