CN112818123A - 一种文本的情感分类方法 - Google Patents

一种文本的情感分类方法 Download PDF

Info

Publication number
CN112818123A
CN112818123A CN202110178791.7A CN202110178791A CN112818123A CN 112818123 A CN112818123 A CN 112818123A CN 202110178791 A CN202110178791 A CN 202110178791A CN 112818123 A CN112818123 A CN 112818123A
Authority
CN
China
Prior art keywords
feature vector
vector
text
word
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110178791.7A
Other languages
English (en)
Inventor
吴迪
王梓宇
蔡超志
赵伟超
赵玉凤
段晓旋
杨丽君
马文莉
马超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Engineering
Original Assignee
Hebei University of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Engineering filed Critical Hebei University of Engineering
Priority to CN202110178791.7A priority Critical patent/CN112818123A/zh
Publication of CN112818123A publication Critical patent/CN112818123A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/35Clustering; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/237Lexical tools
    • G06F40/247Thesauruses; Synonyms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Databases & Information Systems (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Machine Translation (AREA)

Abstract

本发明适用于情感分类技术领域,提供了一种文本的情感分类方法,包括:基于Bert模型对目标文本进行动态词向量建模,并将动态词向量数据输入至预设的双通道神经网络模型的CNN通道中进行特征学习,得到第一特征向量;获取目标文本的主题信息,基于word2vec模型对主题信息进行静态词向量建模,并将静态词向量数据输入至预设的双通道神经网络模型的GRU通道中进行特征学习,得到第二特征向量;将第一特征向量和第二特征向量进行拼接,得到第三特征向量;通过自注意力机制对第三特征向量进行处理,并基于预设的分类器模型对处理后的第三特征向量进行情感分类。本发明能够提高对目标文本进行情感分类的准确率。

Description

一种文本的情感分类方法
技术领域
本发明属于情感分类技术领域,尤其涉及一种文本的情感分类方法。
背景技术
情感分类也称意见挖掘、倾向性分析等,指利用文本挖掘、自然语言处理等技术对评论文本中的主观信息进行识别和提取,获取分析对象对某话题或者某文本的观点态度。
目前,利用深度学习方法和注意力机制技术对评论文本进行情感分类已经成为了新的研究热点。然而,本申请的发明人发现,现有的情感分类方法在训练好一个语言模型之后,每一个词的词向量是固定不变的,后续使用词向量时,无论输入的句子是什么,词向量都没有变化,不能根据上下文进行相应的变动。因此,现有的情感分类方法无法应对评论文本中某个词存在一词多义的问题,分类准确率较差。
发明内容
有鉴于此,本发明实施例提供了一种文本的情感分类方法,以解决现有技术中的情感分类方法无法应对一词多义、分类准确率较差的问题。
本发明实施例的第一方面提供了一种文本的情感分类方法,包括:
基于预训练的Bert模型对目标文本进行动态词向量建模,并将建模后的动态词向量数据输入至预设的双通道神经网络模型的CNN通道中进行特征学习,得到第一特征向量;
获取目标文本的主题信息,基于预训练的word2vec模型对主题信息进行静态词向量建模,并将建模后的静态词向量数据输入至预设的双通道神经网络模型的GRU通道中进行特征学习,得到第二特征向量;
将第一特征向量和第二特征向量进行拼接,得到第三特征向量;
通过自注意力机制对第三特征向量进行处理,并基于预设的分类器模型对处理后的第三特征向量进行情感分类。
可选的,基于预训练的Bert模型对目标文本进行动态词向量建模,包括:
S=[w1,w2...wn]T
式中,S为n行K列的动态词向量矩阵,n为目标文本中的单词数量,wi为第i个单词的K维动态词向量,1≤i≤n。
可选的,双通道神经网络模型的CNN通道的卷积层设置有至少两个大小不同的卷积核,CNN通道提取第一特征向量的方法包括:
各个卷积核分别对动态词向量数据进行卷积处理,得到各个卷积核对应的动态词向量数据的特征向量矩阵;
基于最大池化法分别从各个特征向量矩阵中提取最大特征向量;
基于注意力机制为各个最大特征向量分配相应的权重,得到第一特征向量。
可选的,基于注意力机制为各个最大特征向量分配相应的权重,得到第一特征向量,包括:
Figure BDA0002941539790000021
式中,Sc为第一特征向量,N为最大特征向量的数量,αj为注意力机制计算的第j个最大特征向量的权重,Zmax,j为第j个最大特征向量。
可选的,获取目标文本的主题信息,包括:
通过LDA主题模型获取目标文本的多个初始主题信息;
提取各个初始主题信息的前m个单词,得到各个初始主题信息对应的主题信息;其中,各个初始主题信息对应的主题信息的集合形成目标文本的主题信息,m为预设值。
可选的,基于预训练的word2vec模型对主题信息进行静态词向量建模,包括:
T=[t1,t2...tm]
式中,T为任意一个初始主题信息对应的主题信息的静态词向量矩阵,tj为第j个单词的静态词向量,1≤j≤m。
可选的,GRU通道提取第二特征向量的方法,包括:
根据各个单词的静态词向量计算各个单词的特征向量;
基于注意力机制为各个单词的特征向量分配相应的权重,得到第二特征向量。
可选的,基于注意力机制为各个单词的特征向量分配相应的权重,得到第二特征向量,包括:
Figure BDA0002941539790000031
式中,Sg为第二特征向量,M为特征向量的数量,Hij为第i个主题的第j个单词的特征向量,βij为特征向量的权重。
可选的,将第一特征向量和第二特征向量进行拼接,得到第三特征向量,包括:
Y=connact(Sc,Sg)
式中,Y为第三特征向量,connact为拼接函数,Sc为第一特征向量,Sg为第二特征向量。
可选的,通过自注意力机制对第三特征向量进行处理,包括:
Figure BDA0002941539790000032
式中,
Figure BDA0002941539790000033
为自注意力机制处理后的第三特征向量,softmax为归一化指数函数,Y为第三特征向量,dk为向量维度。
本发明实施例与现有技术相比存在的有益效果是:
本发明通过预训练的Bert模型对目标文本进行动态词向量建模,能够很好的应对目标文本当中一词多义的现象;并且,通过提取目标文本的主题信息进行静态词向量建模,能够为分类器提供具有针对意义的主题信息作为参考;进一步,动态词向量数据和静态词向量数据输入至双通道神经网络模型中进行特征提取后,将双通道输出的特征向量进行拼接,并利用自注意力机制对拼接向量进行处理,将处理后的特征向量输入至分类器中,即可得到目标文本的情感类别。本发明能够很好地应对目标文本中的一词多义现象,提高对目标文本情感分类的准确率,优化目标文本的情感分类结果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的文本的情感分类方法的实现流程示意图;
图2是本发明实施例提供的文本的情感分类方法的整体流程示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
本发明实施例的第一方面提供了一种文本的情感分类方法,如图1所示,该方法具体包括以下步骤:
步骤S101、基于预训练的Bert模型对目标文本进行动态词向量建模,并将建模后的动态词向量数据输入至预设的双通道神经网络模型的CNN通道中进行特征学习,得到第一特征向量。
可选的,作为本发明实施例提供的文本的情感分类方法的一种具体的实施方式,基于预训练的Bert模型对目标文本进行动态词向量建模,包括:
S=[w1,w2...wn]T
式中,S为n行K列的动态词向量矩阵,n为目标文本中的单词数量,wi为第i个单词的K维动态词向量,1≤i≤n。
在本发明实施例中,目标文本可以为网络上的某个评论文本,在获取一段目标文本后,由于文本数据杂乱,首先要对目标文本进行预处理,提升词向量的质量。具体的,预处理可以包括对文本数据进行分词、去停用词、去除无用的标签、去除特殊符号、将英文的大写转化为小写等操作。
预处理后,将目标文本的长度(包含的单词数量)限值为100,输入到预训练的Bert模型的嵌入层进行词嵌入操作,将每个单词表示为K维的动态词向量,最终嵌入层输出n×K大小的二维矩阵:
Figure BDA0002941539790000051
可选的,作为本发明实施例提供的文本的情感分类方法的一种具体的实施方式,双通道神经网络模型的CNN通道的卷积层设置有至少两个大小不同的卷积核,CNN通道提取第一特征向量的方法包括:
各个卷积核分别对动态词向量数据进行卷积处理,得到各个卷积核对应的动态词向量数据的特征向量矩阵;
基于最大池化法分别从各个特征向量矩阵中提取最大特征向量;
基于注意力机制为各个最大特征向量分配相应的权重,得到第一特征向量。
可选的,作为本发明实施例提供的文本的情感分类方法的一种具体的实施方式,基于注意力机制为各个最大特征向量分配相应的权重,得到第一特征向量,包括:
Figure BDA0002941539790000061
式中,Sc为第一特征向量,N为最大特征向量的数量,αj为注意力机制计算的第j个最大特征向量的权重,Zmax,j为第j个最大特征向量。
在本发明实施例中,CNN通道由卷积层、池化层和注意力层构成,CNN通道提取第一特征向量的具体过程如下:
(1)卷积层
卷积层使用三种不同的卷积核(Conv2、Conv3、Conv5)各50个,三种卷积核大小分别为2、3、5,通过设置不同大小的卷积核能够尽可能多的学习到不同类型的特征,卷积结果通过ReLU激活函数进行激活。
具体的,每个卷积核均通过下式提取特征:
Zi=ReLU[W*Xi:(i+h-1)+b]
式中,Zi为特征向量,W为权重矩阵,Xi:(i+h-1)为第i个动态词向量到第(i+h-1)个动态词向量之间从词向量序列,h为卷积核的大小,b为偏置向量。
对于每种卷积核,当输入{X1∶h,X2∶(h+1)…X(n-h+1)∶n}的词序列时,将产生如下特征向量矩阵:
Figure BDA0002941539790000062
(2)池化层
采用最大池化法Max Pooling,对卷积层提取的信息进行降维操作,相当于特征的二次提取,即从各个特征向量矩阵中提取最大特征向量。
(3)注意力层
注意力层对各个最大特征向量的重要性进行评估,对重要性不同的最大特征向量分配不同的权重,用来优化最终的分类结果。
其中,第j个最大特征向量的权重αj的计算方法如下:
Ej=tanh(WaZmax,j+ba)
Figure BDA0002941539790000071
式中,Wa为权重矩阵,ba为偏置向量,Ea为初始化表示上下文的向量。
步骤S102、获取目标文本的主题信息,基于预训练的word2vec模型对主题信息进行静态词向量建模,并将建模后的静态词向量数据输入至预设的双通道神经网络模型的GRU通道中进行特征学习,得到第二特征向量。
可选的,作为本发明实施例提供的文本的情感分类方法的一种具体的实施方式,获取目标文本的主题信息,包括:
通过LDA主题模型获取目标文本的多个初始主题信息;
提取各个初始主题信息的前m个单词,得到各个初始主题信息对应的主题信息;其中,各个初始主题信息对应的主题信息的集合形成目标文本的主题信息,m为预设值。
可选的,作为本发明实施例提供的文本的情感分类方法的一种具体的实施方式,基于预训练的word2vec模型对主题信息进行静态词向量建模,包括:
T=[t1,t2...tm]
式中,T为任意一个初始主题信息对应的主题信息的静态词向量矩阵,tj为第j个单词的静态词向量,1≤j≤m。
在本发明实施例中,首先利用LDA主题模型获取目标文本的多个初始主题信息,并提取各个主题下的前m个单词来表示各个主题,然后采用word2vec模型对各个单词进行词嵌入操作。
可选的,作为本发明实施例提供的文本的情感分类方法的一种具体的实施方式,GRU通道提取第二特征向量的方法,包括:
根据各个单词的静态词向量计算各个单词的特征向量;
基于注意力机制为各个单词的特征向量分配相应的权重,得到第二特征向量。
可选的,作为本发明实施例提供的文本的情感分类方法的一种具体的实施方式,基于注意力机制为各个单词的特征向量分配相应的权重,得到第二特征向量,包括:
Figure BDA0002941539790000081
式中,Sg为第二特征向量,M为特征向量的数量,Hij为第i个主题的第j个单词的特征向量,βij为特征向量的权重。
在本发明实施例中,GRU通道计算各个单词的特征向量的过程为:
rt=σ(Wrtij+UrHij,t-1+br)
zt=σ(Wztij+UzHij,t-1+bz)
Figure BDA0002941539790000082
Figure BDA0002941539790000083
式中,tij表示第i个主题模型的第j个单词的静态词向量,Hij,t为t时刻输出的第i个主题的第j个单词的特征向量,rt为重置门,zt为更新门,σ为激活函数sigmoid,tanh为双曲正切函数,Wr、Wz、Wh、Ur、Uz、Uh为权重矩阵,
Figure BDA0002941539790000084
为点乘运算。
步骤S103、将第一特征向量和第二特征向量进行拼接,得到第三特征向量。
可选的,作为本发明实施例提供的文本的情感分类方法的一种具体的实施方式,将第一特征向量和第二特征向量进行拼接,得到第三特征向量,包括:
Y=connact(Sc,Sg)
式中,Y为第三特征向量,connact为拼接函数,Sc为第一特征向量,Sg为第二特征向量。
步骤S104、通过自注意力机制对第三特征向量进行处理,并基于预设的分类器模型对处理后的第三特征向量进行情感分类。
可选的,作为本发明实施例提供的文本的情感分类方法的一种具体的实施方式,通过自注意力机制对第三特征向量进行处理,包括:
Figure BDA0002941539790000091
式中,
Figure BDA0002941539790000092
为自注意力机制处理后的第三特征向量,softmax为归一化指数函数,Y为第三特征向量,dk为向量维度。
在本发明实施例中,采用自注意力机制Self-Attention处理拼接的特征向量,仅通过关注自身信息更新训练参数,不需要添加额外的信息。
处理后的特征向量输入至分类器模型中进行文本的情感分类,该模型包含一个全连接层的前馈神经网络,隐藏层的大小为Nlabel,并在全连接层前加入Dropout方法防止过拟合,最后用softmax函数进行分类,如下所示:
Figure BDA0002941539790000093
Figure BDA0002941539790000094
式中,A1,B1分别为全连接层的权重矩阵和偏置值,
Figure BDA0002941539790000095
为分类器输出的分类结果。
为了便于对本方案的理解,图2示出了本发明实施例提供的文本的情感分类方法的整体流程框架,其对应于上述实施例中的各个实现步骤,本申请在此不再进行阐述。
由以上内容可知,本发明采用预训练的Bert模型对目标文本进行动态词向量建模,能够很好的应对目标文本当中一词多义的现象;并且,通过提取目标文本的主题信息进行静态词向量建模,能够为分类器提供具有针对意义的主题信息作为参考;并且,通过在CNN通道和GRU通道中加入注意力机制,对重要的信息投入更大的权重,可以在提取局部信息的同时,增强对重点信息的关注度,使分类器获得更有针对性的输入信息,提高文本情感分类的效果。本发明能够很好地应对目标文本中的一词多义现象,提高对目标文本情感分类的准确率,优化目标文本的情感分类结果。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

1.一种文本的情感分类方法,其特征在于,包括:
基于预训练的Bert模型对目标文本进行动态词向量建模,并将建模后的动态词向量数据输入至预设的双通道神经网络模型的CNN通道中进行特征学习,得到第一特征向量;
获取所述目标文本的主题信息,基于预训练的word2vec模型对所述主题信息进行静态词向量建模,并将建模后的静态词向量数据输入至预设的双通道神经网络模型的GRU通道中进行特征学习,得到第二特征向量;
将所述第一特征向量和所述第二特征向量进行拼接,得到第三特征向量;
通过自注意力机制对所述第三特征向量进行处理,并基于预设的分类器模型对处理后的第三特征向量进行情感分类。
2.如权利要求1所述的文本的情感分类方法,其特征在于,所述基于预训练的Bert模型对目标文本进行动态词向量建模,包括:
S=[w1,w2...wn]T
式中,S为n行K列的动态词向量矩阵,n为目标文本中的单词数量,wi为第i个单词的K维动态词向量,1≤i≤n。
3.如权利要求1所述的文本的情感分类方法,其特征在于,所述双通道神经网络模型的CNN通道的卷积层设置有至少两个大小不同的卷积核,CNN通道提取第一特征向量的方法包括:
各个卷积核分别对所述动态词向量数据进行卷积处理,得到各个卷积核对应的所述动态词向量数据的特征向量矩阵;
基于最大池化法分别从各个特征向量矩阵中提取最大特征向量;
基于注意力机制为各个最大特征向量分配相应的权重,得到所述第一特征向量。
4.如权利要求3所述的文本的情感分类方法,其特征在于,所述基于注意力机制为各个最大特征向量分配相应的权重,得到所述第一特征向量,包括:
Figure FDA0002941539780000021
式中,Sc为第一特征向量,N为最大特征向量的数量,αj为注意力机制计算的第j个最大特征向量的权重,Zmax,j为第j个最大特征向量。
5.如权利要求1所述的文本的情感分类方法,其特征在于,所述获取所述目标文本的主题信息,包括:
通过LDA主题模型获取所述目标文本的多个初始主题信息;
提取各个初始主题信息的前m个单词,得到各个初始主题信息对应的主题信息;其中,各个初始主题信息对应的主题信息的集合形成所述目标文本的主题信息,m为预设值。
6.如权利要求5所述的文本的情感分类方法,其特征在于,所述基于预训练的word2vec模型对所述主题信息进行静态词向量建模,包括:
T=[t1,t2...tm]
式中,T为任意一个初始主题信息对应的主题信息的静态词向量矩阵,tj为第j个单词的静态词向量,1≤j≤m。
7.如权利要求6所述的文本的情感分类方法,其特征在于,GRU通道提取第二特征向量的方法,包括:
根据各个单词的静态词向量计算各个单词的特征向量;
基于注意力机制为各个单词的特征向量分配相应的权重,得到所述第二特征向量。
8.如权利要求7所述的文本的情感分类方法,其特征在于,所述基于注意力机制为各个单词的特征向量分配相应的权重,得到所述第二特征向量,包括:
Figure FDA0002941539780000022
式中,Sg为第二特征向量,M为特征向量的数量,Hij为第i个主题的第j个单词的特征向量,βij为特征向量的权重。
9.如权利要求1所述的文本的情感分类方法,其特征在于,所述将所述第一特征向量和所述第二特征向量进行拼接,得到第三特征向量,包括:
Y=connact(Sc,Sg)
式中,Y为第三特征向量,connact为拼接函数,Sc为第一特征向量,Sg为第二特征向量。
10.如权利要求1-9任一项所述的文本的情感分类方法,其特征在于,所述通过自注意力机制对所述第三特征向量进行处理,包括:
Figure FDA0002941539780000031
式中,
Figure FDA0002941539780000032
为自注意力机制处理后的第三特征向量,softmax为归一化指数函数,Y为第三特征向量,dk为向量维度。
CN202110178791.7A 2021-02-08 2021-02-08 一种文本的情感分类方法 Pending CN112818123A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110178791.7A CN112818123A (zh) 2021-02-08 2021-02-08 一种文本的情感分类方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110178791.7A CN112818123A (zh) 2021-02-08 2021-02-08 一种文本的情感分类方法

Publications (1)

Publication Number Publication Date
CN112818123A true CN112818123A (zh) 2021-05-18

Family

ID=75864757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110178791.7A Pending CN112818123A (zh) 2021-02-08 2021-02-08 一种文本的情感分类方法

Country Status (1)

Country Link
CN (1) CN112818123A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113435192A (zh) * 2021-06-15 2021-09-24 王丽亚 一种基于改变神经网络通道基数的中文文本情感分析方法
CN113553848A (zh) * 2021-07-19 2021-10-26 北京奇艺世纪科技有限公司 长文本分类方法、系统、电子设备、计算机可读存储介质
CN114330474A (zh) * 2021-10-20 2022-04-12 腾讯科技(深圳)有限公司 一种数据处理方法、装置、计算机设备以及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110287320A (zh) * 2019-06-25 2019-09-27 北京工业大学 一种结合注意力机制的深度学习多分类情感分析模型
CN110765269A (zh) * 2019-10-30 2020-02-07 华南理工大学 基于动态词向量和层级神经网络的文档级情感分类方法
CN112070139A (zh) * 2020-08-31 2020-12-11 三峡大学 基于bert与改进lstm的文本分类方法
CN112328797A (zh) * 2020-11-24 2021-02-05 山东师范大学 一种基于神经网络和注意力机制的情感分类方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110287320A (zh) * 2019-06-25 2019-09-27 北京工业大学 一种结合注意力机制的深度学习多分类情感分析模型
CN110765269A (zh) * 2019-10-30 2020-02-07 华南理工大学 基于动态词向量和层级神经网络的文档级情感分类方法
CN112070139A (zh) * 2020-08-31 2020-12-11 三峡大学 基于bert与改进lstm的文本分类方法
CN112328797A (zh) * 2020-11-24 2021-02-05 山东师范大学 一种基于神经网络和注意力机制的情感分类方法及系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113435192A (zh) * 2021-06-15 2021-09-24 王丽亚 一种基于改变神经网络通道基数的中文文本情感分析方法
CN113553848A (zh) * 2021-07-19 2021-10-26 北京奇艺世纪科技有限公司 长文本分类方法、系统、电子设备、计算机可读存储介质
CN113553848B (zh) * 2021-07-19 2024-02-02 北京奇艺世纪科技有限公司 长文本分类方法、系统、电子设备、计算机可读存储介质
CN114330474A (zh) * 2021-10-20 2022-04-12 腾讯科技(深圳)有限公司 一种数据处理方法、装置、计算机设备以及存储介质
CN114330474B (zh) * 2021-10-20 2024-04-26 腾讯科技(深圳)有限公司 一种数据处理方法、装置、计算机设备以及存储介质

Similar Documents

Publication Publication Date Title
CN107291795B (zh) 一种结合动态词嵌入和词性标注的文本分类方法
CN108009148B (zh) 基于深度学习的文本情感分类表示方法
CN109740154B (zh) 一种基于多任务学习的在线评论细粒度情感分析方法
CN112818123A (zh) 一种文本的情感分类方法
US11314939B2 (en) Method and apparatus for performing hierarchiacal entity classification
Xu et al. Investigation on the Chinese text sentiment analysis based on convolutional neural networks in deep learning.
CN112084327B (zh) 在保留语义的同时对稀疏标注的文本文档的分类
CN109857860A (zh) 文本分类方法、装置、计算机设备及存储介质
CN110969020A (zh) 基于cnn和注意力机制的中文命名实体识别方法、系统及介质
CN109471946B (zh) 一种中文文本的分类方法及系统
Jungiewicz et al. Towards textual data augmentation for neural networks: synonyms and maximum loss
CN110110323B (zh) 一种文本情感分类方法和装置、计算机可读存储介质
CN109977199B (zh) 一种基于注意力池化机制的阅读理解方法
CN108509520B (zh) 基于词性和多重cnn的多通道文本分类模型的构建方法
JP7108259B2 (ja) 情報を生成するための方法、装置、サーバー、コンピュータ可読記憶媒体およびコンピュータプログラム
CN107330379B (zh) 一种蒙古语手写识别方法和装置
CN109086265B (zh) 一种语义训练方法、短文本中多语义词消歧方法
CN111475622A (zh) 一种文本分类方法、装置、终端及存储介质
CN113220876B (zh) 一种用于英文文本的多标签分类方法及系统
CN110851594A (zh) 一种基于多通道深度学习模型的文本分类方法及其装置
WO2014073206A1 (ja) 情報処理装置、及び、情報処理方法
CN111782804B (zh) 基于TextCNN同分布文本数据选择方法、系统及存储介质
CN114090780A (zh) 一种基于提示学习的快速图片分类方法
CN110968697A (zh) 文本分类方法、装置、设备及可读存储介质
CN110120231B (zh) 基于自适应半监督非负矩阵分解的跨语料情感识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination