CN112824484B - Liquid crystal composition, high-frequency component and microwave antenna array - Google Patents

Liquid crystal composition, high-frequency component and microwave antenna array Download PDF

Info

Publication number
CN112824484B
CN112824484B CN201911146269.XA CN201911146269A CN112824484B CN 112824484 B CN112824484 B CN 112824484B CN 201911146269 A CN201911146269 A CN 201911146269A CN 112824484 B CN112824484 B CN 112824484B
Authority
CN
China
Prior art keywords
liquid crystal
group
crystal composition
carbon atoms
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911146269.XA
Other languages
Chinese (zh)
Other versions
CN112824484A (en
Inventor
李佳明
梁志安
员国良
康素敏
李洪峰
张璇
崔静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shijiazhuang Chengzhi Yonghua Display Material Co Ltd
Original Assignee
Shijiazhuang Chengzhi Yonghua Display Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shijiazhuang Chengzhi Yonghua Display Material Co Ltd filed Critical Shijiazhuang Chengzhi Yonghua Display Material Co Ltd
Priority to CN201911146269.XA priority Critical patent/CN112824484B/en
Publication of CN112824484A publication Critical patent/CN112824484A/en
Application granted granted Critical
Publication of CN112824484B publication Critical patent/CN112824484B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

The invention relates to a liquid crystal composition, a high-frequency component containing the liquid crystal composition and a microwave antenna array, and belongs to the field of liquid crystal antennas. The liquid crystal composition of the present invention comprises one or more compounds selected from the group consisting of compounds represented by formula IA, compounds represented by formula IB, and one or more compounds selected from the group consisting of compounds represented by formula II. The liquid crystal composition has the characteristics of low rotational viscosity, good low-temperature intersolubility and high low-frequency dielectric constant.

Description

Liquid crystal composition, high-frequency component and microwave antenna array
Technical Field
The invention belongs to the technical field of liquid crystal antennas, and particularly relates to a liquid crystal composition, a high-frequency component containing the liquid crystal composition and a microwave antenna array.
Background
In recent years, liquid crystal materials with low dielectric loss and high dielectric tuning rate have been attracting attention for use in liquid crystal microwave device technology such as filters, tunable frequency selective surfaces, phase shifters, phased array radars, 5G communication networks, and the like. And as a tuning material for the core of the microwave device, the dielectric tuning rate of the liquid crystal material determines the tuning capability of the microwave device. The dielectric tuning rate (τ) of a liquid crystal material is determined by the dielectric anisotropy (Δε) of the liquid crystal material under microwaves and the dielectric constant (ε /) of the liquid crystal material in the parallel direction of molecules:
τ=Δε/ε∥
dielectric loss of a liquid crystal material is an important factor affecting the insertion loss of its microwave device. In order to obtain high quality liquid crystal microwave devices, the dielectric loss of the liquid crystal material must be reduced. For the liquid crystal material, the loss tangent varies with the direction of the liquid crystal molecules, i.e., the loss in the major axis and the minor axis directions of the liquid crystal molecules varies with the direction of the electric field, and when the loss of the liquid crystal material is calculated, the loss maximum value max (tan δ, tan δ Σ) is generally used as the loss of the liquid crystal material.
In order to comprehensively evaluate the performance parameters of the liquid crystal material under microwaves, a quality factor (eta) parameter is introduced:
η=τ/max(tanδ∥,tanδ⊥)
that is, the larger the dielectric tuning rate and the smaller the loss of the liquid crystal material, the larger the quality factor, which shows that the better the performance of the liquid crystal material.
The nematic temperature range of the liquid crystal material determines the operating temperature range of the liquid crystal microwave device, and the wider the nematic temperature interval of the liquid crystal material means the wider the operating temperature range of the microwave device.
Since the dielectric constant of a liquid crystal material at high frequencies is related to the birefringence of liquid crystal, the following formula is shown:
to obtain a higher dielectric constant, it is also desirable that the liquid crystal material have a high birefringence.
In order to meet the requirement of fast switching operation of high frequency components, the liquid crystal material is also required to have low rotational viscosity. To meet the requirement that high frequency components operate under electric field drive, it is also desirable that the liquid crystal material have a suitable dielectric constant at low frequencies, e.g., 1 KHz.
Disclosure of Invention
The present inventors have conducted intensive studies in order to solve at least one of the above-mentioned problems, and have found that the liquid crystal composition of the present invention has the characteristics of low rotational viscosity, good low-temperature miscibility and high low-frequency dielectric constant.
The invention also provides a high-frequency component containing the liquid crystal composition and a microwave antenna array.
Specifically, the present invention includes the following:
in a first aspect of the present invention, there is provided a liquid crystal composition comprising:
one or more compounds selected from the group consisting of compounds of formula IA, compounds of formula IB, and one or more compounds selected from the group consisting of compounds of formula II,
in the formula IA, R 1 Represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms or an alkenyloxy group having 3 to 8 carbon atoms, and R 1 Any one or more of the groups shown-CH 2 Optionally substituted with cyclopentylene, cyclobutylene or cyclopropyl ene; r is R 2 Representation F, CF 3 Or OCF 3
Independent representation->
m represents 1, 2 or 3; n represents 0 or 1;
in the formula IB, R 3 Represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms or an alkenyloxy group having 3 to 8 carbon atoms, and R 3 At least one of the radicals shown-CH 2 -being replaced by cyclopentylene, cyclobutylene or cyclopropyl ene; r is R 4 Representation F, CF 3 Or OCF 3
Independent representation->
p represents 1, 2 or 3; q represents 0 or 1;
in the formula II, R 5 、R 6 Each independently represents H, F, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkenyloxy group having 3 to 8 carbon atoms, a fluorine-substituted alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkoxy group having 1 to 10 carbon atoms, a fluorine-substituted alkenyl group having 2 to 10 carbon atoms or a fluorine-substituted alkenyloxy group having 3 to 8 carbon atoms, and R 5 、R 6 Any one or more of the groups shown-CH 2 Optionally substituted with cyclopentylene, cyclobutylene or cyclopropyl ene;
L 1 、L 2 、L 3 、L 4 each independently represents H, F or an alkyl group having 1 to 10 carbon atoms;
n 1 represents 6, 7, 8, 9, 10, 11 or 12.
In another aspect of the present invention, there is provided a high frequency device comprising the liquid crystal composition of the present invention.
In yet another aspect of the present invention, a microwave antenna array is provided that includes the high frequency component of the present invention.
The liquid crystal composition of the invention has the characteristics of low rotational viscosity, good low-temperature intersolubility and high low-frequency dielectric constant by containing one or more compounds selected from the group consisting of compounds shown in formulas IA and IB and one or more compounds selected from the group consisting of compounds shown in formula II.
The high frequency component and the microwave antenna array of the invention have quick response, wide working temperature range and low driving voltage by containing the liquid crystal composition of the invention.
Detailed Description
[ liquid Crystal composition ]
The liquid crystal composition of the present invention comprises one or more compounds selected from the group consisting of the compounds represented by formula IA, the compounds represented by formula IB, and one or more compounds selected from the group consisting of the compounds represented by formula II,
in the formula IA, R 1 Represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms or an alkenyloxy group having 3 to 8 carbon atoms, and R 1 Any one or more of the groups shown-CH 2 Optionally substituted with cyclopentylene, cyclobutylene or cyclopropyl ene; r is R 2 Representation F, CF 3 Or OCF 3
Independent representation->
m represents 1, 2 or 3; n represents 0 or 1;
in the formula IB, R 3 Represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms or an alkenyloxy group having 3 to 8 carbon atoms, and R 3 At least one of the radicals shown-CH 2 -being replaced by cyclopentylene, cyclobutylene or cyclopropyl ene; r is R 4 Representation F, CF 3 Or OCF 3
Independent representation->
p represents 1, 2 or 3; q represents 0 or 1;
in the formula II, R 5 、R 6 Each independently represents H, F, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkenyloxy group having 3 to 8 carbon atoms, a fluorine-substituted alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkoxy group having 1 to 10 carbon atoms, a fluorine-substituted alkenyl group having 2 to 10 carbon atoms or a fluorine-substituted alkenyloxy group having 3 to 8 carbon atoms, and R 5 、R 6 Any one or more of the groups shown-CH 2 Optionally substituted with cyclopentylene, cyclobutylene or cyclopropyl ene;
L 1 、L 2 、L 3 、L 4 each independently represents H, F or an alkyl group having 1 to 10 carbon atoms;
n 1 represents 6, 7, 8, 9, 10, 11 or 12.
The liquid crystal composition of the invention has the characteristics of low rotational viscosity, good low-temperature intersolubility and high low-frequency dielectric constant by containing one or more compounds selected from the group consisting of compounds shown in formulas IA and IB and one or more compounds selected from the group consisting of compounds shown in formula II.
In the liquid crystal composition of the present invention, optionally, the compound represented by the above formula IA is selected from the group consisting of compounds represented by the formulas IA 1 to IA 10,
in the formulae IA 1 to IA 10, R 1 Each independently represents an alkyl group having 1 to 10 carbon atoms and a carbon atom having 1 to 10 carbon atomsAlkoxy, alkenyl having 2 to 10 carbon atoms or alkenyloxy having 3 to 8 carbon atoms, and R 1 Any one or more of the groups shown-CH 2 Optionally substituted with cyclopentylene, cyclobutylene or cyclopropyl ene. Preferably, R 1 Each independently represents an alkyl group having 1 to 10 carbon atoms or an alkenyl group having 2 to 10 carbon atoms.
In the liquid crystal composition of the present invention, optionally, the compound represented by the above formula IB is selected from the group consisting of compounds represented by the formulas IB 1 to IB 10,
as the aforementioned compounds of the formulae IB 1 to IB 10, R 3 Represents an alkyl group having 1 to 10 carbon atoms, and R 3 At least one of the radicals shown-CH 2 -being replaced by cyclopentylene, cyclobutylene or cyclopropyl ene. The method comprises the steps of carrying out a first treatment on the surface of the R is R 3 One or more non-adjacent-CH in the alkyl group having 1 to 10 carbon atoms 2 Examples of the group substituted with a cyclopropylene group, a cyclobutylene group or a cyclopentylene group include a cyclopropyl group, a cyclobutylene group, a cyclopentyl group, a methylcyclopropylene group, an ethylcyclopropylene group, a propylcyclopropylene group, an isopropylcyclopropylene group, a n-butylcyclopropylene group, an isobutylcyclopropylene group, a tert-butylcyclopropylene group, a methylcyclobutylene group, an ethylcyclobutylene group, a propylcyclobutylene group, an isopropylcyclobutylene group, a n-butylcyclobutylene group, an isobutylcyclobutylene group, a tert-butylcyclobutylene group, a methylcyclopentylene group, an ethylcyclopentylene group, a propylcyclopentylene group, an isopropylcyclopentylene group, a n-butylcyclopentylene group, an isobutylcyclopentylene group and the like. R is R 3 Among the groups shown, cyclopropylene or cyclopentylene is preferable in terms of rotational viscosity, solubility, clearing point, and the like of the liquid crystal compound.
The liquid crystal composition of the present invention is preferably a positive dielectric anisotropic liquid crystal composition.
In the liquid crystal composition of the present invention, the amount (mass ratio) of the compound represented by the formula ia or the formula ib to be added to the liquid crystal composition is not particularly limited, and the total amount of the two may be, for example, 1 to 50%, preferably 5 to 30%; the amount (mass ratio) of the compound represented by the formula II to be added to the liquid crystal composition is not particularly limited, and may be, for example, 1 to 20%, preferably 1 to 10%.
In the liquid crystal composition of the present invention, optionally, the compound represented by the above formula II is selected from the group consisting of compounds represented by the formulas II 1 to II 3,
wherein R is 5 、R 6 Each independently represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkenyloxy group having 3 to 8 carbon atoms, a fluorine-substituted alkyl group having 1 to 10 carbon atoms, a fluorine-substituted alkoxy group having 1 to 10 carbon atoms, a fluorine-substituted alkenyl group having 2 to 10 carbon atoms or a fluorine-substituted alkenyloxy group having 3 to 8 carbon atoms, and R 5 、R 6 Any one or more of the groups shown-CH 2 Optionally substituted with cyclopentylene, cyclobutylene or cyclopropyl ene;
L 1 、L 2 、L 3 、L 4 each independently represents H, F or an alkyl group having 1 to 10 carbon atoms.
Alternatively, the compound of formula II is selected from the group consisting of compounds of formulas II 1-1 to II 3-3,
the liquid crystal composition of the invention can optionally contain one or more compounds shown in a formula III,
in the formula III, R 71 、R 72 Each independently represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 3 to 8 carbon atoms;
m 1 represents 1, 2 or 3;
independent representation->
Z each independently represents a single bond or-C≡C-; when m is 1 When=1, Z is-c≡c-, when m 1 When=2 or 3, Z has one of-c≡c-.
The amount (mass ratio) of the compound represented by the formula III to be added to the liquid crystal composition of the present invention is not particularly limited, and may be, for example, 1 to 50%, preferably 10 to 30%.
In the liquid crystal composition of the present invention, optionally, the compound represented by the above formula III is selected from the group consisting of compounds represented by the following formulas III 1 to III 13,
wherein R is 71 、R 72 Each independently represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms.
The liquid crystal composition of the invention can optionally contain one or more compounds shown in a formula IV,
in formula IV, R 8 Represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms or an alkenyloxy group having 3 to 8 carbon atoms, R 9 Representation F, CF 3 、OCF 3 An alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms or an alkenyloxy group having 3 to 8 carbon atoms;
independent representation->
By containing the compound represented by formula IV in the liquid crystal composition of the present invention, the birefringence and clearing point of the liquid crystal composition of the present invention can be significantly improved.
In the liquid crystal composition of the present invention, optionally, the compound represented by the above formula IV is selected from the group consisting of compounds represented by the formulas IV1 to IV7,
wherein R is 8 Represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms or an alkenyloxy group having 3 to 8 carbon atoms, R 91 Representation F, CF 3 、OCF 3 ,R 92 Represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a compound having 2 to 10 carbon atoms3-8 alkenyloxy;
Y 1 、Y 2 、Y 3 、Y 4 each independently represents H or F, and Y 1 、Y 2 、Y 3 、Y 4 H is not represented at the same time.
The amount (mass ratio) of the compound represented by the formula IV to be added to the liquid crystal composition of the present invention is not particularly limited, and may be 1 to 20%, preferably 5 to 15%.
In the liquid crystal composition of the present invention, optionally, various functional dopants may be added, and when the dopants are contained, the content of the dopants is preferably 0.01 to 1% by mass based on the liquid crystal composition, and examples of the dopants include antioxidants, light stabilizers, and chiral agents.
The antioxidants can be exemplified by the following,
the light stabilizer may be exemplified by the following,
u represents an integer of 1 to 10.
[ high-frequency Assembly, microwave antenna array ]
The invention also relates to a high frequency component comprising the liquid crystal composition of the invention.
The invention also relates to a microwave antenna array comprising the inventive high frequency component.
The high-frequency component and the microwave antenna array of the invention comprise the liquid crystal composition of the invention, and have the advantages of quick response, wide working temperature range and low driving voltage.
Examples
In order to more clearly illustrate the present invention, the present invention will be further described with reference to preferred embodiments. It is to be understood by persons skilled in the art that the following detailed description is illustrative and not restrictive, and that this invention is not limited to the details given herein.
In the invention, the preparation method is a conventional method unless specified otherwise, the raw materials used can be obtained from the disclosed commercial path unless specified otherwise, the percentages refer to mass percentages, the temperature is in degrees centigrade (DEG C), the liquid crystal compound is also a liquid crystal monomer, and the specific meanings and testing conditions of other symbols are as follows:
cp represents a liquid crystal clearing point (DEG C), and is tested by DSC quantification;
Δn represents optical anisotropy, Δn=n e -n o Wherein n is o Refractive index of ordinary ray, n e The refractive index of the extraordinary ray is 20+/-2 ℃ and is measured by an Abbe refractometer at 589 nm;
delta epsilon represents dielectric anisotropy, delta epsilon = epsilon-epsilon, where epsilon is the dielectric constant parallel to the molecular axis For the dielectric constant perpendicular to the molecular axis, the test condition is 20+/-0.5 ℃ and 20 micrometers anti-parallel box, INSTEC: ALCT-CUST-4C test;
γ 1 the rotational viscosity (mPas) was shown under conditions of 20.+ -. 0.5 ℃ and 20 μm antiparallel box, INSTEC: ALCT-CUST-4C test.
The preparation method of the liquid crystal composition comprises the following steps: and weighing each liquid crystal monomer according to a certain proportion, putting the liquid crystal monomers into a stainless steel beaker, placing the stainless steel beaker with each liquid crystal monomer on a magnetic stirring instrument for heating and melting, adding a magnetic rotor into the stainless steel beaker after the liquid crystal monomers in the stainless steel beaker are melted, uniformly stirring the mixture, and cooling to room temperature to obtain the liquid crystal composition.
The performance of liquid crystal at high frequency is tested by a test method reported in literature: penirschke, a. (2004). Cavity perturbation method for characterization of liquid crystals up to 35GHz.Microwave Conference,2004.34thEuropean.
Liquid crystal was introduced into Polytetrafluoroethylene (PTFE) or fused silica capillaries, and the filled capillaries were introduced into the middle of the chamber having a resonance frequency of 19 GHz. The input signal source is then applied and the result of the output signal is recorded with a vector network analyzer. The change in the resonance frequency and Q factor between the capillary filled with liquid crystal and the blank capillary was measured, and the dielectric constant and loss tangent were calculated. The permittivity components perpendicular and parallel to the liquid crystal directors are obtained by alignment of the liquid crystal in a magnetic field, the direction of the magnetic field is set accordingly, and then rotated by 90 ° accordingly.
The structures of the liquid crystal monomers used in the embodiments of the invention are represented by codes, and the codes of the liquid crystal ring structures, the end groups and the connecting groups are represented by the following tables 1 and 2:
table 1: corresponding code of ring structure
Table 2: corresponding codes of end groups and linking groups
Examples:
the code is PGUQU-3-F;
the code is PGUQU-Cp-F; />
The code is PGUQU-Cpr1-F;
the code is DPUQK-3-F;
the code is APUQK-3-F;
the code is PWP-3-1;
the code is UWPP-2-3;
the code is PWGPP-3-4;
the code is PPGU-3-F;
the code is PPYY-4-3.
Example 1:
the formulation and corresponding properties of the liquid crystal composition are shown in Table 3 below.
Table 3: formulation and corresponding Properties of the liquid Crystal composition of example 1
/>
Example 2:
the formulation and corresponding properties of the liquid crystal composition are shown in Table 4 below.
Table 4: formulation and corresponding Properties of the liquid Crystal composition of example 2
/>
Example 3:
the formulation and corresponding properties of the liquid crystal composition are shown in Table 5 below.
Table 5: formulation and corresponding Properties of the liquid Crystal composition of example 3
/>
Example 4:
the formulation and corresponding properties of the liquid crystal composition are shown in Table 6 below.
Table 6: formulation and corresponding Properties of the liquid Crystal composition of example 4
/>
Example 5:
the formulation and corresponding properties of the liquid crystal composition are shown in Table 7 below.
Table 7: formulation and corresponding Properties of the liquid Crystal composition of example 5
/>
Example 6:
the formulation and corresponding properties of the liquid crystal composition are shown in Table 8 below.
Table 8: formulation and corresponding Properties of the liquid Crystal composition of example 6
/>
Comparative example 1:
the formulation and corresponding properties of the liquid crystal composition are shown in Table 9 below.
Table 9: formulation and corresponding Properties of the liquid Crystal composition of comparative example 1
/>
As can be seen from the above examples, the liquid crystal composition provided in the examples has low rotational viscosity, good low-temperature intersolubility and high low-frequency dielectric constant. And, as is apparent from comparison with the liquid crystal composition provided in the comparative example, the liquid crystal composition provided in the example has a lower rotational viscosity γ 1 Better low temperature miscibility and higher low frequency dielectric constant. Accordingly, the high frequency component, microwave antenna array comprising the liquid crystal composition of the embodiment has a faster response speed, a wider operating temperature range and a lower driving voltage.

Claims (3)

1. A liquid crystal composition, characterized in that the liquid crystal composition is shown in the following table,
category(s) Liquid crystal monomer code Content (%) ⅠA DGUQK-4-F 10 ⅠA PGUQK-3-F 5 ⅠB PGUQU-Cp-F 5 ⅠB PGUQU-Cpr1-F 10 Ⅱ1-1 5 Ⅱ1-2 5 Ⅱ3-1 5 Ⅱ3-2 5 PWP-3-1 10 UWP-3-2 10 UWPP-2-3 15 UWPP-4-3 15
Wherein the content is mass content;
the DGUQK-4-F structure is
PGUQK-3-F has the structure of
PGUQU-Cpr1-F has the structure
PGUQU-Cp-F having the structure
II 1-1 is of the structure
II 1-2 is of the structure
II 3-1 is of the structure
II 3-2 is of the structure
PWP-3-1 has the structure of
The UWP-3-2 structure is
The UWPP-2-3 has the structure of
The UWPP-4-3 has the structure of
2. A high frequency device comprising the liquid crystal composition of claim 1.
3. A microwave antenna array comprising the high frequency assembly of claim 2.
CN201911146269.XA 2019-11-21 2019-11-21 Liquid crystal composition, high-frequency component and microwave antenna array Active CN112824484B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911146269.XA CN112824484B (en) 2019-11-21 2019-11-21 Liquid crystal composition, high-frequency component and microwave antenna array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911146269.XA CN112824484B (en) 2019-11-21 2019-11-21 Liquid crystal composition, high-frequency component and microwave antenna array

Publications (2)

Publication Number Publication Date
CN112824484A CN112824484A (en) 2021-05-21
CN112824484B true CN112824484B (en) 2023-12-05

Family

ID=75907376

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911146269.XA Active CN112824484B (en) 2019-11-21 2019-11-21 Liquid crystal composition, high-frequency component and microwave antenna array

Country Status (1)

Country Link
CN (1) CN112824484B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639674A (en) * 2009-12-03 2012-08-15 默克专利股份有限公司 Components for high frequency technology, liquid crystal media and compounds
CN102924243A (en) * 2012-03-27 2013-02-13 石家庄诚志永华显示材料有限公司 Liquid crystal compound containing cyclopentyl and difluorometheneoxy linking group, preparation method and applications thereof
CN103242855A (en) * 2013-05-15 2013-08-14 石家庄诚志永华显示材料有限公司 Liquid crystal compound containing cyclobutyl and difluorometheneoxy
CN103555345A (en) * 2013-08-30 2014-02-05 石家庄诚志永华显示材料有限公司 Preparation and application of novel liquid crystal compound
CN104593003A (en) * 2015-02-15 2015-05-06 石家庄诚志永华显示材料有限公司 Liquid crystal medium
CN105176542A (en) * 2015-09-02 2015-12-23 石家庄诚志永华显示材料有限公司 Liquid crystal compound, and preparation method and application thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639674A (en) * 2009-12-03 2012-08-15 默克专利股份有限公司 Components for high frequency technology, liquid crystal media and compounds
CN102924243A (en) * 2012-03-27 2013-02-13 石家庄诚志永华显示材料有限公司 Liquid crystal compound containing cyclopentyl and difluorometheneoxy linking group, preparation method and applications thereof
CN103242855A (en) * 2013-05-15 2013-08-14 石家庄诚志永华显示材料有限公司 Liquid crystal compound containing cyclobutyl and difluorometheneoxy
CN103555345A (en) * 2013-08-30 2014-02-05 石家庄诚志永华显示材料有限公司 Preparation and application of novel liquid crystal compound
CN104593003A (en) * 2015-02-15 2015-05-06 石家庄诚志永华显示材料有限公司 Liquid crystal medium
CN105176542A (en) * 2015-09-02 2015-12-23 石家庄诚志永华显示材料有限公司 Liquid crystal compound, and preparation method and application thereof

Also Published As

Publication number Publication date
CN112824484A (en) 2021-05-21

Similar Documents

Publication Publication Date Title
CN111484857B (en) Liquid crystal composition, liquid crystal display element and liquid crystal display
CN108865180B (en) Liquid crystal composition and high-frequency assembly comprising same
CN109880638B (en) Liquid crystal composition, liquid crystal display element and liquid crystal display
CN110760311A (en) Lateral methyl poly-biphenyl liquid crystal compound, liquid crystal composition and application thereof
CN113512430B (en) Negative dielectric anisotropic liquid crystal composition and liquid crystal display device
CN113234449B (en) Liquid crystal composition and liquid crystal lens
CN112824489B (en) Liquid crystal composition, high-frequency component and microwave antenna array
JP2022048990A (en) Liquid crystal composition used in element for phase control of electromagnetic wave signal
CN112824484B (en) Liquid crystal composition, high-frequency component and microwave antenna array
CN110746981B (en) Liquid crystal composition and application thereof
CN108865179B (en) Liquid crystal composition and high-frequency component comprising same
CN110964540B (en) Liquid crystal medium suitable for high-frequency electromagnetic wave modulation and assembly thereof
CN112824486B (en) Liquid crystal composition, high-frequency component and microwave antenna array
CN112824483B (en) Liquid crystal composition, high-frequency component and microwave antenna array
CN112824487B (en) Liquid crystal composition, high-frequency component and microwave antenna array
CN112824488A (en) Liquid crystal composition, high-frequency assembly and microwave antenna array
CN113528154B (en) Liquid crystal composition with extremely low dielectric loss and high-frequency component thereof
CN112824494B (en) Liquid crystal composition, high-frequency component and microwave antenna array
CN114106849B (en) Liquid crystal composition containing conjugated ene compound and application thereof
CN116332800A (en) Liquid crystal compound with ultralow dielectric loss, composition and high-frequency component
CN112824485A (en) Liquid crystal composition, high-frequency assembly and microwave antenna array
CN110964541B (en) Liquid crystal medium suitable for high-frequency electromagnetic wave modulation and assembly thereof
JP2019143115A (en) Liquid crystal composition and liquid crystal high-frequency antenna
CN117625206A (en) Liquid crystal composition with low viscoelastic ratio, high dielectric adjustability and low dielectric loss and high-frequency component
CN117535059A (en) dl- (±) -beta-methyl amyl terphenyl liquid crystal composition and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant