CN112836614B - 一种基于残差网络和迁移学习的高分遥感图像分类方法 - Google Patents
一种基于残差网络和迁移学习的高分遥感图像分类方法 Download PDFInfo
- Publication number
- CN112836614B CN112836614B CN202110113122.1A CN202110113122A CN112836614B CN 112836614 B CN112836614 B CN 112836614B CN 202110113122 A CN202110113122 A CN 202110113122A CN 112836614 B CN112836614 B CN 112836614B
- Authority
- CN
- China
- Prior art keywords
- remote sensing
- resolution remote
- residual error
- data set
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/254—Fusion techniques of classification results, e.g. of results related to same input data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/259—Fusion by voting
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Evolutionary Biology (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Multimedia (AREA)
- Remote Sensing (AREA)
- Astronomy & Astrophysics (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110113122.1A CN112836614B (zh) | 2021-01-27 | 2021-01-27 | 一种基于残差网络和迁移学习的高分遥感图像分类方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110113122.1A CN112836614B (zh) | 2021-01-27 | 2021-01-27 | 一种基于残差网络和迁移学习的高分遥感图像分类方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112836614A CN112836614A (zh) | 2021-05-25 |
CN112836614B true CN112836614B (zh) | 2022-07-12 |
Family
ID=75932002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110113122.1A Active CN112836614B (zh) | 2021-01-27 | 2021-01-27 | 一种基于残差网络和迁移学习的高分遥感图像分类方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112836614B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113657276A (zh) * | 2021-08-18 | 2021-11-16 | 江苏天汇空间信息研究院有限公司 | 一种遥感影像语义分割的模型迁移训练方法 |
CN114612787B (zh) * | 2022-03-21 | 2024-05-10 | 南京市测绘勘察研究院股份有限公司 | 一种尺度变化策略支持的城市绿地深度学习提取方法 |
CN115035406B (zh) * | 2022-06-08 | 2023-08-04 | 中国科学院空间应用工程与技术中心 | 遥感场景数据集的标注方法、系统、存储介质及电子设备 |
CN118313431A (zh) * | 2024-04-24 | 2024-07-09 | 广东省科技基础条件平台中心 | 预训练模型微调方法、农作物监测方法、装置及设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110046575A (zh) * | 2019-04-16 | 2019-07-23 | 浙江农林大学 | 基于改进残差网络的遥感图像场景分类方法 |
CN110555446A (zh) * | 2019-08-19 | 2019-12-10 | 北京工业大学 | 基于多尺度深度特征融合和迁移学习的遥感影像场景分类方法 |
-
2021
- 2021-01-27 CN CN202110113122.1A patent/CN112836614B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110046575A (zh) * | 2019-04-16 | 2019-07-23 | 浙江农林大学 | 基于改进残差网络的遥感图像场景分类方法 |
CN110555446A (zh) * | 2019-08-19 | 2019-12-10 | 北京工业大学 | 基于多尺度深度特征融合和迁移学习的遥感影像场景分类方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112836614A (zh) | 2021-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112836614B (zh) | 一种基于残差网络和迁移学习的高分遥感图像分类方法 | |
CN111986099B (zh) | 基于融合残差修正的卷积神经网络的耕地监测方法及系统 | |
CN109800736B (zh) | 一种基于遥感影像和深度学习的道路提取方法 | |
CN109446992B (zh) | 基于深度学习的遥感影像建筑物提取方法及系统、存储介质、电子设备 | |
Shi et al. | Road detection from remote sensing images by generative adversarial networks | |
CN110889449A (zh) | 一种增强边缘的、多尺度的遥感影像建筑物语义特征提取方法 | |
CN112287807B (zh) | 一种基于多分支金字塔神经网络的遥感影像道路提取方法 | |
CN114092832B (zh) | 一种基于并联混合卷积网络的高分辨率遥感影像分类方法 | |
CN107067405B (zh) | 基于尺度优选的遥感影像分割方法 | |
Mboga et al. | Fully convolutional networks for land cover classification from historical panchromatic aerial photographs | |
CN111639587B (zh) | 基于多尺度谱空卷积神经网络的高光谱图像分类方法 | |
CN111028255A (zh) | 基于先验信息与深度学习的农田区域预筛选方法及装置 | |
CN112560719B (zh) | 基于多尺度卷积-多核池化的高分辨率影像水体提取方法 | |
CN112906662A (zh) | 一种遥感图像变化检测方法、装置、设备及存储介质 | |
CN114283285A (zh) | 交叉一致性自训练遥感图像语义分割网络训练方法及装置 | |
CN112001293A (zh) | 结合多尺度信息和编解码网络的遥感影像地物分类方法 | |
CN117455868A (zh) | 基于显著融合差异图和深度学习的sar图像变化检测方法 | |
CN114882380A (zh) | 一种基于改进hrnet模型的湿地资源遥感识别算法 | |
CN116310628A (zh) | 一种基于令牌掩码机制的大尺度城中村提取方法 | |
CN113378642B (zh) | 一种对农村违法占地建筑物进行检测的方法 | |
CN114612315A (zh) | 一种基于多任务学习的高分辨率影像缺失区域重建方法 | |
Chen et al. | Mapping urban form and land use with deep learning techniques: a case study of Dongguan City, China | |
CN113592829B (zh) | 基于分割重组的深度学习泥沙颗粒识别方法及装置 | |
CN113591740B (zh) | 基于深度学习的复杂河流环境下泥沙颗粒识别方法及装置 | |
CN114549534B (zh) | 矿区土地利用识别方法、装置、设备及介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Yao Jun Inventor after: Chang Hao Inventor after: Weng Beibei Inventor after: Yang Le Inventor after: Ju Ling Inventor after: Feng Wei Inventor after: Bu Xinlian Inventor after: Li Xin Inventor after: Zhao Xiangwei Inventor before: Chang Hao Inventor before: Bu Xinlian Inventor before: Yang Le Inventor before: Feng Wei Inventor before: Li Xin Inventor before: Zhao Xiangwei Inventor before: Yang Jiaqi Inventor before: Wu Chen |
|
CB03 | Change of inventor or designer information | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210825 Address after: No.2, Fenghuang West Road, Taizhou City, Jiangsu Province Applicant after: STATE GRID JIANGSU ELECTRIC POWER Co.,Ltd. TAIZHOU POWER SUPPLY BRANCH Applicant after: STATE GRID JIANGSU ELECTRIC POWER Co.,Ltd. Applicant after: CHINA ENERGY ENGINEERING GROUP JIANGSU POWER DESIGN INSTITUTE CO.,LTD. Address before: No.2, Fenghuang West Road, Taizhou City, Jiangsu Province Applicant before: STATE GRID JIANGSU ELECTRIC POWER Co.,Ltd. TAIZHOU POWER SUPPLY BRANCH Applicant before: STATE GRID JIANGSU ELECTRIC POWER Co.,Ltd. Applicant before: CHINA ENERGY ENGINEERING GROUP JIANGSU POWER DESIGN INSTITUTE CO.,LTD. Applicant before: WUHAN University |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |