CN112836123B - 一种基于知识图谱的可解释推荐系统 - Google Patents

一种基于知识图谱的可解释推荐系统 Download PDF

Info

Publication number
CN112836123B
CN112836123B CN202110151400.2A CN202110151400A CN112836123B CN 112836123 B CN112836123 B CN 112836123B CN 202110151400 A CN202110151400 A CN 202110151400A CN 112836123 B CN112836123 B CN 112836123B
Authority
CN
China
Prior art keywords
user
item
vector
sequence
representation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110151400.2A
Other languages
English (en)
Other versions
CN112836123A (zh
Inventor
郑凯
孙浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110151400.2A priority Critical patent/CN112836123B/zh
Publication of CN112836123A publication Critical patent/CN112836123A/zh
Application granted granted Critical
Publication of CN112836123B publication Critical patent/CN112836123B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9535Search customisation based on user profiles and personalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/36Creation of semantic tools, e.g. ontology or thesauri
    • G06F16/367Ontology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0631Item recommendations

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明公开了一种基于知识图谱的可解释推荐系统,该系统包括序列知识图谱构建模块:从用户的购买序列以及用户评论中抽取出了预定义的实体以及关系;用户表示学习模块:设计了一个图注意力网络来学习用户的短期偏好,重新设计门控循环单元的结构,使其能够融合用户的长期偏好以及短期偏好,并获得捕捉到用户偏好动态性的用户向量表示;物品表示学习模块:设计一个自注意力层来学习到物品的用户特异的向量表示;评分预测模块:结合用户的向量表示以及物品的向量表示来获得用户对物品的预测评分。通过上述方案,本发明达到了很高的预测精度,同时提供非常高效的解释的目的,具有很高的实用价值和推广价值。

Description

一种基于知识图谱的可解释推荐系统
技术领域
本发明属于知识图谱技术领域,具体地讲,是涉及一种基于知识图谱的可解释推荐系统。
背景技术
近年来,可解释推荐系统在学术界以及产业界受到越来越多的关注,有相关研究表明,可解释推荐系统不仅可以提升用户对推荐物品的接受程度,还可以提升推荐系统的透明度、说服力、效率、可信赖性以及用户满意度。
为了使得推荐系统的可解释性提升,现存大部分模型使用包含丰富语义信息的用户评论作为模型的输入,尽管模型的可解释性提升了,但是这些可解释推荐模型还是存在一些局限。首先,这些可解释推荐模型大部分没有将用户偏好的动态性考虑在内,他们使用一个静态的向量来代表一个用户,从而无法捕捉到用户偏好的动态性。此外,他们无法对物品进行用户特异的建模,即他们假设每个物品都有一个全局的向量表示,这个向量表示可以用于对所有用户做推荐,但是不同用户对同一个物品的关注点不同,为了做更个性化的推荐,每个物品的向量表示中都应包含更多当前推荐用户关注的一些属性信息。其次,这些可解释推荐模型提供的评论层面以及特征层面的解释都存在局限性,评论层面的解释即为将其他用户的整段评论提供给当前用户作为解释,由于用户评论中包含很多个人偏好信息,从而导致评论层面的解释显得过于冗余,而特征层面的解释即为提供当前用户关注的一个物品特征作为解释,由于一个特征词包含信息过少,从而导致特征层面的解释显得过于简洁,可能会引起用户的困惑。最后,尽管这些推荐模型都使用用户评论作为模型的输入,这些推荐模型都没有深层次地挖掘评论中包含的丰富语义信息。
发明内容
为了克服现有技术中的上述不足,本发明提供一种基于知识图谱的可解释推荐系统,能够达到很高的预测精度,同时提供非常高效的解释。
为了实现上述目的,本发明采用的技术方案如下:
一种基于知识图谱的可解释推荐系统,包括序列知识图谱构建模块、用户表示学习模块,物品表示学习模块及评分预测模块;
所述序列知识图谱构建模块:从用户的购买序列以及用户评论中抽取出了预定义的实体以及关系;
所述用户表示学习模块:设计了一个图注意力网络来学习用户的短期偏好,重新设计门控循环单元的结构,使其能够融合用户的长期偏好以及短期偏好,并获得捕捉到用户偏好动态性的用户向量表示;
所述物品表示学习模块:设计一个自注意力层来学习到物品的用户特异的向量表示;
所述评分预测模块:结合用户的向量表示以及物品的向量表示来获得用户对物品的预测评分。
进一步地,所述序列知识图谱构建模块包括用户实体u、物品实体v以及特征实体f,其中,用户实体u、物品实体v以及特征实体f之间存在四类关系,分别是:(1)用户和物品之间存在的购买关系,(2)物品和特征之间存在的拥有关系,(3)用户和特征之间存在的提及关系,(4)物品与物品之间存在的同时购买关系。
进一步地,所述用户表示学习模块首先使用图注意力网络来对序列知识图谱构建模块中的实体以及关系的向量表示进行更新,然后将序列知识图谱构建模块里面所有的实体结合起来,最后使用相似度作为权重来对除用户实体外的其他实体进行加权求和,计算过程如下:
Figure BDA0002932049430000021
Figure BDA0002932049430000022
其中,huser′为更新后的用户向量表示,helse′为更新后的其他实体的向量表示,Sθ为除了用户实体,其他实体的融合向量表示。
进一步地,所述物品表示学习模块使用自注意力层来学习用户之间的相似度,并用该相似度作为权重来对物品进行用户特异的建模,具体公式如下:
Figure BDA0002932049430000031
Figure BDA0002932049430000032
Figure BDA0002932049430000033
其中,
Figure BDA0002932049430000034
为目标用户ui的全局序列表示,
Figure BDA0002932049430000035
为用户uj的全局序列表示,
Figure BDA0002932049430000036
为物品v在用户uj的序列知识图谱中的向量表示,
Figure BDA0002932049430000037
为目标用户ui的查询向量,
Figure BDA0002932049430000038
为用户uj的键向量,
Figure BDA0002932049430000039
为用户uj的值向量,WQ、WK、WV分别对应着目标用户ui、用户uj、物品v的线性转换矩阵。
具体地,所述评分预测模块在得到用户的全局序列嵌入
Figure BDA00029320494300000310
以及物品用户特异嵌入
Figure BDA00029320494300000311
后,可以得到用户u对物品v的预测评分:
Figure BDA00029320494300000312
其中,qu和pv分别为用户和物品的辅助向量,bu,bv,μ分别为用户偏置,物品偏置以及全局偏置。
与现有技术相比,本发明具有以下有益效果:
(1)本发明能够充分利用评论信息,来对用户的动态偏好建模以及对物品进行用户特异的建模,本发明修改了原始门控循环单元的结构,使得其能够感知到时间间隔对用户偏好变化的影响,本发明使用自注意力机制来学习用户之间的相似度,从而对物品进行用户特异的建模,通过结合评论层面以及特征层面的解释,本发明可以提升推荐的效率以及用户满意度。并且本发明在三个大型数据集上对模型进行测试,实验结果表明,本发明的模型可以达到很高的预测精度,同时提供非常高效的解释。因此本发明在评分预测领域尝试结合知识图谱以及门控循环单元来捕捉用户动态偏好并缓解推荐领域数据稀疏问题上取得了很大的进步。
(2)本发明从用户购买序列以及用户评论中挖掘出实体以及关系,从而构建出序列知识图谱,然后使用图注意力网络来挖掘出隐含在序列知识图谱中的用户短期偏好,本发明使用新设计的时间间隔可知门控循环单元来融合用户的短期偏好以及长期偏好,从而捕捉到用户偏好的动态性;本发明使用自注意力网络层来学习到用户之间的相似度,并将相似度作为用户评论的权重来为目标用户生成更加个性化的物品向量表示;最后,本发明通过结合评论层面以及特征层面的解释来提升模型的可解释性。
附图说明
图1为本发明的系统框架示意图。
图2为本发明序列知识图谱构建模块示例示意图。
图3为本发明用户表示学习模块结构示意图。
图4为本发明新设计的I-GRU结构示意图。
图5为本发明序列长度对模型效果的影响图。
图6为本发明为两个不同用户生成的解释示例图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,本发明的实施方式包括但不限于下列实施例。
实施例
如图1所示,一种基于知识图谱的可解释推荐系统,包括序列知识图谱构建模块、用户表示学习模块,物品表示学习模块及评分预测模块;其中在序列知识图谱构建模块,本发明从用户的购买序列以及用户评论中抽取出了预定义的实体以及关系;在用户表示学习模块,本发明设计了一个图注意力网络来学习用户的短期偏好,本发明重新设计了门控循环单元的结构,使得其能够融合用户的长期偏好以及短期偏好,并获得捕捉到用户偏好动态性的用户向量表示;在物品表示学习模块,本发明设计了一个自注意力层来学习到物品的用户特异的向量表示;在评分预测模块,本发明结合用户的向量表示以及物品的向量表示来获得用户对物品的预测评分。
在序列知识图谱构建模块,本发明自定义了三类实体以及四类关系,三类实体分别为:用户实体、物品实体以及特征实体,四类关系分别为:用户和物品之间存在的购买关系,物品和特征之间存在的拥有关系,用户和特征之间存在的提及关系,物品与物品之间存在的同时购买关系,通过自定义这些实体以及关系,本发明能够捕捉到隐含在用户购买序列以及用户评论中的用户行为信息以及商品属性信息,具体如图2所示。
用户表示学习模块的框架如图3所示,本发明首先使用图注意力网络来对序列知识图谱中的实体以及关系的向量表示进行更新,之后本发明将序列知识图谱里面所有的实体结合起来,考虑到不同实体有不同的优先级,本发明使用注意力机制来计算用户实体与其他所有实体之间的相似度,然后使用相似度作为权重来对除用户实体外的其他实体进行加权求和,计算过程如下:
Figure BDA0002932049430000051
Figure BDA0002932049430000052
其中,huser′为更新后的用户向量表示,helse′为更新后的其他实体的向量表示,Sθ为除了用户实体,其他实体的融合向量表示,σ为Sigmoid激活函数,qT、ω、W4、W5、W6为可学习权重参数,βi为实体i的权重。
之后本发明将用户向量表示与其他实体的融合向量表示拼接起来,则可以得到反映用户短期偏好的局部序列嵌入Sl
Sl=W6[huser′||Sθ]
考虑到用户的偏好在短时间内变化较小,在长时间内变化较大,因此,在对用户的动态偏好建模时,本发明将时间间隔融合进门控循环单元中,提出了时间间隔可知门控循环单元,其结构如图4所示,对应的计算公式为:
Figure BDA0002932049430000053
Figure BDA0002932049430000054
Figure BDA0002932049430000055
Figure BDA0002932049430000056
其中,Δt为两个序列之间的时间间隔,
Figure BDA0002932049430000057
则为融合了用户短期偏好和长期偏好的全局序列嵌入,可以看出,随着两个序列时间间隔的增大,zt和rt都会减小,从而使得长期偏好
Figure BDA0002932049430000061
在最终全局序列嵌入中占的比重减小,zt为更新门向量,rt为重置门向量,
Figure BDA0002932049430000062
为用户短期偏好的局部序列嵌入,
Figure BDA00029320494300000613
为候选隐藏状态,Wz、Wr、ωt为可学习的参数。
在物品表示学习模块,考虑到不同用户对物品的关注点不同,本发明认为在有限维度的限制下,每个物品向量表示中应该更多地包含当前用户关注的信息,而且考虑到相似用户偏好相似,在对物品建模时,本发明认为相似用户的评论应该被赋予更高权重,因此,本发明使用自注意力层来学习用户之间的相似度,并用该相似度作为权重来对物品进行用户特异的建模,具体公式如下:
Figure BDA0002932049430000063
Figure BDA0002932049430000064
Figure BDA0002932049430000065
其中,
Figure BDA00029320494300000614
为目标用户ui的全局序列表示,
Figure BDA0002932049430000066
为用户uj的全局序列表示,
Figure BDA0002932049430000067
为物品v在用户uj的序列知识图谱中的向量表示。
之后本发明就可以计算用户uj和目标用户ui之间的相似度,并用softmax来对相似度进行归一化处理:
Figure BDA0002932049430000068
Figure BDA0002932049430000069
最后,本发明对用户的评论进行加权求和来得到用户特异的物品向量表示,为了在物品评论中隐含更多信息,本发明使用了多头注意力机制:
Figure BDA00029320494300000610
其中,M为多注意力头的数量,m为求和时的索引。
在得到用户的全局序列嵌入
Figure BDA00029320494300000611
以及物品用户特异嵌入
Figure BDA00029320494300000612
后,本发明可以得到用户u对物品v的预测评分:
Figure BDA0002932049430000071
其中,qu和pv分别为用户和物品的辅助向量,bu,bv,μ分别为用户偏置,物品偏置以及全局偏置,
Figure BDA0002932049430000072
为一个可学习的参数。
为了验证本发明的可行性,申请人还做了相关实验,具体如如下:
数据集:为了验证本发明模型的效果,本发明选取了三个不同领域的大型公开数据集,分别是来自Amazon的Movies_and_TV数据集和Cell_Phones_and_Accessories数据集以及Yelp数据集,Movies_and_TV数据集和Cell_Phones_and_Accessorirs数据集分别包含影视娱乐领域以及电子产品领域商品的用户评分以及评论,Yelp数据集包含用户对餐馆的评分以及评论。三个数据集的基本信息如表1:
表1数据集的基本信息
Figure BDA0002932049430000073
对比实验:本发明选取了评分预测领域表现突出的5个模型来进行对比实验,分别是:
PMF:传统的矩阵分解方法,使用高斯分布来对用户和物品的隐因子来进行建模。
HFT:传统基于主题建模的方法,使用LDA来将用户的隐向量映射到隐主题空间。
DeepCoNN:基于深度学习的推荐模型,使用文本评论信息对用户行为和物品属性同时建模。
NARRE:性能优越的可解释推荐模型,使用了注意力机制来对用户评论的有效性进行建模。
DER:性能优越的可解释推荐模型,使用时间可感知的GRU来对用户的动态偏好进行建模。
实验设置:本发明使用Pytorch框架来实现本发明的模型,在本发明的实验中,训练批大小被设置为64,学习率初始化为5×10-5,运行环境为带有48块CPU(Intel(R)Xeon(R)CPU E5-2650v4@2.20GHz)和四个GeForce GTX 2080GPU的Linux服务器。
实验结果:本发明使用评分预测领域常用的均方根误差(RMSE)作为指标来衡量模型的预测效果,具体计算公式为:
Figure BDA0002932049430000081
其中,Dts为测试集中的用户-物品对。
其中,
Figure BDA0002932049430000082
为模型预测的用户u对物品v的评分,Ru,v为用户u对物品v的真实评分。
测试结果如表2所示,可以看到本发明的模型PDKR在三个数据集上的效果要好于所有的基准模型,相比于基准模型中效果最好的DER模型,本发明分别在Cell_Phones_and_Accessories数据集,Movies_and_TV数据集和Yelp数据集上达到了9.8%,4.4%,8.0%的效果提升,由此验证了本发明模型的有效性。
表2所有模型的测试结果
Figure BDA0002932049430000091
本发明对比了序列长度对本发明模型效果的影响,本发明在{3,5,7,9,11}中去尝试不同的序列长度,效果如图5所示,其中,{3,5,7,9,11}指的是我分别尝试使用3,5,7,9,11作为子序列长度对原始序列进行分割,原始序列是按时间顺序排好序的一个用户的物品购买历史。
从图5中可以看出,在Cell_Phones_and_Accessories数据集上,效果最好的序列长度为5,在Yelp数据集上,效果最好的序列长度为7,而模型的效果随序列长度的增长大致呈先上升后下降的趋势,本发明认为这是由于当序列过短时,本发明学习到的全局序列表示不能很好地反映出用户偏好,而当序列过长时,本发明又很难学习到一个包含序列中反映出的所有偏好信息的全局序列表示,从而序列过长或过短都会使得模型效果下降。
数据稀疏是推荐领域非常严重的问题,本发明测试了模型在数据稀疏情况下的表现,如表3所示,本发明的模型在数据稀疏的情况下仍然要比所有基线模型baseline表现要好,由此验证了本发明模型的鲁棒性。
表3数据稀疏对模型效果的影响
Figure BDA0002932049430000101
Figure BDA0002932049430000102
为了验证模型的可解释性,本发明给出了在Cell_Phones_and_Accessories数据集上对不同用户生成推荐解释的例子,本发明分别对比了NARRE、DER以及本发明的PDKR生成的推荐解释。NARRE生成的解释用斜体标注了出来,可以看到NARRE对不同的用户给出了相同的解释,从而导致提供的解释不够个性化;DER生成的解释用虚线框标注了出来,PDKR生成的解释用实线框标注了出来,目标用户和对应的解释之间使用有向箭头连接起来。如图6所示,在PDKR生成的解释中,观点词和特征词之间使用箭头连接起来,特征词带有下划线标注,当用户对该特征表达的是积极情感时,对应的观点词与该特征词之间的连线为实线,否则,则为虚线。通过使用下划线来标注特征词,用户有了更多的选择,例如,当特征词已经非常明确,如用户A2Z45XKR1707P4Q的评论中显示的那样,用户可以选择忽略冗余的评论主体,但是当特征词像用户A1YOF7CINOIHR9的评论中显示的那样,用户可以在看完特征词后进一步参考上下文,从而更好地理解特征词的含义。注意到虽然DER模型为不同用户选择出了不同的评论,但是选出来的评论都非常简短,缺少上下文信息,例如DER为用户A3QQK02DVD45XF生成的解释中,只说明了手机无法正常使用,却没有给出具体理由,因此可能会引起用户的困惑。
上述实施例仅为本发明的优选实施例,并非对本发明保护范围的限制,但凡采用本发明的设计原理,以及在此基础上进行非创造性劳动而做出的变化,均应属于本发明的保护范围之内。

Claims (1)

1.一种基于知识图谱的可解释推荐系统,其特征在于,包括序列知识图谱构建模块、用户表示学习模块,物品表示学习模块及评分预测模块;
所述序列知识图谱构建模块:从用户的购买序列以及用户评论中抽取出了预定义的实体以及关系;预定义的实体以及关系包括用户实体u、物品实体v以及特征实体f,其中,用户实体u、物品实体v以及特征实体f之间存在四类关系,分别是:(1)用户和物品之间存在的购买关系,(2)物品和特征之间存在的拥有关系,(3)用户和特征之间存在的提及关系,(4)物品与物品之间存在的同时购买关系;
所述用户表示学习模块:首先设计了一个图注意力网络来学习用户的短期偏好:使用图注意力网络来对序列知识图谱构建模块中的实体以及关系的向量表示进行更新,将序列知识图谱构建模块里面所有的实体结合起来,使用相似度作为权重来对除用户实体外的其他实体进行加权求和,计算过程如下:
Figure FDA0003277833480000011
Figure FDA0003277833480000012
之后将用户向量表示与其他实体的融合向量表示拼接起来,得到反应用户短期偏好的局部序列嵌入Sl
Sl=W6[huser′||Sθ]
其中,huser′为更新后的用户向量表示,
Figure FDA0003277833480000013
为更新后的其他实体的向量表示,Sθ为除了用户实体,其他实体的融合向量表示,σ为Sigmoid激活函数,qT、ω、W4、W5、W6为可学习权重参数,βi为实体i的权重,
然后重新设计门控循环单元的结构,将对用户的动态偏好建模时,将时间间隔融合进门控循环单元中,提出时间间隔可知门控循环单元,使其能够融合用户的长期偏好以及短期偏好,对应计算公式为:
Figure FDA0003277833480000014
Figure FDA0003277833480000015
Figure FDA0003277833480000021
Figure FDA0003277833480000022
其中,Δt为两个序列之间的时间间隔,
Figure FDA0003277833480000023
则为融合了用户短期偏好和长期偏好的全局序列嵌入,zt为更新门向量,rt为重置门向量,
Figure FDA0003277833480000024
为用户短期偏好的局部序列嵌入,
Figure FDA0003277833480000025
为候选隐藏状态,Wz、Wr、ωt为可学习的参数,
并获得捕捉到用户偏好动态性的用户向量表示;
所述物品表示学习模块:使用自注意力层来学习用户之间的相似度,并用该相似度作为权重来对物品进行用户特异的建模,公式如下:
Figure FDA0003277833480000026
Figure FDA0003277833480000027
Figure FDA0003277833480000028
其中,
Figure FDA0003277833480000029
为目标用户ui的全局序列表示,
Figure FDA00032778334800000210
为用户uj的全局序列表示,
Figure FDA00032778334800000211
为物品v在用户uj的序列知识图谱中的向量表示,
Figure FDA00032778334800000212
为目标用户ui的查询向量,
Figure FDA00032778334800000213
为用户uj的键向量,
Figure FDA00032778334800000214
为用户uj的值向量,WQ、WK、WV分别对应着目标用户ui、用户uj、物品v的线性转换矩阵,
然后计算用户uj和目标用户ui之间的相似度,并用softmax来对相似度进行归一化处理:
Figure FDA00032778334800000215
Figure FDA00032778334800000216
使用多头注意力机制对用户的评论进行加权求和来得到用户特异的物品向量表示:
Figure FDA00032778334800000217
其中,M为多注意力头的数量,m为求和时的索引;
所述评分预测模块,结合用户的向量表示以及物品的向量表示来获得用户对物品的预测评分:在得到用户的全局序列嵌入
Figure FDA0003277833480000031
以及物品用户特异嵌入
Figure FDA0003277833480000032
后,得到用户u对物品v的预测评分:
Figure FDA0003277833480000033
其中,qu和pv分别为用户和物品的辅助向量,bu、bv、μ分别为用户偏置、物品偏置以及全局偏置,
Figure FDA0003277833480000034
为一个可学习的参数。
CN202110151400.2A 2021-02-03 2021-02-03 一种基于知识图谱的可解释推荐系统 Active CN112836123B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110151400.2A CN112836123B (zh) 2021-02-03 2021-02-03 一种基于知识图谱的可解释推荐系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110151400.2A CN112836123B (zh) 2021-02-03 2021-02-03 一种基于知识图谱的可解释推荐系统

Publications (2)

Publication Number Publication Date
CN112836123A CN112836123A (zh) 2021-05-25
CN112836123B true CN112836123B (zh) 2021-11-16

Family

ID=75931956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110151400.2A Active CN112836123B (zh) 2021-02-03 2021-02-03 一种基于知识图谱的可解释推荐系统

Country Status (1)

Country Link
CN (1) CN112836123B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113704511B (zh) * 2021-07-30 2022-11-22 北京达佳互联信息技术有限公司 多媒体资源的推荐方法、装置、电子设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108446340A (zh) * 2018-03-02 2018-08-24 哈尔滨工业大学(威海) 一种面向海量小文件的用户热点数据访问预测方法
CN109271504A (zh) * 2018-11-07 2019-01-25 爱因互动科技发展(北京)有限公司 基于知识图谱的推理对话的方法
CN110457442A (zh) * 2019-08-09 2019-11-15 国家电网有限公司 面向智能电网客服问答的知识图谱构建方法
CN110458627A (zh) * 2019-08-19 2019-11-15 华南师范大学 一种面向用户动态偏好的商品序列个性化推荐方法
CN111949307A (zh) * 2020-07-06 2020-11-17 北京大学 一种开源项目知识图谱的优化方法和系统
CN111949865A (zh) * 2020-08-10 2020-11-17 杭州电子科技大学 基于图神经网络与用户长短期偏好的兴趣点推荐方法
US10853575B2 (en) * 2017-10-26 2020-12-01 Nec Corporation System and method for faster interfaces on text-based tasks using adaptive memory networks
CN112150210A (zh) * 2020-06-19 2020-12-29 南京理工大学 一种基于ggnn网络的改进型神经网络推荐方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160224645A1 (en) * 2015-02-03 2016-08-04 Siemens Aktiengesellschaft System and method for ontology-based data integration
CN107944915B (zh) * 2017-11-21 2022-01-18 北京字节跳动网络技术有限公司 一种游戏用户行为分析方法及计算机可读存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10853575B2 (en) * 2017-10-26 2020-12-01 Nec Corporation System and method for faster interfaces on text-based tasks using adaptive memory networks
CN108446340A (zh) * 2018-03-02 2018-08-24 哈尔滨工业大学(威海) 一种面向海量小文件的用户热点数据访问预测方法
CN109271504A (zh) * 2018-11-07 2019-01-25 爱因互动科技发展(北京)有限公司 基于知识图谱的推理对话的方法
CN110457442A (zh) * 2019-08-09 2019-11-15 国家电网有限公司 面向智能电网客服问答的知识图谱构建方法
CN110458627A (zh) * 2019-08-19 2019-11-15 华南师范大学 一种面向用户动态偏好的商品序列个性化推荐方法
CN112150210A (zh) * 2020-06-19 2020-12-29 南京理工大学 一种基于ggnn网络的改进型神经网络推荐方法及系统
CN111949307A (zh) * 2020-07-06 2020-11-17 北京大学 一种开源项目知识图谱的优化方法和系统
CN111949865A (zh) * 2020-08-10 2020-11-17 杭州电子科技大学 基于图神经网络与用户长短期偏好的兴趣点推荐方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
融合知识图谱与用户评论的商品推荐算法;汤伟韬等;《计算机工程》;20200831;第46卷(第8期);第93-100页 *
融合评分矩阵与评论文本的商品推荐模型;李琳等;《计算机学报》;20180731;第41卷(第7期);第1559-1573页 *

Also Published As

Publication number Publication date
CN112836123A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
US20210224306A1 (en) System, Apparatus and Methods for Providing an Intent Suggestion to a User in a Text-Based Conversational Experience with User Feedback
JP6446602B2 (ja) データのカテゴリ分類のための方法およびシステム
WO2020211566A1 (zh) 一种用户推荐方法和装置以及计算设备和存储介质
US11144587B2 (en) User drawing based image search
US9286548B2 (en) Accurate text classification through selective use of image data
WO2019204086A1 (en) System and methods for processing and interpreting text messages
CN112328849A (zh) 用户画像的构建方法、基于用户画像的对话方法及装置
CN111950593A (zh) 一种推荐模型训练的方法及装置
US11921766B2 (en) Generating electronic summary documents for landing pages
JP2023527745A (ja) 製品リコメンド及び統合言語モデリングのシステム及び方法
CN112836123B (zh) 一种基于知识图谱的可解释推荐系统
KR20200140588A (ko) 이미지 기반 제품 매매 서비스 제공 시스템 및 방법
Doering et al. Data-driven imitation learning for a shopkeeper robot with periodically changing product information
CN116680481B (zh) 搜索排序方法、装置、设备、存储介质及计算机程序产品
KR20190130410A (ko) 스마트 시니어를 위한 맞춤형 콘텐츠 추천 장치 및 방법
Fu et al. Attribute‐Sentiment Pair Correlation Model Based on Online User Reviews
Liu et al. Personalized Recommender System for Children's Book Recommendation with A Realtime Interactive Robot
Chen et al. Service composition recommendation method based on recurrent neural network and Naive Bayes
Peng et al. CA-NCF: a category Assisted neural collaborative filtering approach for personalized recommendation
CN117786234B (zh) 一种基于两阶段对比学习的多模态资源推荐方法
Wong et al. Pretrained E-commerce Knowledge Graph Model for Product Classification
Li et al. Research on 6-DOF robot inverse kinematics based on blended optimization algorithm of ELM-SSA-SCA
Chen et al. ACM Transactions on
Feng et al. Research on Online Learners’ Course Recommendation System Based on Knowledge Atlas in Smart Education Cloud Platform
Tan et al. Flower shop mobile chatbot

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant