CN112840236B - 通过反演分离不同类型的多个震源 - Google Patents
通过反演分离不同类型的多个震源 Download PDFInfo
- Publication number
- CN112840236B CN112840236B CN201980066374.4A CN201980066374A CN112840236B CN 112840236 B CN112840236 B CN 112840236B CN 201980066374 A CN201980066374 A CN 201980066374A CN 112840236 B CN112840236 B CN 112840236B
- Authority
- CN
- China
- Prior art keywords
- source
- sources
- excitations
- gathers
- seismic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims abstract description 187
- 230000005284 excitation Effects 0.000 claims abstract description 137
- 230000002452 interceptive effect Effects 0.000 claims abstract description 59
- 238000000926 separation method Methods 0.000 claims abstract description 35
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 30
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 30
- 238000013508 migration Methods 0.000 claims abstract description 18
- 230000005012 migration Effects 0.000 claims abstract description 18
- 238000009825 accumulation Methods 0.000 claims abstract description 15
- 230000004913 activation Effects 0.000 claims description 39
- 239000011159 matrix material Substances 0.000 claims description 36
- 238000004458 analytical method Methods 0.000 claims description 16
- 230000003213 activating effect Effects 0.000 claims description 4
- 238000010892 electric spark Methods 0.000 claims description 2
- 208000037516 chromosome inversion disease Diseases 0.000 description 45
- 238000012545 processing Methods 0.000 description 35
- 238000001994 activation Methods 0.000 description 29
- 230000008569 process Effects 0.000 description 27
- 238000004422 calculation algorithm Methods 0.000 description 22
- 230000001427 coherent effect Effects 0.000 description 22
- 238000013459 approach Methods 0.000 description 13
- 238000013461 design Methods 0.000 description 13
- 230000000875 corresponding effect Effects 0.000 description 11
- 238000009499 grossing Methods 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000010276 construction Methods 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000003491 array Methods 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 230000002596 correlated effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 238000012899 de-mixing Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052704 radon Inorganic materials 0.000 description 2
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001631030 Explorator Species 0.000 description 1
- 235000010804 Maranta arundinacea Nutrition 0.000 description 1
- 244000145580 Thalia geniculata Species 0.000 description 1
- 235000012419 Thalia geniculata Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 241000482268 Zea mays subsp. mays Species 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- -1 vibrator Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/36—Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
- G01V1/364—Seismic filtering
- G01V1/368—Inverse filtering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/36—Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
- G01V1/364—Seismic filtering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/003—Seismic data acquisition in general, e.g. survey design
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/308—Time lapse or 4D effects, e.g. production related effects to the formation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
- G01V1/3808—Seismic data acquisition, e.g. survey design
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/10—Aspects of acoustic signal generation or detection
- G01V2210/12—Signal generation
- G01V2210/129—Source location
- G01V2210/1293—Sea
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/10—Aspects of acoustic signal generation or detection
- G01V2210/12—Signal generation
- G01V2210/129—Source location
- G01V2210/1295—Land surface
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/10—Aspects of acoustic signal generation or detection
- G01V2210/14—Signal detection
- G01V2210/142—Receiver location
- G01V2210/1423—Sea
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/10—Aspects of acoustic signal generation or detection
- G01V2210/14—Signal detection
- G01V2210/142—Receiver location
- G01V2210/1425—Land surface
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Fluid Mechanics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种在地下区域上方进行地震勘探的方法,该地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,该方法包括:访问混合震源勘测的至少一部分;使用反演分离来分离至少两个干扰震源激励;基于该分离产生一个或多个源道集;以及使用所述一个或多个源道集来勘探所述地下区域内的碳氢化合物。在混合震源勘测中包含至少两个干扰震源激励,并且震源激励可以由具有不同特征或频率特性的震源类型产生。
Description
相关申请的交叉引用
本申请要求于2018年10月12日提交的且题为“通过反演分离不同类型的多个震源”的美国临时申请序列号62/745,068的权益,其全部内容为了全部目的通过引用结合于此。
关于联邦政府赞助的研究或开发的声明
不适用。
技术领域和背景技术
地震勘测表示通过将声能向下发送到大地并记录从下面的岩石层返回的“回声”来成像或绘制地球地下的尝试。向下行进的声能的源可能来自例如陆地上的爆炸或地震振动器,或者海洋环境中的气枪。在地震勘测期间,将能量源放置在关注的地质结构上方的地球表面附近的各个位置。每次激活该源时,它都会生成地震信号,该地震信号向下传播通过地球、与地球中的地质结构相互作用,并在其返回时在地表上的许多位置进行记录。然后,将多个源/记录组合进行组合以产生地下的连续剖面,其可以延伸许多英里。在二维(2-D)地震勘测中,记录位置总体上沿着单线布置,而在三维(3-D)勘测中,记录位置以网格图案分布在整个地表上。用最简单的术语来说,2-D地震线可以视为给出了位于记录位置正下方的地球层的横截面图(竖直剖切)。3-D勘测产生数据“立方体”或体积,其至少在概念上是位于勘测区域下方的地下的3-D图片。但是,实际上,2-D勘测和3-D勘测两者都询问位于由该勘测覆盖的区域下方的地球的一些体积。
发明内容
在一实施例中,一种在地下区域上方进行地震勘探的方法,该地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,该方法包括:访问混合震源勘测的至少一部分;使用反演分离来分离至少两个干扰震源激励;基于分离产生多个分离源道集;以及使用多个源道集来勘探所述地下区域内的碳氢化合物。在混合震源勘测中包含至少两个干扰震源激励,并且震源激励由具有不同特征或频率特性的至少两个震源产生。
在一实施例中,地震勘探的方法包括:在地下区域上方开启多个震源激励,该地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征;以及产生混合震源勘测,该混合震源勘测包括从由多个震源激励生成的反射获得的数据。多个震源激励是由具有不同特征或频率特性的至少两个震源产生的,并且在混合震源勘测中包含至少两个干扰震源激励。使用反演分离来分离至少两个干扰震源激励,并且基于至少两个干扰震源激励的分离来产生多个源道集。
在一实施例中,一种在地下区域上方进行地震勘探的方法,该地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,该方法包括:访问混合震源勘测的至少一部分;使用反演分离来分离至少两个干扰震源激励;基于分离来产生多个分离源道集;以及使用多个源道集来勘探在所述地下区域内的碳氢化合物。在混合震源勘测中包含至少两个干扰震源激励,并且震源激励至少由具有不同特征或频率特性的第一震源和第二震源产生。第一震源或第二震源中的至少一者是低频源,并且多个分离源道集中的至少一个包含低频数据或常规震源中缺少的其他频率的数据。
在一实施例中,一种在地下区域上方进行地震勘探的方法,该地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,该方法包括:访问混合震源勘测的至少一部分;以及使用多个生成的源道集来勘探所述地下区域内的碳氢化合物。在混合震源勘测中包含至少两个干扰震源激励,并且震源激励由具有不同特征或频率特性的至少两个震源产生。
尽管公开了多个实施例,但从以下详细描述中,其他实施例对于本领域技术人员将变得显而易见。显而易见的是,如本文所公开的某些实施例能够在不脱离如本文所提出的权利要求的精神和范围的情况下在各个方面进行修改。因此,下面本文的详细描述本质上应被认为是说明性的而不是限制性的。
附图说明
以下附图示出了本文公开的主题的实施例。通过参考以下结合附图的描述,可以理解所要求保护的主题,在附图中:
图1示出了跨越来自多个源的多个源点的单个接收器的连续迹线。
图2示出了第一源的梳理数据。
图3示出了第二源的梳理数据。
图4示出了在应用平滑度约束之后的来自第一源的较早迭代之一的数据。
图5示出了在应用平滑度约束之后的来自第二源的较早迭代之一的数据。
图6示出了第一源的部分去混数据。
图7示出了用于模拟的第一源的常规结果,其中没有发生来自第二源的干扰。
图8示出了本公开的总体环境。
图9示出了适用于本公开的地震处理序列。
图10包含典型的混合源勘测的平面示意图。
图11示意性地示出了在混合源勘测中如何识别和提取不同的激发。
图12示出了代表性情况的示例操作逻辑,其中,源1是脉冲的,并且源2是振动的,具有变化的源特征。
图13示出了从噪声道集中提取相干信号的示例方法。
图14示出了使用POCS内插来替换道集中的“缺失”或“污染”迹线的示例方法。
图15示出了具有三个干扰震源的通用接收器道集的示意图,每个源以不同的均匀周期性操作时间表操作。
具体实施方式
除非另有说明,否则任何形式的术语“连接”、“接合”、“耦接”、“附接”或描述要素之间的相互作用的任何其他术语的任何使用并不意味着将相互作用限制为要素之间的直接相互作用,并且还可能包括所描述的要素之间的间接相互作用。在以下讨论和权利要求中,术语“包括”和“包含”以开放式的方式使用,并因此应解释为表示“包括但不限于”。在阅读以下实施例的详细描述并通过参考附图之后,借助于本公开,上述各种特征以及下面更详细描述的其他特征和特性对于本领域技术人员将是显而易见的。
地震勘测由非常大量的独立地震记录或迹线组成。在典型的2-D勘测中,通常会有数万条迹线,而在3-D勘测中,独立迹线的数量可能会变成数百万条迹线。1987年的勘探地球物理学家协会的Ozdogan Yilmaz的《地震数据处理》的第1章第9-89页包含与常规2-D处理相关的一般信息。可以在Yilmaz的第6章第384-427页中找到关于3-D数据采集和处理的一般背景信息。
传统上,地震迹线是从地下的不均匀性或不连续性反射的声能的数字记录,其中,每当存在地下材料的弹性变化时就会发生部分反射(“一次反射”)。地球物理中也越来越多地使用其他类型的返回声能。除了一次反射之外,声能还可以例如从一种波型转换为另一种波型,沿着层边界折射、离开散射体衍射或者通过速度异质性(“潜波”)向上返回。在返回到地表被记录之前,波可能在地球内与地下结构多次相互作用。取决于地球物理应用,某些波被认为是“信号”,并且某些波可以被认为是“噪声”。
数字样本通常以0.002秒(2毫秒或“ms”)的间隔进行采集,尽管4毫秒和1毫秒的采样间隔也是常见的。常规数字地震迹线中的每个离散样本都与传播时间相关,并且在反射能量的情况下,当然假设源和接收器都位于地表上,与从源到反射体再返回地表的双向传播时间相关。实际中,使用了常规源-接收器装置的许多变型,例如,VSP(竖直地震剖面)勘测、海底勘测等。此外,仔细追踪地震勘测中的每条迹线的地表位置,并且通常将其作为迹线本身的一部分(作为迹线头信息的一部分)。这允许包含在迹线内的地震信息随后与特定的地表位置和地下位置相关联,从而提供用于在地图上(例如,“映射”)发布和绘制地震数据(以及从中提取的属性)的轮廓的方法。
3-D勘测中的数据适于以多种不同方式查看。首先,可以通过收集在同一传播时间发生的所有数字样本,从堆叠的或未堆叠的地震体中提取水平“恒定时间片段”。该操作产生地震数据的水平2-D平面。通过动画处理一系列2-D平面,翻译人员可以描绘所述体的全景,给人的印象是连续的层被剥离使得可以观察到位于下方的信息。类似地,可以通过收集并显示沿着特定线分布的地震迹线而在整个体的任意方位角上截取地震数据的竖直平面。效果上,该操作从3-D数据体内提取独立的2-D地震线。还应当注意,可以将3-D数据集视为由5-D数据集组成,该5-D数据集已通过将其堆叠成3-D图像而降低了维度。维度通常是时间(或深度“z”)、“x”(例如,南-北)、“y”(例如东-西)、x方向上的源-接收器偏移和y方向上的源-接收器偏移。尽管此处的示例可能聚焦于2-D和3-D情况,但将过程扩展到四维、五维或更多维度也是直截了当的。
已经适当地采集和处理的地震数据可以向勘探人员提供大量信息,该勘探人员是石油公司内的员工之一,其工作是寻找潜在的钻探地点。例如,地震剖面使勘探人员对岩石层的地下结构具有广阔的视野,并且经常揭示出与碳氢化合物的圈闭和储存相关的重要特征,诸如断层、褶皱、背斜、不整合面和地下盐丘和礁石等。在计算机处理地震数据期间,通常会生成地下岩石速度的估算值,并且检测并显示近地表的不均匀性。在一些情况下,地震数据可以用于直接估算岩石孔隙度、水饱和度和碳氢化合物含量。不太明显的是,地震波形属性(诸如相位、峰值振幅、峰谷比以及许多其他属性)通常可以凭经验与已知的碳氢化合物发生率相关联,并且这种相关性适用于在新勘探目标上收集的地震数据。
当然,地震数据的一个众所周知的问题是采集相对昂贵。确实,在一些情况下,勘测的成本可能确定拟议目标的经济效益是否令人满意。因此,倾向于降低此类勘测的成本的技术是有用的。两个或更多个源的近距离发射可以是用于降低地震数据采集成本的一种策略。这种方法背后的理念是,将部署一个接收器线或地块并且将在单次记录期间激活一个或多个源。因此,来自一个源激励的地下反射可能与后来产生的反射混合(即,获取“混合源”勘测)。请注意,这与常规勘测技术形成鲜明的对比,在常规勘测技术中,不允许来自一个源的返回地下波与来自另一个源的返回波重叠。
可能会发生混合,因为在由源激活引起的来自地球的返回波流有时间衰减掉之前再次激活单个源(所谓的“自同时”采集)。也可能发生这种情况,因为多个源在同一时间窗口中被激活,并且在一些偏移范围和时间处它们的返回波流重叠。两种方法可以在同一采集中同时使用。
对于陆地采集和海洋采集,在现场都可以使用两个或更多个相同类型的源进行地震采集。例如,同时操作的两个气枪船可以用作海上采集的一种模式。在一些方法中,两条船通常以同步的方式移动,并且通常也以精心编排和协调的方式激发(“距离分开的同时源”或“幻影”方法)。在其他方法中,源独立移动并独立操作(常规“ISS”方法)。然而,迄今为止使用的方法都假定要分离的源是同一类型,并且在分离之后,来自所有源的返回信号被组合到一个公共数据空间中,在该数据空间中,对于哪个源在数据中产生给定的地震能量位的区分对后续处理而言无关紧要。返回信号通常是反射,但越来越多的其他类型的返回信号也被使用,例如潜波、折射、衍射、多次散射反射等。
不同类型的源具有不同的优点,并且行业正朝着异源采集的方向发展,以获得在单次勘测中具有不同类型的源的益处。为了节省时间和费用,源可以同时操作。例如,海洋勘测可以使用气枪覆盖2-80Hz、使用电火花器覆盖70-120Hz并使用低频振动器覆盖1.5-3Hz,并且所有这些不同的源可以同时操作并且被记录到相同的接收器中。
某些实施例可以尝试将所有这些记录的源组合成单个宽带数据集,以用具有所有不同类型的源的组合优点的单个源来模拟勘测。然而,不能将源视为“相同的”,并且通常首先将源彼此匹配,使得它们符合组合数据集。在其他情况下,源的类型可能足够不同,或用于足够不同的目的,使得应在它们之间保持明显的区分,因此可以分开处理所得的数据集。某些实施例也可以同时进行这两者,以组合一些重叠的源,同时使其他重叠的源区分开。例如,某些实施例可以将气枪和电火花器数据组合成用于速度模型构建和成像的通用的2-120Hz数据集,但将低频1.5-3Hz的振动器数据分开,以仅用于速度模型构建的初始阶段。在地质复杂的地区,速度模型构建可能是成功成像的先决条件;成像算法需要良好的地球速度模型才能产生良好的结果。取决于应用,相同数据也可以不同地组合。
还经常发生的是,如果两个或更多个地震采集(意在为分开的)在时间和空间上彼此足够近地操作,则来自一个勘测的源也被记录在另一个中。该“地震干扰”通常被视为不想要的噪声。然而,使用本文描述的方法,“干扰”可以替代地被去混和去除,或者去混和分离出作为不同的超长偏移数据集,或者甚至被视为受欢迎的附加信号并且作为另一源而包括在勘测中。
鉴于以上内容,一个或多个实施例涉及用于分离多个震源的系统和方法,其中,震源可以具有不同的源特征,并且其中,在单次地震记录期间已经激活了多个震源。与先前的方法相反,本系统和方法的一个或多个实施例允许用户将源分离,其中,在时间上重叠地采集分离源的返回地震波。这样,一个或多个实施例可以获得两个或更多个分离的源数据集,每个源数据集可以具有不同的源信息。如果可以分开来自不同源的记录地震能量,则多于一个源集的使用将允许更快地采集地震勘测。该方法在采集宽方位角反射勘测时可能特别有效,因为对于不同的激发,反射层的运动学将显著不同,这允许在多个维度上使用反射的连续性。此外,获得不同源数据集的能力允许从勘测中获得不同类型的信息。
简言之,一个或多个实施例的系统和方法利用反演型方法将由地震记录所捕获的信息分离成多个源数据集。地震记录是对源自多个震源(例如,可控、气枪、低频源等)的反射的记录。可以记录重叠反射层的地震记录可以分为多个源数据集。在一些实施例中,当多个接收器正在记录时,源将在随机时间被发起(例如,发射)。每个发射都可以称为一个激发。随机发射之间的随机延迟或伪随机延迟趋于使不同源之间的干扰变得不相干,而与同一源相关联的反射产生相干事件。在一些实施例中,一个或多个源可以是连续或半连续的,而其他源在随机时间发起。分离可以通过数值反演过程来实现,该数值反演过程利用每个源的特征、每个源的每次激发的开始时间以及附近激发之间反射事件的相干性。源的特征可以对应于源的不同方面(例如,为每次激发执行的扫掠、频率特性等)。与迄今可能的方法相比,这种方法具有允许更快且更便宜地采集地震勘测的潜力,具有更好的信号质量和带宽。
数学上,在一些实施例中,记录数据可以表示为d=Γm,其中d是包含重叠信号的连续记录数据的表示,m是在常规的一个源一次型地震实验中记录的数据迹线的表示,其中,每个源激活的数据都在分开的迹线中,并且Γ是混合运算符,其使用已知的源激活时刻将m中的迹线加在一起,以产生连续的混合数据。一个或多个实施例的系统和方法描述了如何使用混合的记录数据d来准确地估算期望的去混数据m,然后可以将其用于进一步处理,就像该数据已经被记录在分开的去混合勘测中一样。在连续声源的情况下,可以在方便的常规重复间隔上指定源激活时刻,并且Γ可以包含适当的渐缩,使得连续的“源点”加在一起以重构连续源信号。
如在计算机系统中所表示的,d通常将被表示为具有时间样本和接收器编号的维度的阵列。在一些实施例中,时间轴可以细分为固定长度的记录。例如,连续时间可以细分为一分钟长的迹线,以将时间轴分为两个维度,“分钟”和“分钟内的时间样本”。m通常是具有时间、源激活编号、源类型和接收器编号的维度的阵列。Γ将具有时间(可能细分为两个维度)、源类型、源编号和接收器编号的维度。Γ通常非常大,但分布非常稀疏,并且这样,Γ通常将通过函数调用在计算机上的软件应用程序中表示。通常不会将其存储为大型静态矩阵。相反,可以根据需要从源启动时间表中计算其元素。
在一些实施例中,m可以表示“完整勘测”,具有针对源类型、源位置和接收器的每种可能组合的迹线。在勘测中实际上没有发生(并因此未在记录数据d中表示)的源-接收器组合将对应于Γ中的零。在该实施例中,m可以包含通过去混处理内插的迹线,以填充采集间隙。内插还可以用于替换激发和/或接收器性能欠佳以至于相应迹线最好作为“缺失”来处理的那些所记录迹线,或替换由瞬态噪声猝发污染的迹线。在其他实施例中,m可以包含仅针对在勘测中实际采集的源-接收器组合的迹线。中间情况也是可能的,其中,m表示对一些源类型的“完整勘测”,但针对其他源类型仅包含实际采集的源-接收器组合。在任何情况下,该问题都可以认为是不确定的,与d中的唯一元素相比,m中要解决的条目更多。为了解决这个问题,可能需要做出一些假设。解决方案是观察所记录数据应根据源和针对给定源的接收器位置而平稳变化,并使用它来约束估算的去混数据m(也称为“模型数据”)。为此,通常需要通过将时间抖动引入源启动时间中,以确保来自不同源的到达彼此不相干的方式来采集数据。时间抖动信息包含在混合运算符Γ中。为了增强平滑度,一个或多个实施例可以添加附加约束m≈Sm,其中,S是描述适合于每个源的相干性标准的矩阵或运算符。然后,该相干性标准将确保来自正确源的数据将在m中正确地分离出来。然后,解决方案是求解方程式耦合对d=Γm和m≈S m。一个或多个实施例还可以应用加权项W并求解方程式对W d≈WΓm和m≈S m,其中,加权项W是矩阵(或更一般地,是运算符)。这将允许一个或多个实施例加权一些接收器相对于其他接收器的重要性,以平衡不同类型源的振幅,或者不同地加权不同的时间或频率窗口。传统上,这些方程式可以使用为此目的可用的许多可用算法之一以最小二乘算法(例如,L2算法)或快速最小化算法(例如,L1算法)求解。所公开的系统和方法提供了已被证明可以产生优异结果的替代的迭代求解方法。在某些情况下,存在两个或更多个相同类型的重叠同时源,并且目标是产生与传统勘测等效的去混数据集,其中,循序地发射相同的源集并且其不重叠。关于S,S可以是将附近激发中的事件约束为相似或相干的任何运算符。S不限于在单方向上的应用,而是可以应用于所采集数据的完整维度(例如2-D、3-D、4-D等),或者应用于数据的任何合适的较低维度子集。此外,不应从前述方程式假设S一定是线性运算符。尽管在一些实施例中,S可以是线性运算符,但在其他情况下,该变量将表示非线性运算符,或其线性化版本。
在一些实施例中,S表示快速傅立叶变换(“FFT”)。对于不规则间距的激发,可以使用离散傅立叶变换或允许对激发进行不规则采样的一些其他方法更好地计算S。在一些实施例中,S可以包括3维傅立叶变换和阈值运算,以去除弱事件(往往是噪声)并通过强事件(往往是相干信号)。这使得S可以改善所记录地震信号的相干性。
该方法可以从数据d中提取对应于源激活的时间窗口,随后是监听时间间隔。时间窗口的这种提取可以被称为“梳理数据d”。如果没有来自分离源激活的数据重叠,则梳理数据将直接产生m。这种情况对应于常规的单源地震处理。数学上,mcomb=Γtd,其中,梳理运算符Γt是混合运算符Γ的转置。在源确实重叠的地方,则可以认为梳理数据mcomb中的迹线被来自其他源的串扰污染。然而,由于源激活的时间抖动,这种串扰噪声通常将是不相干的。因此,可以通过应用S(其消除非平滑非相干能量)来衰减噪声,从而产生对去混数据msmooth的改进估算。数学上,msmooth=S mcomb=SΓt d。然后,该算法计算对应于该msmooth的混合地震数据,该混合地震数据是对记录数据d的近似估算。
估算数据可以计算为destimated=Γmsmooth。如果实际数据“d”与“destimated”之间的差足够小,则该过程已成功确定与记录的场数据d一致的相干去混数据集msmooth,并且该过程结束。否则,该方法进而可以计算数据失配dresidual=d–destimated,并使用它来改进msmooth。此改进可以通过执行以下步骤来完成。首先,该方法可以更新估算的去混数据集:mupdated=msmooth+Γtdresidual。然后,该方法可以将相干性约束应用于更新的估算,以计算新的msmooth:Smupdated→msmooth。最后,该方法进而可以返回到本段的开头并重复这些步骤,直到数据残差足够小为止。可以选择被认为足够小的确定作为解决方案的标准,和/或可以基于数据残差的可接受的减少或最小化来选择,并且结果可能因分析而异。在一些实施例中,数据残差可以为零,而在其他实施例中,当值小于数据中的噪声水平时,数据残差可以被认为足够小。
实际上,在上述循环的每次迭代中,该方法可以保存前一次迭代(msave)和建议的更新版本(mproposed)的msmooth,然后计算这两者的加权平均值以用作新的更新:msmooth=(1–λ)msave+λmproposed。加权因子λ应该为正,但在最大混合因子(例如,正在处理的数据中存在的重叠源的最大数量)上不大于一。m中的每条迹线对应于特定的源-接收器对,因此该方法可以通过将λ设为源、接收器、偏移量、时间等的函数来轻松实现加权项。更一般地,加权平均值也可以应用于变换域,因此λ也可以是频率等的函数。例如,msmooth=FT-1[(1–λ)FT(msave)+λFT(mproposed)],其中,FT和FT-1分别表示傅立叶变换和傅立叶逆变换。如果需要,可以在多于一个域中应用加权。
该方法可以包括使在同一记录内发生的源激励在时间上以随机时间间隔或伪随机时间间隔分离。如果记录的激发是随机间隔的,则每个记录的激发不太可能记录与记录的激发在时间上接近的其他激发的相干能量,因此允许这些激发更容易分离。通过随机激励激发,当这些激发被校正为其各自的零倍时,它们将具有从源点到源点相干的信号,而干扰激发将趋于不相干,并且可能会被本文所教的反演过程分离。这加强了本分离过程中的相干性措施的操作。
优选地,采集本身也将被设计为强调不同源之间的不相干性。例如,当在适当位置上激发常规海洋地震时,每个源在到达下一个期望激发位置时都会发射。期望激发位置通常均匀地间隔开。因此,对于以恒定速度移动的船舶,激发也将以规则的时间增量发生。如前所述,对于混合勘测,将抖动添加到该时间以确保每个源都不会与其他源相干。然而,一个或多个实施例可以通过将勘测设计成使得没有两艘船舶“在编队”中移动(即,一艘船舶以与另一艘船舶偏移恒定的矢量移动)来确保即使在没有抖动的情况下不同的源仍将是不相干的。确保这一点的一种简单方法是为不同的船舶分配不同的速度,使得即使两艘船舶在平行的勘测线上沿相同的方向移动,其对应的激发也不会以相同的模式落下。不同的船舶速度会转换成不同的激发间隔,使得即使在没有抖动的情况下激发也不相干。
上面的描述描述了如何将该方法应用于单一类型的源,其中,不同的源被组合成单个去混数据体m。随着新型震源的出现(诸如低频振动源),现在需要一种可以处理使用同时采集多于一种类型的源来记录的数据的系统和方法。这样的系统和方法可以通过执行以下功能来处理使用同时采多于一种类型的源来记录的数据:(1)将上述算法推广到多个输入和输出的情况,(2)修改算法以平衡不同类型的数据,以使一种源类型不会在反演中相对于其他源占主导地位;(3)考虑源特征在时间范围、频率内容等方面可能有显著差异,并且可能从源点到源点而变化,和/或(4)在不同域可能相干的源。
一个或多个实施例的新系统和方法可以通过一个简单的示例来说明:同时采集多种不同类型的源(例如,两种气枪源和一种低频源)。两种气枪源具有同一类型,并且一起形成单个统一的勘测。低频源是具有不同采集计划的不同类型,并形成分开的勘测。在该示例中,该方法仍然像以前一样记录单个组合数据集d,但是现在该方法旨在确定两个不同的m,一个用于气枪勘测,并且另一个用于低频源勘测。
数学上,该方法现在具有d=ΓAmA+ΓWmW,其中,ΓA是适于气枪模型数据mA的混合矩阵,并且ΓW是适于低频源模型数据mW的混合矩阵。目的是找到产生记录数据d并同时满足mA≈SAmA和mW≈SWmW的mA和mW,其中,SA和SW是适于对应源类型和采集几何形式的适当平滑度约束。
如前所述,该方法梳理数据。图1示出了跨越气枪和低频振动源两者的多个源点的单个接收器的连续迹线。箭头指出在高振幅气枪到达之间清晰可见的低频振动源的位置。然后,该方法对用于气枪的数据进行梳理,以计算mcombA=Γt Ad(产生图2中的结果),并且对用于低频源数据进行梳理,以计算mcombW=Γt Wd(产生图3中的结果)。图2中的箭头指出来自其他源的特别严重的干扰,其中,“A”指出来自气枪源的干扰,并且“W”指出来自低频振动源的干扰。图3中可见的高频“噪声”是来自气枪源的干扰。然后,一个或多个实施例可以应用适于以下每种的平滑度约束:msmoothA=SAmcombA=SAΓt Ad(产生图4中的结果)以及msmoothW=SWmcombW=SWΓt Wd(产生图5中的结果)。
估算数据可以计算为destimated=ΓAmsmoothA+ΓWmsmoothW。如果实际数据“d”与“destimated”之间的差足够小,则该方法已成功找到与记录的场数据d一致的相干去混数据集msmoothA和msmoothW,并且该方法完成。否则,该方法将计算数据失配dresidual=d–destimated,并将其用于改进msmoothA和msmoothW。这是通过执行以下步骤完成的。首先,该方法更新估算的混合数据集:mupdatedA=msmoothA+Γt Adresidual以及mupdatedW=msmoothW+Γt Wdresidual。然后,该方法将相干性约束应用于更新的估算,以计算新的msmoothA和msmoothW:SAmupdatedA→msmoothA并且SWmupdatedW→msmoothW。最后,该方法可以重复这些步骤,直到数据残差足够小并且该方法完成为止。该方法可以应用于多于两种类型的源。作为以destimated=ΓAmsmoothA+ΓWmsmoothW获得估算值的一种替代方案,可以在替代迭代中使用ΓAmsmoothA和ΓWmsmoothW更新数据的估算,这将分离ΓAmsmoothA与ΓWmsmoothW之间可能的串扰。这也可以扩展到更多的源类型。
图6示出了在数百次迭代之后产生的去混气枪数据。在足够的迭代之后,它非常接近图7所示的精确去混结果。
与单一数据类型情况一样,在上述循环的每次迭代中,该方法保存前一迭代和建议的更新版本中的msmooth,然后计算这两者的加权平均值以用作新的更新:msmoothA=(1–λA)msaveA+λAmproposedA以及msmoothW=(1–λW)msaveW+λWmproposedW。可以根据需要使用不同的加权因子来平衡不同的源类型,并且像以前一样,也可以使用λ来按源、源类型、接收器、偏移量、时间等进行加权。例如,如果气枪信号的振幅比低频源信号高得多,则该方法可以用大于λW的λA开始反演,直到气枪信号收敛为止,然后增加λW。
实际上,气枪可以执行的振幅比高于约5Hz的低频源高得多,但低频源可以执行的振幅比低于约2.5Hz的气枪高得多。因此,在一些实施例中,将在频域中应用加权,对反演的初始迭代进行加权以强调每个频带中的最强信号的更新,然后,一旦较强的信号稳定,一个或多个实施例就允许较弱的信号在以后的迭代中更新。
通常假定气枪具有一致且可重复的源特征,并且为此做出了很多努力,但是对于所有类型的源而言可能并非如此。特别地,每次激活时,低频源可能不会产生相同的信号。然而,它连续记录有多少水被置换,并因此每次源激活时都会详细了解其源特征。如果测得的源特征是V,则该方法可以使用任何标准技术来计算稳定的源特征反卷积运算符。例如,该方法可以使用频域中使用的传统公式来计算稳定的近似反演:V-1=V*/(VV*+∈2),必要时选择∈值来稳定反演。如果源特征从源激活到源激活变化,则在该方法可以应用相干约束之前,该方法将需要对该变量进行校正。因此,代替SWmupdatedW→msmoothW,该方法将进行VSWV- 1mupdatedW→msmoothW。由于反演V-1是真实反演的近似值,所以应用反演的结果将存在误差。然而,误差将趋于是随机的,并且将被解决方案的迭代性质抑制。
对于S和/或V的一些选择,在每次迭代中仅平滑和/或特征匹配m的变化可能证明是有利的,其中,该变化可以称为mdiff。例如,如果该方法需要校正低频源特征而不是气枪源特征,则算法中的更新步骤变为mdiffA=Γt Adresidual以及mdiffW=Γt Wdresidual,随后是msmoothA+SAmdiffA→msmoothA以及msmoothW+V SWV-1mdiffW→msmoothW。取决于平滑运算符S和特征或匹配运算符V的选择,算法的这种替代形式可以产生更好的结果。特别地,如果数据残差为零,则无论S和V为何,该算法都不会进行任何进一步的更新。
尽管以上示例示出了两种不同类型的源,但其他实施例可以涉及同时采集多于两种类型的源(诸如“n”个源类型)。数学上,该方法现在具有d=Γ1m1+Γ2m2+…+Γn mn,其中,Γ1是适于第一种源类型数据m1的混合矩阵,并且Γn是适于第n种源数据类型mn的混合矩阵。目的是找到产生记录数据d并同时满足m1≈S1m1、m2≈S2m2以及mn≈Snmn的m1、m2、…和mn,其中,S1、S2和Sn是适于对应的源类型和采集几何形式的平滑度约束。一些实施例还可以选择将某些类型的噪声视为另一个“源”并加以求解。例如,如果噪声是由于以比任何关注的地震到达都慢的相速度传播的表面波引起的,并且接收器网格已对表面波进行了充分采样(它们将低于足够低的频率),则某些实施例可以找到表面波数据变得稀疏的变换域。利用该信息,然后某些实施例可以设计在该域中操作的平滑度约束Snoise,并利用该稀疏性来强调表面波噪声并衰减期望的地震信号。如果噪声是激发产生的,则一个或多个实施例可以知道激发时间。如果噪声是连续的且是环境噪声,则某些实施例可以在混合/去混合矩阵中为对应的“激发时间”使用均匀间隔的渐缩重叠采集时间窗口。
对于可控源(诸如陆地振动器或海洋振动器),一个或多个实施例可以在采集期间有意地引入从一个源激活到另一个源激活的变化,并且这也可以是一种使不同源不相干以允许它们分离的方式。一个或多个实施例可以为此目的使用多种不同的陆地振动器扫掠轮廓。现有的低频源目前尚不允许这种级别的灵活性,但是可以更改其源特征的符号或相位。一个优选实施例可以使用符号/相位的更改而不是时间抖动(或增加时间抖动)来破坏源之间的不想要的相干性。
一个或多个实施例也可以将V用于不是去除源特征,而是将变化的源激活与“标准”特征进行匹配。如果M是测得的(或估算的)源特征,并且D是期望的源特征,则一个或多个实施例可以使用例如V=MD*/(D D*+∈1 2)并且V-1=V0 */(V0 V0 *+∈2 2),其中,从M和D计算出的V0恰好等于V,但可能具有不同的∈1,例如∈1=0。可替代地,一个或多个实施例可以使用V-1=D M*/(M M*+∈2 2)。这些公式通常应用于频域。应用V-1会将实际的源特征(M)转换成期望的源特征(D),如果期望的特征包含源特征中不存在的频率,或仅在不足以高于噪声的水平出现的频率,则会引入噪声。稳定参数∈2限制要应用的放大率,并使结果稳定。V将期望的源特征(D)转换回实际的源特征(M),通常这将是更稳定的操作。因此,通常一个或多个实施例选择使反演运算符比前向运算符具有更多的稳定性,即,一个或多个实施例通常将具有∈2>∈1≥0。
请注意,在海洋采集的情况下,一个或多个实施例可以选择使期望的源特征D不包括源幻影的影响,而是在M中包含源幻影,并因此使用特征匹配以使数据去幻影。为了使其良好地工作,一个或多个实施例应确保在采集期间幻影凹陷存在变化,即,源深度在激发之间变化。可替代地,一个或多个实施例可以确保源阵列中的元件不是全部在相同深度处。
即使对于单一类型的源,也可能有理由进行特征映射。为了使气枪源特征在其主频带(即,约5-40Hz)内保持一致和可预测,已经进行了数十年的工作。在此频段之外,进行了较少工作,并且已证明在这些扩展频率下,气枪阵列的源特征变化更大。因此,例如,将单艘船采集的左舷和右舷气枪阵列视为“两个分开的源”可能是有意义的。然后可以将所得的两个数据集彼此匹配,以量化理想情况下应该是相同的源之间的源特征中的差异。或者,在不同时间使用同一气枪阵列可以被视为“几个分离的源”,以捕获并校正单个源的不期望的长期变化。
一个或多个实施例还可以通过频率将一个源或源类型分成两个或更多个。为了继续前面的示例,一个或多个实施例可以使用带通滤波来将数据分成例如低于和高于5Hz的两个频率范围(例如,在其之间有一些重叠),使得d=dlow+dhigh。然后,一个或多个实施例可以将dlow和dhigh作为两个分开的问题来求解。例如,如果认为两个气枪阵列在更高的频率下表现相同,但可能在5Hz以下不同,则一个或多个实施例可以分别针对两个不同的气枪阵列对dlow求解,但作为单一源类型对dhigh求解。
通过在场中(例如从放置在气枪阵列附近的水听器处)测量变化的气枪源特征,一个或多个实施例还可以将该知识结合到过程中,并使用测得的特征M将变化的气枪源校正为期望的恒定特征D,就像一个或多个实施例对具有变化但已测得的特征的振动源所做的一样。
尽管在提取相干能量之前将不同的源类型匹配到同一源特征可能是优选的,但这种匹配会产生对于一种源类型的信噪比(S/N)不良的问题。例如,低频源(诸如)可以设计成补充低频的气枪,并在较高频下产生最小的信号。因此,在约4Hz以上,气枪相对于低频源占主导地位,而在2Hz以下,低频源相对于气枪占主导地位。将低频源与气枪匹配可能会在4Hz以上的低频源信号和2Hz以下的气枪中产生明显的噪声。由于两种不同的源类型通常在约2-4Hz的窄频率范围内明显重叠,所以组合问题的约束很不好。因此,一个或多个实施例可以分别解决这两个不同频率范围上的问题。特别地,一个实施例可以最初将5Hz以上的低频源视为“噪声”,并且不将其包括在较高频带的反演中。一旦对两个气枪源进行去混,就可以引入低频源,并且将λA设定为非常小,使得仅允许对气枪源进行非常小的更新。对于较低的频带,可以采用相反策略,首先解决低频源,然后再添加气枪。最后,一个实施例可以通过进行全带宽反演来结束。为了将该概念推广到所有类型的震源,一些实施例可以限定对于每个源具有可接受的S/N比的有效频带,并且对其他频带施加非常小的加权以避免不同源之间的交叉污染。
一些实施例可以具有一定范围的源类型,每个源类型被优化以覆盖不同的频带,使得不同的源类型可以组合在一起以模拟单个超宽带源。然后,一个或多个实施例可以设计期望的超宽带源特征,并在不同源类型的最佳频率范围之中划分出该特征。因此,例如,如果D是期望的宽带源特征,并且如果三种源类型跨越整个频带,则一个或多个实施例可以将源特征划分成重叠的频率窗口,使得D=Dlow+Dmid+Dhigh,其中,频带被选择成覆盖每种源类型的最佳S/N频带。频率窗口的选择可能从分析到分析而变化,因为选择可能取决于震源的频率内容。例如,低频源可以导致约0到2.5Hz的低频范围、约2.5到5Hz的中频范围和约5Hz到尼奎斯特频率的高频范围。取决于所使用的特定模型和震源,可以限定其他频率范围并将其用于源特征范围。然后,一个或多个实施例可以使用匹配运算符V将每种源类型与适当的带通滤波后的源特征进行匹配,如前所述。在解决了d=Γlowmlow+Γmidmmid+Γhighmhigh的问题之后,然后,一个或多个实施例可以将期望的超宽带数据集模拟为dbroadband=V-1 lowmlow+V-1 midmmid+V-1 highmhigh。
为了实现方便,一个或多个实施例可以例如使用“期望数据”m'=V-1m作为在每次迭代期间被更新的变量,因此dbroadband=m'low+m'mid+m'high。这需要调整其余公式,以直接补偿从m到m'的变量变化。本领域普通技术人员将认识到,算法中还有其他可能的变化,这些变化会改变计算,但基础数学保持相同。
为了能够将不同的去混数据集一起添加到组合的超宽带数据集中,需要将所有不同类型的源都表示在同一网格上。实际上,不同的源类型通常具有不同的采集。特别地,低频可能会更粗糙地采样,因此低频源可能会“缺失”许多源点。一个或多个实施例可以通过使用混合运算符Γ将这些缺失的迹线乘以零而在去混过程期间填充这些缺失的源点。然后,平滑度约束的适当选择将具有内插缺失源点的效果,由此,所有的频带可以表示在同一网格上,以产生模拟单个带宽源的组合数据集。
显然,平滑度约束S的正确选择对于解决该问题很重要。通常,可以使用对数据进行充分采样的对某种类型的道集起作用的任何噪声去除算法。一种方法是将数据转换为期望信号变得稀疏且噪声不稀疏的域。然后可以将低于某个百分比阈值的所有数据设定为零,然后可以将数据转换回原始域。通常,可以将数据细分成渐缩重叠子集,可以对每个子集进行平滑处理,然后可以重新组合平滑的子集。该方法是用于噪声去除的技术。通常,选择的变换是局部2-D、3-D、4-D或甚至5-D傅立叶变换,该变换将数据表示为线性移动的事件总和:线、平面、超平面等。也可以使用其他变换,诸如拉东变换。拉东变换将数据表示为双曲线之和,因此,如果期望的信号看起来像双曲线,则该域可能产生更好的结果。其他应用程序使用各种类型的子波,并且最近已经提出了其他变换域,例如“曲波(curvelets)”、“小震波(seislets)”等。
一个或多个实施例可以使用傅立叶变换,并且以接近100%的水平开始阈值处理,仅保持数据的最相干部分。例如,图4示出了早期阶段的反演,其中,非常强的相干性约束产生看起来不自然的平滑结果。在傅立叶域中应用的高阈值仅允许在气枪最强的频率(约8Hz)周围通过窄带宽。每次迭代都会降低阈值,最终允许通过最终迭代中的所有或几乎所有数据。这样做的优选计划是阈值=1–(iter/niter)2,其中iter是迭代计数并且niter是迭代次数。1的阈值仅允许通过转换后的数据中的最大振幅单个样本,0.5的阈值允许通过转换后的样本的最大一半,并且0的阈值允许通过所有转换后的数据样本。
一个或多个实施例还可以针对不同的源类型使用不同的平滑阈值,作为在较强和较弱的源混合在一起时稳定反演的另一种方法。例如,一个或多个实施例可以遵循针对较强源的标准1–(iter/niter)2阈值调度,但将针对较弱源的阈值保持在高水平,直到平均数据残差减小到接近较弱源的信号水平为止。只有这样,一个或多个实施例才会在使较弱源平滑时开始降低阈值。
通常,一个或多个实施例还可以在变换之前或之后对数据加权,例如以使振幅不受偏移影响而相等,或避免一个强频带占主导(如图4所示)。在信号/噪声足够的情况下,通常会在阈值化之后再次去除加权。然而,在信号弱或不存在或者噪声强的情况下,一些实施例可能主要使用加权来去除噪声。在那种情况下,一个或多个实施例将不会在阈值化之后去除加权,以避免重新引入先前去除的噪声。一个或多个实施例还可以利用关于如何采集数据的知识。例如,一个或多个实施例可以首先使用如POCS(投影到凸集)的方法内插缺失的数据,而使未缺失的迹线保持不变,然后在第二遍中应用平滑度约束。
在如组合低频源和气枪海上节点采集的情况下,气枪激发线可以紧密地间隔开(例如,相隔50米)。海底节点阵列部署通常“滚过”气枪激发线,但可以比气枪领先一些。因此,当同时部署所有(或几乎所有)节点时,在勘测的中点附近通常会有一个间隔,并且节点地块正在等待气枪追赶,然后再开始检索。在勘测的这个时间前后,在不再部署节点而是开始检索之前,低频源到达并遍历所有源线。这是一种设计勘测的方法,以便有效地将超长偏移超低频数据(低频源设计成采集该数据)采集到尽可能多的节点中。因为频率要低得多,并且低频采集通常仅用于构建速度模型而不是成像,所以低频源线可能比气枪源线粗糙得多,从而允许更快的采集。低频源激发可能仅持续两到三周,而气枪激发可能持续数月。因此,可能仅有气枪激发的一小部分与低频源信号重叠。
这为一些实施例提供了将被重叠的低频源信号污染的气枪迹线视为“缺失”的自由度。在一些实施例中,在反演的早期,一个或多个实施例可以将被污染的气枪激发视为“缺失迹线”,并将其内插到数据中。只要没有太多,这种策略就是可行的。在反演的后期,一旦数据残差下降,则一些实施例可以切换到其他平滑方法,例如,对受污染的迹线进行去混而不是将其丢弃。
典型的振动源一次产生一个主导频率,并且通过随时间推移“扫掠”频率而获得更宽的带宽。相比之下,气枪信号是脉冲的和宽带的。因此,在任何给定时间,气枪信号的窄频带都可能受到来自振动器信号的干扰的影响。因此,一个或多个实施例可以通过在频域中将受影响的样本分别标记为“缺失”来利用这一差异,而不是丢弃整个傅立叶变换后的气枪迹线。由于平滑标准通常在频域中应用,所以这是一个直接的扩展。通常还要求振动器信号包括“静止”阶段,以使振动器不连续操作。这些间隙可能足够长,例如,每第3次或每4次脉冲激发可以完全摆脱振动源的干扰。在低频率下,这些干净的激发可能会被过度采样,使得它们可以用于内插受污染的中间激发(这些受污染的中间激发在反演的早期阶段被视为“缺失”)。
类似地,低频源信号的持续时间通常比气枪信号的持续时间长很多倍(通常为60-300秒对12-15秒),并因此,单个低频源扫掠的仅一部分会受到强重叠气枪信号的污染,并且在一些情况下,只有充分靠近正在操作的气枪的节点受到污染。一个或多个实施例可以标记由高于一定振幅水平的气枪污染的所有低频源迹线样本,并将其视为要内插的“缺失”数据。可以在时域中逐个样本单独指定“视为缺失”标记;而无需诸葛迹线进行。在时域和频域或任何其他域中都可能存在“视为缺失”标记。“视为缺失”标记可能是取决于多个域中的参数(argument)的函数。在一些实施例中,该标记可以取0到1之间的值,从而允许迹线或样本被降低加权但不被完全忽略,和/或不被内插值代替,而是被原始值与内插值之间的加权平均值代替。
一个或多个实施例可以使用已知的气枪发射时间来确定受污染的采样,但是标记受污染的低频源数据样本的一种更简单的方法是简单地查看8Hz(气枪最主导的频率)左右的窗口中的能量,并标记该频段内样本周围的窗口中能量超过某个水平的所有样本。对于当前的气枪阵列而言,8Hz左右的频率是很好的值,但是通常,一些实施例应使用最适于将干扰源与被去混的源加以区分的任何频率范围。这还具有可以捕获意外未被记录的气枪发射或属于在寻源日志文件中未被捕获的相邻勘测的气枪激发的优点。
一个或多个实施例可以修改数据采集以帮助确保该方法有效。在一些实施例中,在低频源操作时的任何时间窗口中,该方法可能仅采集奇数编号的气枪源线。这将确保该方法将具有来自偶数编号源线的良好的未污染数据。由于低频源信号仅影响最低频率,所以一个或多个实施例将仅需要内插最低频率下的“缺失”数据。交叉线样本间距加倍(例如50x2=100米)仍然超过在这些频率下的充足采样。在较高的频率下,任何低频源污染都将足够小到可以忽略,并且某些实施例可以使用所有气枪源线。某些实施例还可以避免采集可被3、4或其他增量整除的源线,例如,当低频源操作时,具体细节可能取决于不同类型源的重叠频率范围和源交叉线间距。重要的观察结果是,在低频下,典型的勘测设计极度过采样,这是某些实施例可以用于实现其优点的事实。
当应用S时选择多少维度以及如何排序数据可以取决于采集的细节,并且通常可以根据源的类型而变化。气枪源通常将在规则网格(例如50mx50m)上进行密集采样,因此某些实施例具有对应该进行平滑处理的数据排序的多种选择方式。因此,例如,对于节点采集,某些实施例可以将平滑度约束SA应用于3-D通用接收器道集。对于拖缆采集,某些实施例可以在2-D或3-D公共矢量偏移道集上工作。然而,海底结点通常不会良好地采样(例如400-800米乘400米)。因此,对于进入海底节点的气枪激发,某些实施例不能在常规气枪频率下的3-D普通激发道集中使用平滑度,至少在没有进行处理的情况下使用,以避免由于采样密度可能不足而引起的错误识别。
相反,低频源(例如,如的实验源)只能在粗糙的间隔较大的源线上采集,并因此记录到海底节点中的通用接收器低频源道集只能在2-D(而非3-D)通用接收器道集中进行充分良好采样。对于每个节点道集,良好采样的轴是线内源位置和时间。交叉线源位置不充分良好地采样而无法使用。然而,由于它在如此低的频率下操作,所以在较高频率(2Hz以上)下被粗糙采样的同一接收器节点网格可以被良好采样以用于低频源,这意味着与常规频率的气枪不同,一个或多个实施例可以在3-D通用激发道集域中应用SW。请注意,并未要求不同的源或类型的源都必须在同一域中具有相干性/稀疏性约束;每者都应使用适合该源的域和相干性约束。
在不同频率范围上哪种类型的道集被“良好采样”(根据尼奎斯特准则)的差异是按频段划分问题的另一有意义的原因。仅通过将原始数据分离成重叠的渐缩频段以分别对它们每个进行操作、然后再根据需要将结果重新合并在一起,就可以轻松地做到这一点。或者,分离和重新合并可能发生在算法的内部步骤中,例如在应用平滑性约束期间。或者,这可以通过在统一的整体反演中使用频率相关的加权或约束来完成。相对于频率范围的采集密度还将决定对m使用哪个网格以及要应用哪种平滑度约束的可能选择。例如,是转换为内插有一些缺失激发的完整数据集,还是只计算实际记录激发的非混合版本。有充分的理由不仅针对不同类型的源、而且针对同一源的不同频率范围做出不同的选择。
气枪通常是可靠的,并且如果源定位存在任何问题,则可以简单地重新激发次优源点。一个或多个实施例对于新型源(包括如的低频信号源)可能不会那么奢侈。结果,有时在源线中会有不连续或偏移的地方。这可能会在算法的平滑步骤中引起问题,因为不连续性甚至会导致正确的数据也不平滑,平滑步骤将尝试对其进行“修复”。
这类似于当2-D拖缆采集仍然普遍时在波方程迁移中发生的问题。拖缆线可能不在一直线上,但由于在采集期间交叉电流的变化而可能具有曲率。迁移算法假定数据是真正的2-D数据,而不是沿着扭曲的采集线采集的。称为“方位角偏移”(AMO)的方法用于解决此问题。使用已知的正确源和接收器位置,可以应用简单的蛮力方法来平整数据中的反射层。例如,数据可以利用使用非常简单的近似速度模型计算的正常时差校正(NMO)来平整。然后,将应用该操作的反演,但是具有期望的源和接收器位置。如果采集误差不太大,则正向运算和反演运算将几乎彼此抵消。即使是非常近似的校正(由于非常简单的近似速度模型)在实践中仍然可以足够好地起作用,以允许出于迁移和成像的目的,进而可以将数据视为2-D数据。某些实施例可以使用相同的原理进行去混,例如通过将S替换为(NMO-1 actual_ gridNMOregularized_grid)S(NMO-1 regularized_gridNMOactual_grid)。
实际上,某些实施例可能不会分开应用正向NMO操作和反演NMO操作,而是将它们组合成单个操作(如括号中的操作分组所示)。某些实施例还可以简单地直接对NMO的数据执行平滑处理(例如,平整事件)、然后执行平滑处理、然后将事件恢复到其原始位置。数学上,这将S替换为(NMO-1 actual_grid)S(NMOactual_grid)。可替代地,某些实施例可以具有m表示正则化的采集,并且在混合运算符Γ中通过包括从正则化网格的映射以适合于实际源/接收器位置来调整公式。
显然,一个或多个实施例的方法取决于“基于相干性的信号提取”,这是通过其在某些域中的相干性(或缺乏相干性)来对期望的到达与由于干扰源而导致的到达加以区分的能力。以使得这种分离成为可能的方式采集数据。硬件生成的源启动时间的随机抖动已成为文献中描述的实现此目的的常规优选方法,但其他方法也已在实践中成功使用。时间抖动可以是算法的,而不是真正随机的,其具有预编程为源控制器逻辑的激发定时抖动的固定重复模式。文献中已经描述了用于设计“最佳”抖动计划的几种好方法。在其他情况下,例如在可控震源(VibroseisTM)陆地勘测期间,仅通过允许每个源的操作员选择何时将其发射即可轻松实现抖动。这种方法依赖于不可预测的人类操作员的行为,这种行为足够“随机”,以避免不同源之间的不想要的相干性。在海洋勘测中,按位置激发而不是按时间激发可以引入足够的随机性。海洋中变化的洋流和移动的波将略微推动并阻碍采集船舶的运动,从而有效地将环境产生的随机抖动引入源启动时间。
取决于采集几何形式,源的能力以及平滑方法的选择、打破干扰事件之间的相干性的其他方法在实践中也可以很好地起作用。在一个实施例中,源启动时间都是周期性的,但是周期仔细选择成可以轻松地将由一个源生成的到达与由其他源生成的到达区分开。图15示出了使用第一源的启动时间进行梳理的通用接收器道集的示例。事件1701表示由第一源生成的到达。在此域中,事件1701采样良好,并且仅在一定水平范围内具有斜率。第二源具有略长的周期,使得由第二源生成的事件1702(但是根据第一源的时间梳理)都具有陡峭得多的斜率。尽管事件1701和1702都在它们重叠的相干性分析窗口内被良好采样(框1710示出了一个这样的可能的相干性窗口),但由于两个重叠源引起的事件可以通过它们的不同倾角容易地分开。通过将骤降滤波步骤添加到基于相干性的信号提取,可以通过其非物理陡峭的斜率识别并拒绝不期望的干扰事件,并且这可能足以使算法随后收敛到正确的结果,尽管所有源的周期都非常规则。
对于干扰源的周期的其他选择,事件(诸如1703)可能变得非常混叠以致在分析窗口(框1720)内它们有效地成为一种噪声,并且这将导致它们被基于相干性的信号提取所拒绝,即使没有任何附加的骤降滤波步骤。
如果干扰事件具有明显不同的特征(例如,图15中的事件1701和1703),则也可以通过分析不同域中的不同源来完成分离。在图15中,事件1701是脉冲的,但事件1703在时间上被抹去。在进行适当的滤波以使特征成形之后,在另一个分析窗口中,来自生成事件1701的源的事件可能在时间上被抹去,并且来自生成事件1703的源的事件可能会变成脉冲,从而允许使用适当的稀疏性约束来衰减一个事件或另一事件。
实际上,可以优选地组合确保干扰事件的不相干性的多种方法。例如,在一个实施例中,采集船舶将按位置激发而不是按时间激发,从而确保将某些自然随机性添加到源启动时间。然而,源船舶的目标速度也将被选择为不同,使得即使在没有自然时间抖动的情况下(例如,如果在勘测中海洋在某个点恰好完全平坦),源的彼此搏动方式使得一定时间内在分析窗口内仅一个源在显现上是相干的。
对于可能具有不同的标称重复间隔的不同类型的源,更一般的设计目标是设计勘测,使得没有任何两个不同的源会彼此“搏动”,即,对于不同源的任何组合,标称源重复间隔的小整数倍都不重合。船舶速度通常会在窄操作范围内变化,使得在按位置激发时未抖动的源时间间隔也会在某个范围内变化,并且通常需要考虑这种不确定性。例如,假设有按位置激发的气枪和按时间激发的低频振动源。对于激发点之间的标称间隔,气枪源重复间隔可以取决于船舶的速度而在11到12秒之间变化。通过勘测设计,低频源(按时间激发)应在100-120秒的范围内具有标称不抖动重复间隔,精确值是可以选择的设计参数。然后,一个或多个实施例可以通过选择109秒的重复间隔来确保低频源不能与气枪相干。这一增量对于11到12秒之间的任何值都不是气枪重复间隔的整数倍。数学上,9x11到12秒给出了99到108秒的范围,而10x11到12秒给出了110到120秒的范围。对于100到120秒的允许设计范围,一个或多个实施例可以选择108到110秒之间的值,以避免任何与气枪“搏动”的可能性。如果附近的另一地震勘测是按时间激发而不是按位置激发,则109秒(其为质数)也不是小于109秒的任何整数秒重复间隔的倍数。因此,通过选择109秒的重复间隔,一个或多个实施例可以最小化低频源与任何气枪之间的意外相干的机会。本领域普通技术人员将容易理解如何将这些原理应用于其他勘测设计。
前面的段落中描述的所有这些不同选项(用于外部信号分离算法和在其中重复使用的基于相干性的信号提取算法)可以组合成各种排列。显然,取决于源的数量和类型、其采集几何形式、代表结果的网格的选择、所考虑的频率范围、源的特征和间距和/或期望的应用,很多方法都是可行的。特别地,一个或多个实施例可以具有任何数量的不同类型的源,以及任何数量的每种类型的源。这些源可以以任何可能的组合方式进行组合或保持分离。一个或多个实施例可以将所有源组合到单个输出上、或者对于每个源具有一个输出、或者对于每种类型的源具有一个输出、或者在它们之间的任何组合、组合输出一些源而不是其他源等。
因此,在一些实施例中,本反演过程的应用提供了合理干净的接收器道集,该接收器道集可以用于成像、叠前分析(诸如AVO(振幅与偏移)分析)以及速度模型构建(例如通过全波形反演(FWI))等。
利用激发采集地震数据(其中,来自一次激发的记录信息在时间上与其他激发重叠)可能会显著减少激发地震勘测所需的时间(和成本)。这种方法还可以允许更紧密间隔的激发点间隔(例如在海洋勘测期间),这可以潜在地提供更好的地震图像,这将提高发现经济量的石油和/或天然气的机会。允许同时采集多种类型的源可以以与常规气枪数据相同的效率采集更宽带宽的数据。
为了提供采集系统的内容,图8示出了通常将使用本公开的一般环境。勘探人员设计地震勘探110以覆盖具有经济利益的区域。尽管通常会在现场略微(或实质上)修改理想的设计参数以适应进行勘测的实际情况,但通常会结合此步骤选择现场采集参数(例如,激发距、线距、折叠、源类型等)。
在具有潜在经济重要性的地下目标上在现场120中收集地震数据(即,地震迹线),并且通常随后将其发送到处理中心150,在处理中心将对这些迹线进行各种算法处理,以使其更适合用于勘探。在一些情况下,当数据仍在现场时可能会执行一定量的初始数据处理,并且鉴于现场工作人员可用的计算能力,这种处理变得越来越普遍和可行。如上所述,在现场120内,可能存在多于两个相同类型的重叠同时源,和/或可能存在两个或更多个不同类型的重叠同时源。如上所述,不同源的记录可能已组合成单个体。
在处理中心中,通常将各种准备过程130应用于地震迹线,以使其准备好供勘探人员使用。然后,将使经处理的迹线可用于本系统和方法,并且仅作为示例,可以将其存储在存储设备(诸如硬盘、磁带、固态驱动器、磁光盘、DVD盘或其他大容量存储装置)上。
本文公开的方法可以以计算机程序140的形式实现,该计算机程序已被加载到可编程计算机150上,在该计算机上,地震解释人员或处理器可对其进行访问。请注意,除了主机、服务器和工作站之外,适用于本公开的计算机150通常还包括超级计算机,并且更一般地,其包括提供并行和大规模并行计算的计算机或计算机网络,其中,计算负荷分配在两个或更多个处理器之间。如在图8中也示出的,在一些实施例中,某种类型的关注模型160的数字化区域可以由用户指定并且作为输入提供给处理计算机程序。在3-D地震剖面的情况下,关注区域模型160通常将包括关于地下目标的横向范围和厚度(其可以是可变的并且可以在时间、深度、频率等方面进行测量)的细节。在程序执行期间产生、选择、数字化、存储和随后读取这些区域的确切方式对于本系统和方法而言并不重要,并且本领域技术人员将认识到,可以以多种方式来进行。
体现本过程的程序140可以借助于例如软盘、磁盘、磁带、磁光盘、光盘、CD-ROM、DVD盘、RAM卡,闪存RAM、RAM卡、PROM芯片或通过网络(例如,有线或无线网络等)加载被传输到执行该程序的计算机。在典型的地震处理环境中,本公开的方法将成为更大的软件模块包的一部分,其设计成执行图9中列出的许多处理步骤。在通过本方法进行处理之后,通常会将所得的迹线分类为道集、堆叠并以高分辨率彩色计算机监视器170或以硬拷贝形式显示为打印的地震剖面或地图180。然后,地震解释人员将使用显示的图像来帮助他或她识别有利于碳氢化合物的生成、迁移或积聚的地下特征。
如先前所指出的,本公开优选地将成为图9中总体描述的类型的常规地震处理序列的一部分并且结合到其中。本领域普通技术人员将认识到,图9所示的处理步骤仅是广泛地表示可能应用于此类数据的处理的类型以及处理步骤的选择和顺序,并且所涉及的特定算法可能取决于独立的地震处理器、信号源(炸药、振动器、气枪、低频发生器等)、数据的勘测位置(陆地、海洋等)、处理数据的公司等而显著变化。
作为第一步骤,并且总体上如图9所示,在地球地下的特定体积上进行2-D或3-D地震勘测(步骤210)。现场收集的数据由未堆叠(即,未汇总)的地震迹线组成,这些地震迹线包含代表位于勘测下方的地球体积的数字信息。获得此类数据并将其处理成适合于地震处理器和解释人员使用的形式的方法对于本领域普通技术人员而言是众所周知的。请注意,出于本公开的目的,地震勘测将是混合源勘测,其中,来自较晚震源激活的反射可能会干扰来自较早震源的反射(或在时间上与其重合)。在根据本公开已分离激发或震源之后,由该操作产生的未堆叠的地震迹线可以如同地震迹线的任何其他集合一样使用。因此,本系统和方法允许从被激活以产生重叠信号的源获得多条地震迹线,其中,得到的分离地震数据集与使用完全分离的源激活和地震数据采集(例如,非重叠震源和未叠加的地震迹线)获得的地震数据集相同或基本相同。
地震勘测的目的是在一些潜在经济重要性的地下目标上采集空间相关的地震迹线的集合。仅出于说明的目的,适用于通过本文公开的方法进行分析的数据可以包括未堆叠的2-D地震线、从3-D地震勘测中提取的未堆叠的2-D地震线、或者优选地是3-D地震勘测的未堆叠的3-D部分。本文公开的系统和方法当应用于相对于某些地下地质特征具有潜在空间关系的一组堆叠的地震迹线时是最有效的。再次仅出于说明的目的,下面的讨论将以3-D勘测中包含的迹线(视讨论的需要而堆叠或未堆叠)进行,尽管可以设想使用与空间相关的地震迹线的任何组合组。
在采集地震数据(步骤210)之后,通常将它们带到处理中心或在现场进行处理,在现场对它们应用一些初始或准备处理步骤。如图9所示,共同的早期步骤215设计成编辑输入的地震数据,以为后续处理(例如,多路分配、增益恢复、小波成形、不良迹线去除等)做准备。这之后可以指定勘测的几何形式(步骤220)并将激发/接收器编号和地表位置存储为每个地震迹线头的一部分。一旦已指定几何形式,通常就会执行速度分析并应用NMO(正常时差校正)校正,以在时间上校正每条迹线,以解决由偏移引起的信号到达时间延迟。在一些实施例中,本公开可以结合步骤215(即,结合或代替小波成形/相关步骤),尽管可以肯定地将其在该通用处理方案内的其他地方利用。
在初始的叠前处理完成之后,习惯上在产生堆叠的(或求和的)数据体之前在未堆叠的地震迹线上调节地震信号(步骤230)。在图9中,步骤230包含典型的“信号处理/调节/成像”处理序列,但本领域技术人员将认识到,可以使用许多替代处理来代替图中列出的处理。无论如何,从勘探人员的角度来看,最终目标是生产堆叠的地震体,或者在2-D数据的情况下,产生堆积的地震线以用于勘探地球地下内的碳氢化合物。
如在图9中进一步提出的,堆叠的地震体内的任何数字样本都由(X、Y、时间)三元组唯一标识,其中,X坐标和Y坐标表示地球表面上的某个位置,并且时间坐标测量地震迹线内的记录的到达时间(步骤240)。出于特定性的目的,将假定X方向对应于“直线”方向,并且Y测量值对应于“交叉线”方向,这是术语“直线”和“交叉线”在本领域中的通常理解。尽管时间是优选的并且是最常见的竖直轴单位,但本领域技术人员可以理解,当然也可以包括其他单位(例如深度或频率)。另外,本领域技术人员众所周知,可以使用标准数学转换技术将地震迹线从一个轴单位(例如,时间)转换为另一轴单位(例如,深度)。
勘探者可以对所得的堆叠体积进行初始解释250,其中,他或她可以定位并识别主反射层和断层,无论它们出现在数据集中的何处。这之后可以是堆叠的或未堆叠的地震数据的附加数据增强260和/或源于此的属性生成(步骤270)。在许多情况下,勘探人员将根据从数据增强和属性生成步骤获得的附加信息来重新访问他或她的原始解释(步骤280)。作为最后步骤,勘探人员通常将使用从地震数据中收集的信息以及其他类型的数据(磁勘测、重力勘测、LANDSAT数据、区域地质研究、测井曲线、钻井岩心等)来定位有助于碳氢化合物的生成、积聚或迁移的地下结构或地层特征(即,前景生成290)。
转向本文公开的系统和方法,一种方法可以包括分离在单次记录会话期间已激活的两个或更多个震源,其中,附近的激发之间的相似性用于约束反演过程并产生多个分离的地震数据集。
参考图10和图11,可以通过首先在勘探关注的目标上以2-D配置布置多个接收器310来收集混合源勘测。在一些实施例中,勘测中可能仅存在很少的接收器310或多达几千个接收器310。接收器310可以通过电缆连接到中央记录单元,它们可以使用无线传输到中央记录单元,或者每个接收器可以包含一定量的内部数据存储器,在该内部数据存储器中记录由此接收到的地震信号。本领域普通技术人员将非常熟悉这些类型的接收器变型。
在一些实施例中,将在延长的时间段内连续记录接收器310。在一些变型中,可能会在几个小时、半天、一整天、几天等时间内记录接收器。唯一的要求是,记录必须捕获至少两个源激励。这与通常的地震勘测相反,其中,在激活源之后的仅几秒钟记录接收器。
在记录接收器的时间段期间,将在勘测区域300内的不同位置处激活多个震源320。在一些实施例中,将使用两个或更多个源,其中,这些源可以具有不同的源特征和/或频率范围,包括本文所述的任一个。在海洋勘测的情况下,可能会使用不同类型的源,但这显然要由勘测设计者自行决定。
两个或更多个震源320可以包括任意数量的离散或连续的源。在海洋环境中,震源320可以包括一个或多个气枪、电火花器、振动器等。在一些实施例中,在阵列中可以包括任何数量、体积和类型的震源。作为示例,阵列可以包括一个或多个大体积气枪、一个或多个中体积气枪和/或一个或多个小体积气枪。震源可以以各种阵列布置。例如,震源的集合可以被定位成彼此接近并且旨在被激活为同一地震激发的一部分。在海洋环境中,这可能是单个震源阵列或由一个或多个船拖曳的多个震源阵列。子阵列(其可能由一个或多个源组成)将被理解为源的子集,分配给每个子阵列的一个或多个源旨在同时被激活。
在陆地上,两个或更多个源320可以包括振动器、充电器或嗡鸣震源。例如,两个或更多个源320可以包括陆地振动器(例如,10个左右)、Mini-SosieTM勘测器、落重勘测器等。一种类型的地震勘测系统使用振动器或振动器组来提供声能量源(以下称为“可控震源”)。可控震源可以在预定的振动器点(VP)处生成(“振动”)声能波。VP可以被勘测人员标记为标杆。可替代地,全球定位卫星(GPS)设备可以用于定位预定VP。
其他源可以包括低频源,诸如在海洋勘测中使用的低频源,包括源。低频源可以各自以单一频率(“单色”低频源)操作或在两个或更多个离散频率之间循环(“步进频率”低频源),或者可以扫掠设计成扩大由宽带源产生的频率范围的低频窄带范围(“窄带”低频源)。这些源可以操作成产生恒定振幅的波,或者波的振幅可以变化(上下渐缩)。在上下文,“低频”是指小于约6-8Hz的频率。一些实施例将低于约4Hz,其中一些实施例可以采用低至约2Hz或约1.5Hz或约0.5Hz的频率。
在一些实施例中,两个或更多个震源320可以具有不同的特征。在可控震源操作中,可控震源的一个或多个振动器通常生成在预定时间段内改变频率的振动模式。该振动模式被称为振动扫掠。典型的可控震源扫掠可以是从大约5Hz到100Hz的线性频率扫掠,并且可以具有5到30秒量级的持续时间。气枪可以生成高频声波。低频源可以在更长的时间段内生成低频信号,并且在一些实施例中,低频源可以连续地操作。
在一些实施例中,源激活将在时间上分离开随机的时间段。此外,可以在足够近的时间内激活源,以使激发之间存在一些重叠或混合。当针对每个源的零时刻(即,激活时刻)校正地震记录时,与该源相关的反射将趋于相干,但来自干扰源的能量将趋于不相干(例如,反射不对齐),因为激发之间的延迟是随机的。也就是说,例如,在每个源320是可控震源单元的勘测的情况下,可以预料在一些情况下源激活可能间隔几秒钟。请注意,图10并非旨在提出每个源320将被同时激活,而是被指示为指出每个源位于勘测区域300内的不同位置。在一些勘测期间,可以使用十个或更多个不同的源。作为示例,将产生适用于与本公开一起使用的数据的勘探方法,请关注将Howe作为其唯一的发明人的WO 2008/025986(PCT/GB2007/003280)“地震勘测方法”,该申请的全部内容通过引用结合于此。Howe讨论了振动器激活的交错激活的使用,其中,返回的地下反射存在一些重叠。
尽管震源320可以包括离散或半离散的特征,但一个或多个震源可以基于连续的发射模式或作为连续的发射源而连续地操作。在一些实施例中,该方法可以包括连续激发,其也可以被称为“连续模式激发”或“连续激发模式”。具体地,与先激发一个发射模式然后再激发一个不同的发射模式相比,没有时间延迟,并且使用一个连续发射模式,即对于气枪阵列的情况是连续爆米花式发射。这样,在一些实施例中,在两个发射模式之间可能存在几秒到数秒的间隙,但没有必要。对于低频源,低频源可以在给定的时间段内连续操作,以连续方式产生低频能量。
如上所述,不同类型的源可以具有不同的特性。具有不同特征和/或频率范围的不同的源可以允许源特征、相关相干性标准和采集过程(例如2-D采集、3-D采集)方面有差异,以在所采集的数据中提供更好的分离。示例性源组合可以包括使用气枪与振动器、气枪与电火花器、气枪与低频源(例如,Wolfspar源等),或者三种或更多种源类型的组合。
图11总体上提出了来自混合源勘测的数据可能看起来是什么样。每个接收器310将引起地震迹线(例如,迹线405),该地震迹线的长度可能为几十分钟或几小时(或几天等)。在该图中,迹线405示意性地示出为包含来自四个不同源激励的记录信号。虽然所示信号被示出为相似,但记录信号可以具有与源匹配的特征。当使用具有不同源特征的多个源时,信号可以具有对应不同的特征。与每个接收器310相关联的是地球表面上的位置。当从每个接收器310记录的信号被适当地布置和显示时,在一些实施例中,将产生3-D体积,其中每个接收器310与“X”和“Y”位置相关联,以包括基于纬度和经度等的位置。
优选地,在混合源勘测期间,将标注并记录每个源320被激活的时间,那些源可能位于接收器场的内部或外部。在图11中,T1和T2表示激活两个源的已知时间(从任意零时开始测量),其中,参数“N”以一般方式表示源激活之后的时间长度(和/或样品数量),在此期间可以感测来自该源的地下反射。在该特定示例中并且如将在下面更详细地解释的,两个源激活可以来自同一源(例如,两个可控震源扫掠),因此它们在时间上不会重叠。然而,在其他实施例中,源激活可以来自不同的源。在这种布置中,干扰将很可能来自其他震源,这些震源在所示的时间窗口期间被激活,或者在同一时间间隔期间具有地下反射到达。也就是说,如果来自同一源的两个或更多个源激活在时间上重叠,则将以相同的方式应用本过程。
如本文所述,多个分离的地震数据集的生成可以产生对于各种后续处理技术有用的地震数据。在一些实施例中,所得的分离的地震数据集可以包括不同的地震迹线数据。例如,第一组地震数据(例如,m1)可以包括对于传统处理和成像有用的标准分离的地震迹线数据。可替代地,或者作为第二分离的地震数据集(例如,m1、m2、…mn等),所得的分离的地震数据集可以用于其他形式的处理。应当理解,本文公开的反演过程可以允许基于反演过程的迭代应用来对各个分离的地震数据集的一些要素进行内插。这可以允许基于两个源激励之间的重叠来产生所得的分离的地震数据集的一些部分,这可以产生更完整的分离的数据集。
在一些实施例中,一个或多个分离的地震数据集可以用于全波形反演(“FWI”)分析的目的。FWI是一种基于时间或频率的地震处理技术,其可以提供用于对地下结构成像的更通用的范例:代替仅依赖于地球中的地质不连续性所产生的反射波或散射波,FWI还利用向下传播、然后转为水平方向且最后向上转为上升地震波(可能在距其起点很远的距离处)的透射波/折射波。地球中的地下结构会通过它们的存在来推进、延迟和/或扭曲这些透射/折射的潜波,而FWI会从这些残留在数据中的特征印记来求解它们的位置和特性。请注意,在没有包含透射波/折射波的低频宽偏移量数据的情况下,全波形反演通常会失败并且可能无法解析地下结构(即,可能产生无用的结果)。不幸的是,传统震源不提供通常期望的低频波,并且更具体地,不提供当执行全波形反演时可以使用的低频数据。因此,分离的地震数据集的分离和生成可以用于允许期望的地震处理。尽管FWI是该方法的自然应用,但不涉及成像或速度确定的分离数据的其他用途也是可能的。
已经描述了不同类型的源、一般的反演模型以及期望的输出地震数据的类型,现在描述转向对实现模型有用的过程。图12示出了一种逻辑处理流程,该逻辑处理流程将适用于当混合勘测的源是一个或多个气枪和一个或多个地震振动器(例如,可控震源勘测)时使用。本领域普通技术人员将容易理解如何将图12的处理流程概括为3种或更多种类型的源。该过程可以被认为是在3个嵌套层上进行的,其中,最外面的层包括框1400、1403、1499、1491、1492、1493、1401、1402、1480和1485。
步骤1400是初始化。产生了三个数据缓冲区,一个用于保存残差,一个用于保存去混的气枪数据(信号1),且一个用于保存去混的可控震源数据(信号2)。残差最初只是记录的地震数据的副本,并且两个去混的信号缓冲区最初设定成包含所有零。
步骤1403是检查是否完成反演。这可能是因为残差(实际的记录数据与预测的记录数据之间的差)足够小或者是因为达到最大迭代次数而发生的。如果满足该条件,则在步骤1499输出去混的数据(由两个估算的信号迹线组成)。否则,新的残差馈送到框1401和1402中,分别对气枪和可控震源进行去混源估算的一次迭代。这些框中的每一个分别类似于Abma的美国专利No.8,295,124B2中描述的方法,特别是Abma的图8中的步骤815至875中所描述的步骤。美国专利No.8,295,124B2的主题的全部内容结合到本文中。1401和1402中的每一个输出记录数据的更新估算值,其是在仅激活对应的源类型(1401的气枪以及1402的可控震源)并且该源类型的数据是在传统的非混合采集中采集的情况下应该记录的记录数据。然后在框1480中(气枪数据)和框1485中(可控震源数据)将这些取负数。
然后,在框1492中将取负数的单一源类型的预测与记录数据(框1491)相加,从而生成更新的残差。新更新的残差存储在其数据缓冲区中(框1493),然后行进到框1403。重复该过程直到终止。请注意,如果预测是完美的,则未混合的单一源类型的预测将求和为实际的记录数据,并且框1492的输出(新更新的残差)将相同地为零。实际上,在过程结束时,残差将包含不相干的噪声,并因此,去混算法将具有对数据进行去噪的期望副作用。至少从理论上讲,混合采集应产生比传统的非混合采集更好的结果,因为较短的采集时间意味着对于相同数量的信号存在较小量的噪声。
中间层构成框1401和1402的内部。首先,对残差进行梳理(1410,使用气枪时间进行梳理,以及1415,使用可控震源时间进行梳理)。然后访问包含当前估算的去混合数据的缓冲器(用于气枪的框1420,以及用于可控震源的框1425),并且在用于气枪的框1430和用于可控震源的框1435中,将每个缓冲器与对应的梳理残差相加。可控震源处理序列包含使用特征反卷积、特征相关性、匹配滤波等对源特征进行正则化的额外步骤(框1416)。工作流(诸如Abma在US 8,295,124 B2中描述的工作流)将立即进行使数据平滑以提取相干信号的步骤(用于气枪的框1440,以及用于可控震源的框1445)。当分离不同类型的源时,可能必须平衡其振幅。否则,一种源类型可能相对于另一种源类型占主导,并且该方法可能无法收敛。尝试产生不存在的相干信号也是没有用的,例如,对于在该频带中几乎不产生能量的低频源,试图找到4Hz以上的相干信号。尝试这样做只会加剧噪声,再次导致该方法无法收敛到可用结果。因此,修改后的方法包括在Abma中没有出现的另外的时间/频率加权步骤,用于气枪的框1432和用于可控震源的框1437。这样做的功能是平衡不同类型源的相对强度,并衰减对应源未产生的频率。然后,该方法如前所述进行相干信号提取(用于气枪的步骤1440;用于可控震源的步骤1445)。可选地,可以在步骤1442和1447中应用更多的时间/频率加权,以分别在1432和1437中部分或全部去除所应用的加权。如果将加权应用于抑制噪声,则在此步骤将不会将其去除。结果是对估算的去混信号的更新,在步骤1450和1455中将该更新添加到先前的估算中,以分别产生用于气枪和可控震源的更新的去混信号估算。在步骤1460和1465中,将更新的去混信号估算存储在它们相应的数据缓冲器中。然后,在步骤1470和1475中,分别对于气枪和可控震源分解去混迹线。可控震源流包含在框1466处的去除在框1416中应用的源特征的附加步骤。
最内层出现在框1440和1445内,相干信号提取。图13的框1500包含一种标准方法,如Abma中针对单一类型的源的情况所描述的那样,并因此,框1500可以代表框1440或1445的内容。在框1510中,将数据组织成适当的道集,在该道集中,期望信号应该是相干的。然后,在框1520中对其进行傅立叶变换,使得期望信号应该在该域中变得“稀疏”。在步骤1530,将变换后的空间中的较小值归零,以使信号保持不变,同时衰减噪声。然后在步骤1540,将数据返回到原始域。
如在Abma中一样,通常将数据分解成重叠的N维子多维数据集,并在重叠区域中适当地渐缩,并且将在每个子多维数据集中执行此操作,然后将结果合并在一起以重构原始数据的去噪版本。
在图14的框1600中示出了一种在对不同类型的数据进行去混时可能特别有用的替代方法。它可以代替方框1500使用,或者可以先使用它,然后再使用1500中的方法。在这种方法中,被污染的迹线被标记为“死亡”或“缺失”,并且使用通过内插法填充缺失数据的标准方法来替换被污染的迹线。框1600中所示的方法是“POCS内插法”(凸集上的投影)。被污染的迹线或缺失迹线将预先被识别,并在框1650中检索此信息。
与在框1500中一样,首先将数据组织成适当的道集(框1610)。然后,将数据进行傅立叶变换(框1620)以变得稀疏,将较小的值归零或减小(框1630),并且将数据变换回原始域(框1640)。不同之处在于,在步骤1660,不需要内插的迹线将替换为其原始值。在步骤1670,将该结果与先前的结果进行比较,并且如果它已经停止改变(或者已经达到最大迭代计数),则该过程退出。否则,将包含新内插的“缺失”迹线的数据发送回框1620以用于另一次迭代。
图12至图14展示了一组特定的优选实施例。本领域普通技术人员应该容易地看到如何将该方法推广到其他情况,以及如何将说明书中较早描述的许多可能的替代方案结合到基本工作流程中。
还应当指出,Abma展示了两种方法:构造方法和解构方法。同样的可能性在此适用。以上公开描述将所述“构造方法”推广至两种或更多种混合源类型的数据集。本领域普通技术人员应该能够容易地看到如何类似地将在此描述的方法推广至使用“解构方法”。
应该注意,当要对特定类型的迹线(例如,接收器道集)执行操作时,通常不必将这些地震迹线汇集到存储器中(例如,经由分类)以便对其应用多迹线处理。因此,在以上公开内容和权利要求书中,当说组装或访问道集(例如,激发道集、接收器道集等)以用于进一步处理时,应从最广的意义上解释这些词语以覆盖现场或联机处理包括该道集的迹线的情况。因此,可能不必要求数据的分类或其他布置。
此外,在一些实施例中,本系统和过程将适于与VSP或类似的井下勘测一起使用。通过解释的方式,本领域普通技术人员将理解,就钻机停机时间而言,VSP采集可能是非常昂贵的。利用重叠源更快激发VSP可以用于降低此类勘测的成本。因此,当在本文中使用短语“混合地震勘测”时,应将该短语广义地解释为既包括陆地和海洋的2D和3D勘测,也包括VSP、井间勘测等。
此外,在先前的讨论中,已经在对常规地震数据执行的操作方面进行讨论。但是,本领域技术人员应当理解,本文描述的公开内容可以有利地应用于其他主题领域,并且可以用于定位除碳氢化合物以外的其他地下矿物。仅作为示例,本文描述的相同方法可能潜在地用于处理和/或分析多组分地震数据、剪切波数据、转换模式数据、井间勘测数据、VSP数据、全波形声波测井、受控源或其他电磁数据(CSEM、t-CSEM等)或者前述任一项的基于模型的数字模拟。另外,此后本文所要求保护的方法可以应用于这些相同数据迹线的数学变换版本,包括例如:滤波后的数据迹线、迁移的数据迹线、频域傅立叶变换的数据迹线、通过离散正交变换的变换形式、瞬时相位数据迹线、瞬时频率数据迹线、正交迹线、分析迹线等。简言之,本文公开的过程可以潜在地应用于多种类型的地球物理时间序列,但其优选地应用于空间相关的时间序列的集合。
已经描述了各种系统和方法,某些方面可以包括但不限于:
在第一方面中,一种在地下区域上方进行地震勘探的方法,该地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,该方法包括访问混合震源勘测的至少一部分,其中,在混合震源勘测中包含至少两个干扰震源激励,其中,震源激励由一个或多个震源类型产生。震源类型可以具有不同的特征或频率特性;使用反演分离来分离至少两个干扰震源激励;基于分离产生一个或多个源道集;并且使用一个或多个源道集来勘探所述地下区域内的碳氢化合物。
第二方面可以包括第一方面的方法,其中,分离至少两个干扰震源激励包括:为至少两个震源类型中的第一震源类型选择第一相干性约束;为至少两个震源类型中的第二震源类型选择第二相干性约束;以及在反演分离中将第一相干性约束和第二相干性约束应用于混合震源勘测的一部分,其中,基于应用第一相干性约束和第二相干性约束来产生一个或多个源道集。
第三方面可以包括第二方面的方法,其中,第一相干性约束和第二相干性约束不同。
第四方面可以包括第一方面至第三方面中任一个的方法,其中,分离至少两个干扰震源激励包括:确定至少两个干扰源激励中的每个干扰震源激励的激活时刻;以及使用对应于每个震源激励的激活时刻将至少两个干扰震源激励变为零时刻,其中,基于将至少两个干扰震源激励变为零时刻来产生一个或多个源道集。
第五方面可以包括第一方面至第四方面中任一个的方法,其中,使用反演分离来分离至少两个干扰震源激励包括对具有以下形式的方程式
d=Γ1m1+Γimi+…+Γnmn,
求解矩阵m1、mi…mn,以产生一个或多个源道集,其中,n可以大于或等于1,其中,m1可以是一个或多个源道集中的第一源道集,mi是一个或多个源道集中的另一源道集;d是所记录地震数据的矩阵表示,Γ1是定义一个或多个震源类型中的第一源类型的激励时间的矩阵,以及Γi是定义一个或多个震源类型中的另一源类型的激励时间的矩阵。
第六方面可以包括第一方面至第五方面中任一个的方法,其中,多个震源道分别具有代表不同频率范围的地震数据。
第七方面可以包括第一方面至第六方面中任一个的方法,还包括:对至少一个源道集执行全波形反演分析。
第八方面可以包括第一方面至第七方面中任一个的方法,其中,至少两个干扰震源激励中的每一个在时间上以随机的时间段分离。
第九方面可以包括第一方面至第八方面中任一个的方法,其中,至少两个震源类型是不同的,并且包括振动源、气枪源、电火花器源和低频源中的至少两个的组合。
第十方面可以包括第一方面至第九方面中任一个的方法,其中,至少两个干扰震源激励中的至少一个震源已经改变其震源激励的符号或相位。
在第十一方面,一种地震勘探的方法包括:在地下区域上方开启多个震源激励,该地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,其中,多个震源激励由一个或多个震源类型产生。震源类型可以具有不同的特征或频率特性;以及产生混合震源勘测,该混合震源勘测包括从由多个震源激励生成的反射获得的数据,其中,在混合震源勘测中包含至少两个干扰震源激励,其中,使用反演分离来分离至少两个干扰震源激励,并且其中,基于至少两个干扰震源激励的分离来产生一个或多个震源道。
第十二方面可以包括第十一方面的方法,其中,如下使用反演分离来分离至少两个干扰震源激励:对具有以下形式的方程式
d=Γ1m1+Γi mi+…+Γn mn,
求解矩阵m1、mi…mn,以产生一个或多个源道集,其中,n可以大于或等于1,其中,m1可以是一个或多个源道集中的第一源道集,mi可以是一个或多个源道集中的另一源道集;d是所记录地震数据的矩阵表示,Γ1是定义一个或多个震源类型中的第一源类型的激励时间的矩阵,以及Γ2是定义一个或多个震源类型中的另一源类型的激励时间的矩阵。
第十三方面可以包括第十一方面或第十二方面的方法,其中,多个震源道集分别具有代表不同频率范围的地震数据。
第十四方面可以包括第十一方面至第十三方面中任一个的方法,其中,至少两个干扰震源激励中的每一个在时间上以随机的时间段分离。
在第十五方面中,一种在地下区域上方进行地震勘探的方法,该地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,该方法包括:访问混合震源勘测的至少一部分,其中,在混合震源勘测中包含至少两个干扰震源激励,其中,震源激励由一个或多个震源类型产生。震源类型可以具有不同的特征或频率特性,其中,至少一个震源类型是低频源;使用反演分离来分离至少两个干扰震源激励;基于分离产生一个或多个源道集,其中,至少一个源道集包含低频数据或一些缺失频率;以及使用一个或多个源道集来勘探所述地下区域内的碳氢化合物。
第十六方面可以包括第十五方面的方法,其中,分离至少两个干扰震源激励包括:为至少两个震源类型中的第一震源类型选择第一相干性约束;为至少两个震源类型中的第二震源类型选择第二相干性约束;以及在反演分离中将第一相干性约束和第二相干性约束应用于混合震源勘测的一部分,其中,基于应用第一相干性约束和第二相干性约束来产生一个或多个源道集。
第十七方面可以包括第十五方面或第十六方面的方法,其中,使用反演分离来分离至少两个干扰震源激励包括对具有以下形式的方程式:
d=Γ1m1+Γi mi+…+Γn mn,
求解矩阵m1、mi…mn,以产生一个或多个源道集,其中,n可以大于或等于1,其中,m1是一个或多个源道集中的第一源道集,mi是一个或多个源道集中的另一源道集;d是所记录地震数据的矩阵表示,Γ1是定义一个或多个震源类型中的第一源类型的激励时间的矩阵,以及Γi是定义一个或多个震源类型中的另一源类型的激励时间的矩阵。
在第十八方面,一种在地下区域上方进行地震勘探的方法,该地下勘探包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,该方法包括:访问混合震源勘测的至少一部分,其中,在混合震源勘测中包含至少两个干扰震源激励,其中,震源激励由一个或多个震源类型产生。震源类型可以具有不同的特征或频率特性;并且使用一个或多个生成的源道集来勘探所述地下区域内的碳氢化合物。
第十九方面可以包括第十八方面的方法,其中,使用多个生成的源道集包括对具有以下形式的方程式
d=Γ1m1+Γi mi+…+Γn mn,
求解矩阵m1、mi…mn,以产生一个或多个源道集,其中,n可以大于或等于1,其中,m1是一个或多个源道集中的第一源道集,mi是一个或多个源道集中的另一源道集;d是所记录地震数据的矩阵表示,Γ1是定义一个或多个震源类型中的第一源类型的激励时间的矩阵,以及Γi是定义一个或多个震源类型中的另一源类型的激励时间的矩阵。
第二十方面可以包括第十八方面或第十九方面的方法,其中,至少两个干扰震源激励中的至少一个震源已经改变其震源激励的符号或相位。
以上公开的特定实施例仅是说明性的,因为可以以受益于本文的教导的本领域技术人员显而易见的不同但等效的方式来修改和实践本公开。此外,除了在权利要求中描述的以外,针对本文中所示的构造或设计的细节没有任何限制。因此,显而易见的是,以上公开的特定说明性实施例可以被改变或修改,并且这样的变型被认为在本公开的范围和精神内。通过组合、集成和/或省略实施例的特征而产生的替代实施例也在本公开的范围内。尽管以“具有”、“包含”,“含有”或“包括”各种成分或步骤的广义术语描述组合物和方法,但该组合物和方法也可以“基本上由各种成分和步骤组成”或“由各种成分和步骤组成”。相对于权利要求的任何要素使用术语“可选地”意味着该要素是必需的,或者可替代地,该要素不是必需的,这两种替代方案都在权利要求的范围内。
以上公开的数值和范围可以改变一些量。每当公开具有下限和上限的数值范围时,具体公开了落入该范围内的任何数值和任何包括的范围。特别地,本文公开的每个数值范围(形式为“从约a到约b”,或等效地“从大约a到b”,或等效地“从大约a-b”)应理解为阐明在更广泛的数值范围内所涵盖的每个数值和范围。而且,除非专利权人另外明确和清楚地定义,权利要求中的术语具有其通俗易懂的普通含义。而且,权利要求中使用的不定冠词“一”或“一个”在本文中定义为表示其引入的要素中的一个或多个。如果本说明书和一个或多个专利或其他文献中的单词或术语的使用存在任何冲突,则应采用与本说明书一致的定义。
一旦充分理解了上述公开,许多其他修改、等效形式和替代方案对于本领域技术人员将变得显而易见。旨在将权利要求解释为在适用的情况下包含此类修改、等效形式和替代方案。因此,保护范围不限于上述说明,而仅由权利要求限定,该范围包括权利要求的主题的等效形式。
Claims (20)
1.一种在地下区域上方进行地震勘探的方法,所述地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,所述方法包括:
访问混合震源勘测的至少一部分,其中,在所述混合震源勘测中包含至少两个干扰震源激励,其中,所述震源激励由具有不同特征和不同频率特性的至少两个震源产生;
基于所述至少两个震源的不同特征和不同频率特性使用反演分离来分离所述至少两个干扰震源激励;
基于所述分离产生多个分离的源道集;以及
使用所述多个分离的源道集来勘探所述地下区域内的碳氢化合物。
2.根据权利要求1所述的方法,其中,分离所述至少两个干扰震源激励包括:
为所述至少两个震源中的第一震源选择第一相干性约束;
为所述至少两个震源中的第二震源选择第二相干性约束;以及
在所述反演分离中将所述第一相干性约束和所述第二相干性约束应用于所述混合震源勘测的一部分,其中,基于应用所述第一相干性约束和所述第二相干性约束来产生所述多个源道集。
3.根据权利要求2所述的方法,其中,所述第一相干性约束和所述第二相干性约束不同。
4.根据权利要求1所述的方法,其中,分离所述至少两个干扰震源激励包括:
确定所述至少两个干扰源激励中的每个干扰震源激励的激活时刻;以及
使用对应于每个震源激励的所述激活时刻将所述至少两个干扰震源激励改变为零时刻,其中,基于将所述至少两个干扰震源激励改变为零时刻来产生所述多个源道集。
5.根据权利要求1所述的方法,其中,使用反演分离来分离所述至少两个干扰震源激励包括对以下形式的方程式:
d=Γ1m1+Γ2m2,
求解矩阵m1和m2以产生所述多个源道集,其中
m1是所述多个源道集中的第一源道集,
m2是所述多个源道集中的第二源道集;
d是所记录地震数据的矩阵表示,
Γ1是定义所述至少两个震源中的第一源的激励时间的矩阵,并且Γ2是定义所述至少两个震源中的第二源的激励时间的矩阵。
6.根据权利要求1所述的方法,其中,所述多个源道集各自具有代表不同频率范围的地震数据。
7.根据权利要求1所述的方法,还包括:
对所述多个源道集中的至少一个执行全波形反演分析。
8.根据权利要求1所述的方法,其中,所述至少两个干扰震源激励各自在时间上以随机的时间段分开。
9.根据权利要求1所述的方法,其中,所述至少两个震源不同并且包括以下至少两者的组合:振动源、气枪源、电火花器源和低频源。
10.根据权利要求1所述的方法,其中,所述至少两个干扰震源激励中的至少一个震源已经改变其震源激励的符号或相位。
11.一种地震勘探的方法,包括:
在地下区域上方开启多个震源激励,所述地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,其中,所述多个震源激励由具有不同特征和不同频率特性的至少两个震源产生;以及
产生混合震源勘测,所述混合震源勘测包括从由所述多个震源激励生成的反射获得的数据,其中,在所述混合震源勘测中包含至少两个干扰震源激励,
其中,基于所述至少两个震源的不同特征和不同频率特性使用反演分离来分离所述至少两个干扰震源激励,并且
其中,基于所述至少两个干扰震源激励的分离来产生多个源道集。
12.根据权利要求11所述的方法,其中,如下使用反演分离来分离所述至少两个干扰震源激励:对具有以下形式的方程式
d=Γ1m1+Γ2m2,
求解矩阵m1和m2以产生所述多个源道集,其中
m1是所述多个源道集中的第一源道集,
m2是所述多个源道集中的第二源道集;
d是所记录地震数据的矩阵表示,
Γ1是定义所述至少两个震源中的第一源的激励时间的矩阵,并且Γ2是定义所述至少两个震源中的第二源的激励时间的矩阵。
13.根据权利要求11所述的方法,其中,所述多个源道集各自具有代表不同频率范围的地震数据。
14.根据权利要求11所述的方法,其中,所述至少两个干扰震源激励各自在时间上以随机的时间段分开。
15.一种在地下区域上方进行地震勘探的方法,所述地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,所述方法包括:
访问混合震源勘测的至少一部分,其中,在所述混合震源勘测中包含至少两个干扰震源激励,其中,所述震源激励至少由具有不同特征和不同频率特性的第一震源和第二震源产生,其中,所述第一震源或所述第二震源中的至少一者是低频源;
基于所述第一震源和所述第二震源的不同特征和不同频率特性使用反演分离来分离所述至少两个干扰震源激励;
基于所述分离来产生多个分离源道集,其中,所述多个分离源道集中的至少一个包含低频数据或一些缺失频率;以及
使用所述多个分离源道集来勘探所述地下区域内的碳氢化合物。
16.根据权利要求15所述的方法,其中,分离所述至少两个干扰震源激励包括:
为所述至少两个震源中的第一震源选择第一相干性约束;
为所述至少两个震源中的第二震源选择第二相干性约束;以及
在所述反演分离中将所述第一相干性约束和所述第二相干性约束应用于所述混合震源勘测的一部分,其中,基于应用所述第一相干性约束和所述第二相干性约束来产生所述多个源道集。
17.根据权利要求15所述的方法,其中,使用反演分离来分离所述至少两个干扰震源激励包括对具有以下形式的方程式:
d=Γ1m1+Γ2m2,
求解矩阵m1和m2以产生所述多个源道集,其中
m1是所述多个源道集中的第一源道集,
m2是所述多个源道集中的第二源道集;
d是所记录地震数据的矩阵表示,
Γ1是定义所述至少两个震源中的第一源的激励时间的矩阵,并且Γ2是定义所述至少两个震源中的第二源的激励时间的矩阵。
18.一种在地下区域上方进行地震勘探的方法,所述地下区域包含有助于碳氢化合物的存在、迁移或积聚的结构特征或地层特征,所述方法包括:
访问混合震源勘测的至少一部分,其中,在所述混合震源勘测中包含至少两个干扰震源激励,其中,所述震源激励由具有不同特征和不同频率特性的至少两个震源产生;
基于所述至少两个震源的不同特征和不同频率特性使用反演分离来分离所述至少两个干扰震源激励;
基于所述分离来产生多个分离源道集;以及
使用所述多个分离源道集来勘探所述地下区域内的碳氢化合物。
19.根据权利要求18所述的方法,其中,使用所述多个生成的源道集包括对具有以下形式的方程式:
d=Γ1m1+Γ2m2,
求解矩阵m1和m2以产生所述多个源道集,其中
m1是所述多个源道集中的第一源道集,
m2是所述多个源道集中的第二源道集;
d是所记录地震数据的矩阵表示,
Γ1是定义所述至少两个震源中的第一源的激励时间的矩阵,并且Γ2是定义所述至少两个震源中的第二源的激励时间的矩阵。
20.根据权利要求18所述的方法,其中,所述至少两个干扰震源激励中的至少一个震源已经改变其震源激励的符号或相位。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862745068P | 2018-10-12 | 2018-10-12 | |
US62/745,068 | 2018-10-12 | ||
PCT/US2019/055001 WO2020076702A1 (en) | 2018-10-12 | 2019-10-07 | Separation of multiple seismic sources of different types by inversion |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112840236A CN112840236A (zh) | 2021-05-25 |
CN112840236B true CN112840236B (zh) | 2024-05-03 |
Family
ID=68343492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980066374.4A Active CN112840236B (zh) | 2018-10-12 | 2019-10-07 | 通过反演分离不同类型的多个震源 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11105946B2 (zh) |
EP (1) | EP3864442A1 (zh) |
CN (1) | CN112840236B (zh) |
AU (1) | AU2019358893B2 (zh) |
CA (1) | CA3115062C (zh) |
EA (1) | EA202190981A1 (zh) |
MX (1) | MX2021004021A (zh) |
WO (1) | WO2020076702A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017108669A1 (en) * | 2015-12-22 | 2017-06-29 | Shell Internationale Research Maatschappij B.V. | Method and system for generating a seismic gather |
CN112840236B (zh) * | 2018-10-12 | 2024-05-03 | Bp北美公司 | 通过反演分离不同类型的多个震源 |
DK3938810T3 (da) * | 2019-03-15 | 2024-09-16 | Bp Corp North America Inc | Signalindvinding under samtidig kilde-afblanding og separation |
US11815641B2 (en) | 2020-12-04 | 2023-11-14 | Pgs Geophysical As | Composite far offset impulsive source activations for marine seismic surveying and processing |
US20230129626A1 (en) * | 2021-10-25 | 2023-04-27 | Bp Corporation North America Inc. | Separation of Seismic Sources by Joint Interpolation and Deblending |
US12000971B2 (en) | 2021-12-10 | 2024-06-04 | Saudi Arabian Oil Company | Method and system for seismic processing using virtual trace bins based on offset attributes and azimuthal attributes |
CN114325821A (zh) * | 2021-12-23 | 2022-04-12 | 西安交通大学 | 基于3d-snacnn网络的叠前地震资料中强散射噪声压制方法及系统 |
WO2024102877A2 (en) * | 2022-11-11 | 2024-05-16 | Schlumberger Technology Corporation | Design and acquisition of sparse obn using full waveform inversion sensitivity kernel analysis |
CN117434592B (zh) * | 2023-02-24 | 2024-05-07 | 中国石油化工股份有限公司 | 地震数据处理方法、装置及电子设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102124374A (zh) * | 2008-08-15 | 2011-07-13 | Bp北美公司 | 用于分离单独的同时震源的方法 |
CN103069303A (zh) * | 2010-08-06 | 2013-04-24 | Bp北美公司 | 用于将同时发生的独立震源分离的方法 |
EP2592439A2 (en) * | 2011-11-10 | 2013-05-15 | PGS Geophysical AS | Method and system for separating seismic sources in marine simultaneous shooting acquisition |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1895328A1 (en) | 2006-08-31 | 2008-03-05 | Bp Exploration Operating Company Limited | Seismic survey method |
DK2601543T3 (da) * | 2010-08-02 | 2021-01-04 | Bp Corp North America Inc | Fremgangsmåde og apparat til marin bred-azimut-slæbestream-seismisk dataindsamling |
CA2820925C (en) * | 2010-12-09 | 2018-06-26 | Bp Corporation North America Inc. | Seismic acquisition method and system |
BR112013017762B1 (pt) | 2011-01-12 | 2020-12-22 | Bp Corporation North America Inc. | métodos e sistema para exploração sísmica e para fazer levantamento sísmico de fontes mistas sobre região da subsuperfície, para aquisição sísmica com fontes simultâneas e para exploração sísmica |
AU2015229106B2 (en) * | 2014-03-14 | 2020-03-12 | Bp Corporation North America, Inc. | Spatial sampling improvements and the formation of arrays using popcorn and simultaneous source acquisition |
CN112840236B (zh) * | 2018-10-12 | 2024-05-03 | Bp北美公司 | 通过反演分离不同类型的多个震源 |
-
2019
- 2019-10-07 CN CN201980066374.4A patent/CN112840236B/zh active Active
- 2019-10-07 EA EA202190981A patent/EA202190981A1/ru unknown
- 2019-10-07 EP EP19794339.2A patent/EP3864442A1/en active Pending
- 2019-10-07 AU AU2019358893A patent/AU2019358893B2/en active Active
- 2019-10-07 WO PCT/US2019/055001 patent/WO2020076702A1/en active Application Filing
- 2019-10-07 MX MX2021004021A patent/MX2021004021A/es unknown
- 2019-10-07 CA CA3115062A patent/CA3115062C/en active Active
- 2019-10-09 US US16/597,642 patent/US11105946B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102124374A (zh) * | 2008-08-15 | 2011-07-13 | Bp北美公司 | 用于分离单独的同时震源的方法 |
CN103069303A (zh) * | 2010-08-06 | 2013-04-24 | Bp北美公司 | 用于将同时发生的独立震源分离的方法 |
EP2592439A2 (en) * | 2011-11-10 | 2013-05-15 | PGS Geophysical AS | Method and system for separating seismic sources in marine simultaneous shooting acquisition |
Non-Patent Citations (1)
Title |
---|
Wolfspar®, an "FWI-friendly" ultra-low-frequency marine seismic source;Joe Dellinger 等;SEG International Exposition and 87th Annual Meeting;4891-4895 * |
Also Published As
Publication number | Publication date |
---|---|
AU2019358893B2 (en) | 2024-01-18 |
MX2021004021A (es) | 2021-06-30 |
EA202190981A1 (ru) | 2021-09-01 |
WO2020076702A9 (en) | 2021-06-10 |
BR112021006744A2 (pt) | 2021-07-13 |
EP3864442A1 (en) | 2021-08-18 |
US11105946B2 (en) | 2021-08-31 |
WO2020076702A1 (en) | 2020-04-16 |
US20200116885A1 (en) | 2020-04-16 |
AU2019358893A1 (en) | 2021-04-29 |
CN112840236A (zh) | 2021-05-25 |
CA3115062C (en) | 2023-11-28 |
CA3115062A1 (en) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112840236B (zh) | 通过反演分离不同类型的多个震源 | |
US8295124B2 (en) | Method for separating independent simultaneous sources | |
EP2663880B1 (en) | Shot scheduling limits for seismic acquisition with simultaneous source shooting | |
EP2601542B1 (en) | Method for separating independent simultaneous sources | |
US8296069B2 (en) | Pseudo-analytical method for the solution of wave equations | |
WO2013080128A1 (en) | Separation of simultaneous source data | |
US11280925B2 (en) | Simultaneous source acquisition and separation method | |
US11422277B2 (en) | Seismic data filtering based on distances between seismic sources | |
US20230129626A1 (en) | Separation of Seismic Sources by Joint Interpolation and Deblending | |
CA2806241C (en) | Method for separating independent simultaneous sources | |
EA042140B1 (ru) | Разделение множества сейсмических источников различного типа с использованием инверсии | |
Müller | Encoding techniques for marine seismic sources & their applications | |
BR112021006744B1 (pt) | Método de exploração sísmica acima de uma região da subsuperfície |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |