CN112821174A - 一种双温工作全固态Nd:YAG激光器 - Google Patents

一种双温工作全固态Nd:YAG激光器 Download PDF

Info

Publication number
CN112821174A
CN112821174A CN202011578522.1A CN202011578522A CN112821174A CN 112821174 A CN112821174 A CN 112821174A CN 202011578522 A CN202011578522 A CN 202011578522A CN 112821174 A CN112821174 A CN 112821174A
Authority
CN
China
Prior art keywords
laser
yag laser
solid
yag
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011578522.1A
Other languages
English (en)
Inventor
金锋
吴振宇
刘亚萍
沈琪皓
陈仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South West Institute of Technical Physics
Original Assignee
South West Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South West Institute of Technical Physics filed Critical South West Institute of Technical Physics
Priority to CN202011578522.1A priority Critical patent/CN112821174A/zh
Publication of CN112821174A publication Critical patent/CN112821174A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种双温工作全固态Nd:YAG激光器,其包括:Nd:YAG激光增益介质、泵浦源、加热器、调Q器件、激光谐振腔镜;激光谐振腔镜、Nd:YAG激光增益介质、调Q器件形成谐振腔;泵浦源向谐振腔内泵浦激光,加热器为泵浦源加热。本发明两段温控的方法相较前面的高温工作升温跨度比较小,需要的预热时间大大缩短,这在许多应用上很有用,特别是在军事上如军用激光测距、激光照射器、激光测距/照射一体机等有广泛的应用需求。

Description

一种双温工作全固态Nd:YAG激光器
技术领域
本发明属于激光技术领域,涉及一种分段定温工作的二极管泵浦Nd:YAG激光器,具体为一种双温工作全固态Nd:YAG激光器,可用于军用激光测距、激光照射器、激光测距/照射一体机。
背景技术
二极管泵浦固体激光器(又称为全固态激光器)由于其高效率、长寿命、高可靠性在很多领域逐步取代闪光灯泵浦固体激光器。
通常的二极管泵浦Nd:YAG激光器是利用Nd:YAG的808nm吸收峰,采用与之对应波长的激光二极管作为泵浦源。由于激光二极管波长会随着温度的变化而发生漂移(0.25~0.3nm/℃),而激光增益介质吸收带宽有限(Nd:YAG其吸收带宽约为3nm),二极管泵浦固体激光器其泵浦源——激光二极管(简称LD又称为半导体激光器)发射的光谱宽度较窄,在温度变化较大时可能影响激光二极管发射波长与增益介质吸收带之间的匹配,降低激光器输出,严重时甚至造成不出光的后果。
为了适应环境温度变化(-40~60℃),通常采用TEC致冷器或液冷对激光二极管进行温控,通过温控稳定激光二极管波长来保证二极管泵浦固体激光器正常工作。但是采用液冷比较麻烦,采用TEC热电致冷器在低温或常温下能很好控温,但在高温时由于热端温度散不掉,TEC致冷效率急剧下降,同时本身也产生大量的热,温度根本控不下来。与此同时还会增加系统的体积、重量和能耗。
为解决此问题,有人提出了激光二极管高温工作的技术方案应对,只加热不制冷,加热到要求环境的高温点附近,此时激光二极管波长为808nm,规避了温控的难题。
发明内容
(一)发明目的
本发明的目的是:提供一种设定双工作温度分别利用Nd:YAG主次吸收峰的全固态Nd:YAG激光器,可在-40℃~60℃环境温度范围内正常工作,解决通常的二极管泵浦固体激光器在高温环境下温度根本控不住的问题。
(二)技术方案
为了解决上述技术问题,本发明提供一种双温工作全固态Nd:YAG激光器,在-40℃~10℃时,将激光二极管温度控制在7℃左右,使激光二极管的发射波长为795nm,此时与Nd:YAG 796nm次吸收峰良好匹配;在10℃~60℃时,将激光二极管温度控制在55℃左右,使激光二极管的发射波长为807nm,此时与Nd:YAG 808nm主吸收峰良好匹配。从而使该全固态Nd:YAG激光器能在-40℃~60℃环境温度范围内正常工作。
其中,所述的激光工作物质为Nd:YAG晶体或陶瓷,可以为圆棒状、板条状或其它形状。
其中,其泵浦方式可以为纵向泵浦(端面泵浦)或横向泵浦(侧面泵浦),也可以是纵向泵浦+横向泵浦。
其中,采用TEC、电阻丝、PTC恒温发热片等将激光器升温至7℃或55℃。由于激光二极管发射波长的温漂为0.25~0.3nm/℃,故所用泵浦源--激光二极管的温漂差异,对应设定的7℃或55℃工作点会有少许变化,前述7℃或55℃工作点是按温漂为0.25nm/℃计算的。
如果由于工作点不同导致的1064nm激光输出有差异,可通过程控激光二极管驱动电源通过适当增加电流补偿予以弥补。
全固态激光器可采用主动调Q(如LN、KDP、RTP等电光调Q、声光Q开关)也可采用被动调Q(如Cr4+:YAG、BDN燃料盒等)。
本发明利用Nd:YAG的796nm和808nm两个吸收峰,分段加热将温度稳定在+7℃或+55℃附近,对应激光二极管波长为795nm和807nm,考虑到激光二极管工作时本身发热及Nd:YAG吸收峰有一定的带宽,故设置工作温度略低于最佳值,较之高温工作方案启动时间快、功耗低,能满足军用激光器宽温工作要求。在军用激光测距、激光照射器、激光测距/照射一体机有广泛的应用;体积、重量及能耗(SWaP)不断降低是近几十年来军用激光器发展的主要趋势。
(三)有益效果
上述技术方案所提供双温工作全固态Nd:YAG激光器,两段温控的方法相较前面的高温工作升温跨度比较小,需要的预热时间大大缩短,这在许多应用上很有用,特别是在军事上如军用激光测距、激光照射器、激光测距/照射一体机等有广泛的应用需求。
附图说明
图1是激光Nd:YAG吸收谱(1atm%掺杂Nd3+)。
图2是实施例中侧面泵浦Nd:YAG激光器示意图。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
如图2所示,本发明双温工作全固态Nd:YAG激光器包括:Nd:YAG激光增益介质1、激光二极管阵列2、加热器3、调Q开关4、全反镜5、输出镜6;全反镜5、Nd:YAG激光增益介质1、调Q开关4、输出镜6由前至后同轴布置,形成平平谐振腔,激光二极管阵列2作为泵浦源,布置在Nd:YAG激光增益介质1外侧,加热器3布置在激光二极管阵列2外侧。
Nd:YAG激光增益介质1上设置温度探头7,用于测量Nd:YAG激光增益介质1的温度。
激光增益介质采用Nd:YAG激光晶体,尺寸为5mm×5mm×50mm,Nd3+掺杂浓度为1atm%,晶体两个端面镀反射率≤0.3%@1064nm的激光增透膜,装夹在一个U型夹具座上,侧面抛光,泵浦入射的晶体侧面镀792nm~810nm的宽带激光增透膜,激光二极管阵列的侧面泵浦,产生沿晶体轴向的激光辐射。
图2中,激光二极管阵列2包括2组巴条,每组各7个巴条,每个巴条最大输出峰值功率200W,巴条间隔0.75mm,单个激光二极管阵列发光区为4.5mm×10mm,用快轴准直镜实现快轴压缩,从30度压缩到小于3度;慢轴不做处理,每组均以11度的发光角度发射,靠近晶体侧面实现紧凑型侧面泵浦。
所述激光器采用一种平平谐振腔,由1Nd:YAG激光晶体、4调Q开关、5全反镜和6输出镜(输出耦合率40%)及偏振片(图1中未画出)组成,激光在谐振腔中振荡输出1064nm激光8。
所述激光器泵浦源激光二极管阵列最大泵浦能量为560mJ@200ms,在泵浦能量为480mJ@200ms时,1064nm激光输出80mJ@~10ns。
所述激光器其特征在于Nd:YAG激光晶体的吸收谱如图1所示,为了保证全固态激光器能在-40℃~60℃宽的范围内能正常工作,采用了与传统全固态激光器单一温控不同的主次峰分段温控的概念。选择泵浦源激光二极管为795nm@7℃,温漂为0.25nm/℃,7温度探头实时获取2激光二极管阵列热沉上的温度,在-40℃~7℃时,通过3快速加热器将激光二极管温度升温到7℃停止继续升温,使其工作于7℃~10℃,此时激光二极管的发射波长为795nm~795.75nm,与Nd:YAG 796nm次吸收峰良好匹配;在温度为10℃~55℃时,通过3快速加热器将激光二极管温度升温到55℃左右,使其工作于55℃~60℃,此时激光二极管的发射波长为807nm~808.25nm,此时与Nd:YAG 808nm主吸收峰良好匹配。两段环境温度范围内分别工作于二个工作温度点,泵浦源激光二极管的发射波长分别对应于Nd:YAG的主次峰,达到二者之间的良好匹配,从而使该全固态Nd:YAG激光器能在-40℃~60℃环境温度范围内正常工作。
需要注意到是,上述描述中的具体元件及参数仅仅是示例性的不仅仅限于此,其中激光增益介质也为可为圆棒状或板条状等,既可为Nd:YAG晶体也可为Nd:YAG陶瓷,Nd3+掺杂浓度也可根据需要变化,激光谐振腔镜也可为棱镜或平凹镜、平凸镜。激光谐振腔除直腔外也可为折叠腔等。
该全固态激光器可采用主动调Q(如LN、KDP、RTP等电光调Q、声光Q开关)也可采用被动调Q(如Cr4+:YAG、BDN燃料盒等)。
本实施例激光二极管阵列2作为泵浦源,不仅仅限于图2所示位于激光增益介质一侧,也可在两侧,也可两侧交叉放置,也可环状侧面泵浦。除了上述侧面泵浦(横向泵浦)方式外,还有其它其泵浦方式,既可以为纵向泵浦(端面泵浦),也可以是纵向泵浦+横向泵浦。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种双温工作全固态Nd:YAG激光器,其特征在于,包括:Nd:YAG激光增益介质(1)、泵浦源、加热器(3)、调Q器件、激光谐振腔镜;激光谐振腔镜、Nd:YAG激光增益介质(1)、调Q器件形成谐振腔;泵浦源向谐振腔内泵浦激光,加热器(3)为泵浦源加热。
2.如权利要求1所述的双温工作全固态Nd:YAG激光器,其特征在于,所述Nd:YAG激光增益介质(1)为圆棒状或板条状,为Nd:YAG晶体或Nd:YAG陶瓷。
3.如权利要求2所述的双温工作全固态Nd:YAG激光器,其特征在于,所述激光谐振腔镜为棱镜、或平凹镜、或平凸镜;激光谐振腔为直腔或折叠腔。
4.如权利要求3所述的双温工作全固态Nd:YAG激光器,其特征在于,所述调Q器件采用主动调Q或被动调Q。
5.如权利要求4所述的双温工作全固态Nd:YAG激光器,其特征在于,所述泵浦源为侧面横向泵浦、或纵向端面泵浦、或纵向泵浦与横向泵浦相结合。
6.如权利要求5所述的双温工作全固态Nd:YAG激光器,其特征在于,所述泵浦源为侧面横向泵浦时,泵浦源位于Nd:YAG激光增益介质(1)一侧、或两侧、或两侧交叉放置、或环状侧面。
7.如权利要求6所述的双温工作全固态Nd:YAG激光器,其特征在于,所述激光谐振腔镜包括全反镜(5)、输出镜(6),调Q器件为调Q开关(4);全反镜(5)、Nd:YAG激光增益介质(1)、调Q开关(4)、输出镜(6)由前至后同轴布置,形成平平谐振腔。
8.如权利要求7所述的双温工作全固态Nd:YAG激光器,其特征在于,所述泵浦源选用激光二极管阵列(2)作为泵浦源,布置在Nd:YAG激光增益介质(1)外侧,加热器(3)布置在激光二极管阵列(2)外侧。
9.如权利要求8所述的双温工作全固态Nd:YAG激光器,其特征在于,所述激光二极管阵列(2)上设置温度探头(7),实时获取激光二极管阵列(2)热沉上的温度。
10.如权利要求9所述的双温工作全固态Nd:YAG激光器,其特征在于,所述激光二极管阵列(2)包括2组巴条,每组各7个巴条,每个巴条最大输出峰值功率200W,巴条间隔0.75mm,单个激光二极管阵列发光区为4.5mm×10mm,用快轴准直镜实现快轴压缩,从30度压缩到小于3度。
CN202011578522.1A 2020-12-28 2020-12-28 一种双温工作全固态Nd:YAG激光器 Pending CN112821174A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011578522.1A CN112821174A (zh) 2020-12-28 2020-12-28 一种双温工作全固态Nd:YAG激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011578522.1A CN112821174A (zh) 2020-12-28 2020-12-28 一种双温工作全固态Nd:YAG激光器

Publications (1)

Publication Number Publication Date
CN112821174A true CN112821174A (zh) 2021-05-18

Family

ID=75854039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011578522.1A Pending CN112821174A (zh) 2020-12-28 2020-12-28 一种双温工作全固态Nd:YAG激光器

Country Status (1)

Country Link
CN (1) CN112821174A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030185264A1 (en) * 2001-12-28 2003-10-02 Communications Res. Lab., Ind. Admin. Inst. Diode-pumped solid-state laser oscillator
US20090279577A1 (en) * 2008-05-06 2009-11-12 Mccarthy John C Multi-pass laser amplifier with staged gain mediums of varied absorption length
CN103682968A (zh) * 2013-12-09 2014-03-26 西南技术物理研究所 兆瓦级峰值功率固体激光器
CN111404004A (zh) * 2019-12-10 2020-07-10 西南技术物理研究所 微型二极管侧泵重频opo人眼安全激光器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030185264A1 (en) * 2001-12-28 2003-10-02 Communications Res. Lab., Ind. Admin. Inst. Diode-pumped solid-state laser oscillator
US20090279577A1 (en) * 2008-05-06 2009-11-12 Mccarthy John C Multi-pass laser amplifier with staged gain mediums of varied absorption length
CN103682968A (zh) * 2013-12-09 2014-03-26 西南技术物理研究所 兆瓦级峰值功率固体激光器
CN111404004A (zh) * 2019-12-10 2020-07-10 西南技术物理研究所 微型二极管侧泵重频opo人眼安全激光器

Similar Documents

Publication Publication Date Title
US6185235B1 (en) Lasers with low doped gain medium
US8908737B2 (en) Transition-metal-doped thin-disk laser
US10630044B2 (en) Frequency-doubled laser and method of generating harmonic laser
Duan et al. Room temperature efficient continuous wave and Q-switched Ho: YAG laser double-pass pumped by a diode-pumped Tm: YLF laser
Hodgson et al. High-power TEM00-mode operation of diode-pumped solid state lasers
Zhang et al. Watt-level continuous-wave intracavity frequency-doubled Pr: YLF-LBO laser at 320 nm
CN115632302A (zh) 一种固体激光器
Krupke Advanced diode-pumped solid state lasers (DPSSLs): near-term trends and future prospects
Rustad et al. Low threshold laser-diode side-pumped Tm: YAG and Tm: Ho: YAG lasers
CN112821174A (zh) 一种双温工作全固态Nd:YAG激光器
Kim et al. Development of compact femtosecond Yb: KYW oscillators: simulation and experiment
Liu et al. 7 kHz sub-nanosecond microchip laser amplified by a grazing incidence double pass slab amplifier
Speiser et al. 25-W diode-pumped continuous-wave quasi-three-level Nd: YAG thin disk laser
Meissner et al. 200-W Tm: YLF INNOSLAB laser
CN103682968A (zh) 兆瓦级峰值功率固体激光器
Setzler et al. Resonantly diode-pumped eyesafe Er: YAG lasers
Aman et al. Laser diode corner pumped Nd: KGW slab laser
Šulc et al. Nd: YAG/V: YAG microchip laser generating 1 ns long pulses at 1338 nm
Fan et al. A linearly polarized continuous-wave 1357-nm Nd: YAG laser
Kitajima et al. Kerr-Lens Mode-Locked Yb: Lu2O3 Ceramic Thin-Disk Laser
Tilleman et al. High-power free-running eye-safe laser based on a high-strength Cr: Yb: Er: glass rod
Liu Research Progress of LD Pumped Yb: YAG Solid-State Laser [A]
Li et al. Implementation of a diode-pumped Nd: YAG laser with quick-change output couplers for high-beam quality 1064 or 532 nm wavelength generation
Schilling et al. End-pumped monoblock laser for eyesafe targeting systems
Sulc et al. Q-switched Nd: YAG/V: YAG monolith microlaser

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210518

RJ01 Rejection of invention patent application after publication