CN112802135A - Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof - Google Patents
Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof Download PDFInfo
- Publication number
- CN112802135A CN112802135A CN202110055760.2A CN202110055760A CN112802135A CN 112802135 A CN112802135 A CN 112802135A CN 202110055760 A CN202110055760 A CN 202110055760A CN 112802135 A CN112802135 A CN 112802135A
- Authority
- CN
- China
- Prior art keywords
- matrix
- calibration
- imaging system
- singular
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 46
- 230000006835 compression Effects 0.000 title claims abstract description 17
- 238000007906 compression Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims abstract description 151
- 238000005259 measurement Methods 0.000 claims abstract description 25
- 238000000926 separation method Methods 0.000 claims description 40
- 239000013598 vector Substances 0.000 claims description 38
- 238000000354 decomposition reaction Methods 0.000 claims description 27
- 238000002955 isolation Methods 0.000 claims description 3
- 230000004907 flux Effects 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 abstract description 2
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 10
- 238000013461 design Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本发明提供一种超薄无透镜可分离压缩成像系统及其标定与重建方法,该成像系统包括随机编码孔径掩膜、图像传感器、前后两端开口的中空箱体和不透明固定板,所述随机编码孔径掩膜密封覆设在所述中空箱体的前端开口处,所述图像传感器和中空箱体均固定在不透明固定板上,所述图像传感器位于所述中空箱体的后端开口内。本发明通过采用随机编码孔径实现成像,不仅最大限度地提高了光通量,还大大减小了成像系统的厚度、体积和重量,降低了成本,具有结构紧凑、轻薄、成本低廉的优点;另外,本发明根据可分离压缩传感理论,将可分离矩阵应用到成像系统的测量矩阵中,显著降低了成像系统标定和重建的难度,具有光学实现和计算可行的优点。
The invention provides an ultra-thin lensless separable compression imaging system and a calibration and reconstruction method thereof. The imaging system includes a random coded aperture mask, an image sensor, a hollow box with openings at the front and rear ends, and an opaque fixed plate. The coded aperture mask is sealed at the front opening of the hollow box, the image sensor and the hollow box are both fixed on the opaque fixing plate, and the image sensor is located in the rear opening of the hollow box. The invention realizes imaging by using random coded aperture, which not only maximizes the luminous flux, but also greatly reduces the thickness, volume and weight of the imaging system, reduces the cost, and has the advantages of compact structure, light weight and low cost; According to the separable compressed sensing theory, the invention applies the separable matrix to the measurement matrix of the imaging system, which significantly reduces the difficulty of calibration and reconstruction of the imaging system, and has the advantages of optical realization and calculation feasibility.
Description
技术领域technical field
本发明涉及编码孔径成像技术领域,具体是一种超薄无透镜可分离压缩成像系统及其标定与重建方法。The invention relates to the technical field of coded aperture imaging, in particular to an ultra-thin lensless separable compression imaging system and a calibration and reconstruction method thereof.
背景技术Background technique
现有的成像系统一般都是基于透镜的成像系统,受透镜的数目、厚度以及聚焦空间等因素的影响,存在体积大、价格高、装配繁琐、安装空间受限等问题,如基于透镜的成像系统用于可见光的镜头可以用玻璃和塑料等廉价材料制成,但是用于红外和紫外光谱的镜头非常昂贵;基于透镜的成像系统总是需要装配,降低了制造效率。The existing imaging systems are generally lens-based imaging systems, which are affected by factors such as the number, thickness, and focusing space of lenses, and have problems such as large volume, high price, cumbersome assembly, and limited installation space. For example, lens-based imaging The system's lenses for visible light can be made from inexpensive materials such as glass and plastic, but lenses for the infrared and ultraviolet spectrum are very expensive; lens-based imaging systems always require assembly, reducing manufacturing efficiency.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是提供一种超薄无透镜可分离压缩成像系统及其标定与重建方法,该成像系统具有结构紧凑、轻薄、成本低廉的优点,并且通过采用可分离设计,降低该成像系统标定和重建的难度。The technical problem to be solved by the present invention is to provide an ultra-thin lensless separable compression imaging system and a calibration and reconstruction method thereof. The imaging system has the advantages of compact structure, light weight and low cost, and by adopting a separable design, it can reduce the Difficulty of imaging system calibration and reconstruction.
本发明的技术方案为:The technical scheme of the present invention is:
一种超薄无透镜可分离压缩成像系统,该成像系统包括随机编码孔径掩膜、图像传感器、前后两端开口的中空箱体和不透明固定板,所述随机编码孔径掩膜密封覆设在所述中空箱体的前端开口处,所述图像传感器和中空箱体均固定在不透明固定板上,且所述图像传感器位于所述中空箱体的后端开口内,所述图像传感器与所述随机编码孔径掩膜中心点共线,所述随机编码孔径掩膜由不透明元素和透明元素组成,所述不透明元素用于阻挡光,所述透明元素用于传输光。An ultra-thin lensless separable compression imaging system, the imaging system includes a random coded aperture mask, an image sensor, a hollow box with openings at the front and rear ends, and an opaque fixed plate, the random coded aperture mask is sealed and covered at the At the front opening of the hollow box, the image sensor and the hollow box are both fixed on the opaque fixing plate, and the image sensor is located in the rear opening of the hollow box, and the image sensor and the random The center points of the coded aperture mask are collinear, and the random coded aperture mask is composed of opaque elements and transparent elements, the opaque elements are used for blocking light, and the transparent elements are used for transmitting light.
所述的超薄无透镜可分离压缩成像系统,所述不透明固定板选用黑色板。In the ultra-thin lensless separable compression imaging system, the opaque fixed plate is a black plate.
所述的超薄无透镜可分离压缩成像系统,所述中空箱体为由不透明隔离板组成的长方体结构。In the ultra-thin lensless separable compression imaging system, the hollow box is a cuboid structure composed of opaque isolation plates.
一种超薄无透镜可分离压缩成像系统的标定方法,该成像系统的测量矩阵采用可分离矩阵,该方法包括以下步骤:A method for calibrating an ultra-thin lensless separable compression imaging system, the measurement matrix of the imaging system adopts a separable matrix, and the method comprises the following steps:
(1)对所述测量矩阵的左分离矩阵进行标定,具体包括:(1) calibrating the left separation matrix of the measurement matrix, specifically including:
(11)选取N幅标定图像Ck=hk1T,k=1,2,…,N,其中,hk表示N×N阶的哈达玛矩阵H的第k列,1表示N维全1列向量,1T表示1的转置;(11) Select N calibration images C k =
(12)将标定图像Ck,k=1,2,…,N分成两幅图像和并分别投影到显示器上,其中表示将Ck中所有+1元素保留、-1元素设置为0得到的图像,表示将-Ck中所有+1元素保留、-1元素设置为0得到的图像;(12) Divide the calibration image C k , k=1,2,...,N into two images and and projected onto the monitor respectively, where represents the image obtained by keeping all +1 elements in C k and setting -1 elements to 0, Indicates the image obtained by keeping all +1 elements in -C k and setting -1 elements to 0;
(13)将两幅图像和在图像传感器上得到的M×M阶的测量值和相减,得到标定图像Ck的测量值Yk;(13) Combine the two images and Measured values of order M×M obtained on the image sensor and Subtraction to obtain the measured value Y k of the calibration image C k ;
(14)对测量值Yk,k=1,2,…,N进行秩一近似,得到矩阵 (14) Perform a rank-one approximation on the measured values Y k , k=1,2,...,N to obtain a matrix
(15)对矩阵进行奇异值分解,并将分解得到的包含左奇异向量的正交矩阵与包含奇异值的对角矩阵相乘,将相乘得到的矩阵的第1列记为uk,k=1,2,…,N,则uk为M维列向量;(15) Pair matrix Perform singular value decomposition, multiply the obtained orthogonal matrix containing left singular vectors with the diagonal matrix containing singular values, and denote the first column of the multiplied matrix as u k , k=1,2, ...,N, then uk is an M-dimensional column vector;
(16)将M维列向量uk,k=1,2,…,N合在一起,构成M×N阶的矩阵[u1;u2;…;uN];(16) Combine the M-dimensional column vectors u k , k=1, 2,...,N together to form an M×N-order matrix [u 1 ; u 2 ;...;u N ];
(17)采用以下公式对左分离矩阵进行标定:(17) Use the following formula to calibrate the left separation matrix:
其中,表示左分离矩阵ΦL的标定矩阵,H-1=HT/N,HT表示H的转置;in, Represents the calibration matrix of the left separation matrix Φ L , H -1 =H T /N, H T represents the transpose of H;
(2)对所述测量矩阵的右分离矩阵进行标定,具体包括:(2) calibrating the right separation matrix of the measurement matrix, specifically including:
(21)选取N幅标定图像C′k=1hk T,k=1,2,…,N,其中,1表示N维全1列向量,hk表示N×N阶的哈达玛矩阵H的第k列,hk T表示hk的转置;(21) Select N calibration images C′ k =1h k T , k=1,2,...,N, where 1 represents an N-dimensional all-one column vector, and h k represents the Hadamard matrix H of N×N order In the kth column, h k T represents the transpose of h k ;
(22)将标定图像C′k,k=1,2,…,N分成两幅图像和并分别投影到显示器上,其中表示将C′k中所有+1元素保留、-1元素设置为0得到的图像,表示将-C′k中所有+1元素保留、-1元素设置为0得到的图像;(22) Divide the calibration image C′ k , k=1,2,...,N into two images and and projected onto the monitor respectively, where represents the image obtained by keeping all +1 elements in C′ k and setting the -1 elements to 0, Indicates the image obtained by retaining all +1 elements in -C' k and setting -1 elements to 0;
(23)将两幅图像和在图像传感器上得到的M×M阶的测量值和相减,得到标定图像C′k的测量值Y′k;(23) Combine the two images and Measured values of order M×M obtained on the image sensor and Subtraction to obtain the measured value Y' k of the calibration image C' k ;
(24)对测量值Y′k,k=1,2,…,N进行秩一近似,得到矩阵 (24) Perform a rank-one approximation on the measured values Y′ k , k=1,2,...,N to obtain a matrix
(25)对矩阵进行奇异值分解,并将分解得到的包含奇异值的对角矩阵与包含右奇异向量的正交矩阵的转置相乘,将相乘得到的矩阵的第1列记为vk,k=1,2,…,N,则vk为M维列向量;(25) Pair matrix Perform singular value decomposition, multiply the obtained diagonal matrix containing singular values by the transpose of the orthogonal matrix containing the right singular vector, and denote the first column of the multiplied matrix as v k , k=1 ,2,...,N, then v k is an M-dimensional column vector;
(26)将M维列向量vk,k=1,2,…,N合在一起,构成M×N阶的矩阵[v1;v2;…;vN];(26) Combine M-dimensional column vectors v k , k=1, 2,...,N to form a matrix of M×N order [v 1 ; v 2 ;...;v N ];
(27)采用以下公式对右分离矩阵进行标定:(27) Use the following formula to calibrate the right separation matrix:
其中,表示右分离矩阵ΦR的标定矩阵,H-1=HT/N,HT表示H的转置。in, Represents the calibration matrix of the right separation matrix Φ R , H -1 =H T /N, and H T represents the transpose of H.
一种超薄无透镜可分离压缩成像系统的重建方法,该成像系统的测量矩阵采用可分离矩阵,该方法包括以下步骤:A reconstruction method of an ultra-thin lensless separable compression imaging system, the measurement matrix of the imaging system adopts a separable matrix, and the method comprises the following steps:
(1)对所述测量矩阵的左分离矩阵和右分离矩阵的标定矩阵进行奇异值分解,并采用以下公式计算其伪逆:(1) Perform singular value decomposition on the calibration matrix of the left separation matrix of the measurement matrix and the calibration matrix of the right separation matrix, and use the following formula to calculate its pseudo-inverse:
其中,表示左分离矩阵ΦL的标定矩阵的伪逆,表示右分离矩阵ΦR的标定矩阵的伪逆,UL表示对进行奇异值分解得到的包含左奇异向量的正交矩阵,ΣL表示对进行奇异值分解得到的包含奇异值的对角矩阵,VL表示对进行奇异值分解得到的包含右奇异向量的正交矩阵,表示UL的转置,表示ΣL的逆矩阵,UR表示对进行奇异值分解得到的包含左奇异向量的正交矩阵,ΣR表示对进行奇异值分解得到的包含奇异值的对角矩阵,VR表示对进行奇异值分解得到的包含右奇异向量的正交矩阵,表示UR的转置,表示ΣR的逆矩阵;in, The calibration matrix representing the left separation matrix Φ L The pseudo-inverse of , The calibration matrix representing the right separation matrix Φ R The pseudo-inverse of , U L denotes the pair Orthogonal matrix containing left singular vectors obtained by singular value decomposition, Σ L represents the pair The diagonal matrix containing singular values obtained by singular value decomposition, V L represents the pair The orthonormal matrix containing the right singular vector obtained by singular value decomposition, represents the transpose of UL, represents the inverse of Σ L , and UR represents the pair Orthogonal matrix containing left singular vectors obtained by singular value decomposition, Σ R represents the pair The diagonal matrix containing singular values obtained by singular value decomposition, VR represents the pair The orthonormal matrix containing the right singular vector obtained by singular value decomposition, represents the transpose of UR , represents the inverse matrix of Σ R ;
(2)判断左分离矩阵和右分离矩阵是否标定良好,若是,则跳转至步骤(3),若否,则跳转至步骤(4);(2) Judging whether the left separation matrix and the right separation matrix are well calibrated, if so, jump to step (3), if not, jump to step (4);
(3)根据目标图像的测量值,采用以下公式计算得到重建的目标图像:(3) According to the measured value of the target image, the reconstructed target image is obtained by calculating the following formula:
其中,表示重建的目标图像,Y表示目标图像的测量值;in, represents the reconstructed target image, and Y represents the measured value of the target image;
(4)根据目标图像的测量值,采用以下公式计算得到重建的目标图像:(4) According to the measured value of the target image, the following formula is used to calculate the reconstructed target image:
其中,表示重建的目标图像,Y表示目标图像的测量值,σL和σR为中间变量,σL=(ΣL)2,σR=(ΣR)2,表示σR的转置,τ表示正则化参数,1表示N维全1列向量,1T表示1的转置,表示VR的转置,·/表示点除。in, represents the reconstructed target image, Y represents the measured value of the target image, σ L and σ R are intermediate variables, σ L =(Σ L ) 2 , σ R =(Σ R ) 2 , represents the transpose of σ R , τ represents the regularization parameter, 1 represents an N-dimensional all-one column vector, 1 T represents the transpose of 1, Represents the transpose of VR , ·/ represents point division.
由上述技术方案可知,本发明通过采用随机编码孔径实现成像,不仅最大限度地提高了光通量,还大大减小了成像系统的厚度、体积和重量,降低了成本,具有结构紧凑、轻薄、成本低廉的优点;另外,本发明根据可分离压缩传感理论,将可分离矩阵应用到成像系统的测量矩阵中,显著降低了成像系统标定和重建的难度,具有光学实现和计算可行的优点。It can be seen from the above technical solutions that the present invention realizes imaging by using random coded apertures, which not only maximizes the luminous flux, but also greatly reduces the thickness, volume and weight of the imaging system, and reduces the cost, and has the advantages of compact structure, light weight and low cost. In addition, according to the theory of separable compressed sensing, the present invention applies the separable matrix to the measurement matrix of the imaging system, which significantly reduces the difficulty of the calibration and reconstruction of the imaging system, and has the advantages of optical implementation and computational feasibility.
附图说明Description of drawings
图1是本发明的成像系统结构示意图。FIG. 1 is a schematic structural diagram of an imaging system of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
如图1所示,一种超薄无透镜可分离压缩成像系统,包括随机编码孔径掩膜1、图像传感器2、前后两端开口的中空箱体3和不透明固定板4。随机编码孔径掩膜1密封覆设在中空箱体3的前端开口上,图像传感器2和中空箱体3均固定在不透明固定板4上,且图像传感器2位于中空箱体3的后端开口内,图像传感器2与随机编码孔径掩膜1中心点共线。As shown in FIG. 1 , an ultra-thin lensless separable compression imaging system includes a randomly coded
本发明的成像系统主要由随机编码孔径掩膜1和图像传感器2组成,随机编码孔径掩膜1对物光场信息进行随机调制,图像传感器2对随机编码孔径掩膜1的测量值进行记录。引入中空箱体3和不透明固定板4,能够保持随机编码孔径掩膜1与图像传感器2之间的距离固定,同时还能够阻挡杂散光,确保光线不会绕过随机编码孔径掩膜1从两侧照射到图像传感器2上,使测量值噪声尽可能小。中空箱体3为长方体结构,由不透明隔离板组成,不透明固定板4选用黑色板。The imaging system of the present invention is mainly composed of a random coded
随机编码孔径掩膜1和图像传感器2被认为是平面的,且彼此平行。随机编码孔径掩膜1放置在图像传感器前面距离d处(典型的测量在微米量级)。随机编码孔径掩膜1是二进制的,由不透明元素和透明元素组成,不透明元素用于阻挡光,透明元素用于传输光,理想的随机编码孔径掩膜1能够最大限度地提高光通量。本发明可以在非相干光下成像,物体处在自然光下即可成像。The randomly coded
编码孔径的设计在成像中起着重要的作用。一个理想的设计将最大限度地提高光通量,同时提供一个条件良好的场景-图像传感器传递函数,以方便反演。随机编码孔径的主要目的是提供更随机化的信息调制,尽可能多地保存信息。The design of the coded aperture plays an important role in imaging. An ideal design would maximize luminous flux while providing a well-conditioned scene-to-image sensor transfer function for easy inversion. The main purpose of random coded apertures is to provide a more randomized modulation of information, preserving as much information as possible.
在本发明的成像系统中,随机编码孔径起着对真实世界中的场景进行测量映射到图像传感器2上的作用,其数学模型可以用测量矩阵(即场景-图像传感器传递函数矩阵)Φ表示为一个M×N阶的投影矩阵。在使用本发明的成像系统进行真实实验之前,必须对测量矩阵Φ进行标定,以确定场景与图像传感器2的测量值之间的映射,从而能够从图像传感器2的测量值中实现场景的恢复。In the imaging system of the present invention, the random coded aperture plays the role of measuring the scene in the real world and mapping it to the
为减小测量矩阵Φ存储的维度,采用可分离设计思想改进本发明成像系统的测量矩阵Φ,降低成像系统标定和重建的难度。测量矩阵Φ可以表示为:In order to reduce the storage dimension of the measurement matrix Φ, a separable design idea is adopted to improve the measurement matrix Φ of the imaging system of the present invention, thereby reducing the difficulty of calibration and reconstruction of the imaging system. The measurement matrix Φ can be expressed as:
其中,ΦL、ΦR分别表示测量矩阵Φ的左分离矩阵和右分离矩阵,表示Kronecker积,可以是直接乘积或张量积。Among them, Φ L and Φ R represent the left separation matrix and the right separation matrix of the measurement matrix Φ, respectively, Represents the Kronecker product, which can be a direct product or a tensor product.
因此,对测量矩阵Φ进行标定就转换成对其左分离矩阵ΦL和右分离矩阵ΦR的标定。Therefore, the calibration of the measurement matrix Φ is transformed into the calibration of its left separation matrix Φ L and right separation matrix Φ R.
一种超薄无透镜可分离压缩成像系统的标定方法,包括以下步骤:A method for calibrating an ultra-thin lensless separable compression imaging system, comprising the following steps:
S1、对测量矩阵Φ的左分离矩阵ΦL进行标定,具体包括:S1, calibrate the left separation matrix Φ L of the measurement matrix Φ, which specifically includes:
S11、选取N幅标定图像Ck=hk1T,k=1,2,…,N,其中,hk表示N×N阶的哈达玛矩阵H的第k列,1表示N维全1列向量,1T表示1的转置。S11. Select N calibration images C k =
S12、将标定图像Ck,k=1,2,…,N分成两幅图像和并分别投影到显示器上,其中表示将Ck中所有+1元素保留、-1元素设置为0得到的图像,表示将-Ck中所有+1元素保留、-1元素设置为0得到的图像。S12. Divide the calibration image C k , k=1,2,...,N into two images and and projected onto the monitor respectively, where represents the image obtained by keeping all +1 elements in C k and setting -1 elements to 0, Represents the image obtained by keeping all +1 elements in -C k and setting -1 elements to 0.
哈达玛矩阵H由元素+1和-1组成,导致由Hadamard模式生成的每一幅标定图像Ck,k=1,2,…,N需要分成两幅图像和 The Hadamard matrix H consists of elements +1 and -1, resulting in that each calibration image C k , k=1,2,...,N generated by Hadamard mode needs to be split into two images and
S13、将两幅图像和在图像传感器上得到的M×M阶的测量值和相减,得到标定图像Ck的测量值Yk:S13. Combine the two images and Measured values of order M×M obtained on the image sensor and Subtraction to obtain the measured value Y k of the calibration image C k :
S14、对测量值yk,k=1,2,…,N进行秩一近似,得到矩阵 S14. Perform a rank-one approximation on the measured values y k , k=1, 2, ..., N to obtain a matrix
S15、对矩阵进行奇异值分解,并将分解得到的包含左奇异向量的正交矩阵U与包含奇异值的对角矩阵Σ(该对角矩阵只有第一个元素不为0,其它元素均为0)相乘,将相乘得到的矩阵的第1列记为uk,k=1,2,…,N,则uk为M维列向量,令:S15, pair matrix Perform singular value decomposition, and multiply the resulting orthogonal matrix U containing left singular vectors with a diagonal matrix Σ containing singular values (only the first element of the diagonal matrix is not 0, and other elements are 0) , denote the first column of the multiplied matrix as u k , k=1,2,...,N, then u k is an M-dimensional column vector, let:
由于Yk=ΦLCk(ΦR)T=(ΦLhk)(ΦR1)T,则得到:Since Y k =Φ L C k (Φ R ) T =(Φ L h k )(Φ R 1) T , then:
uk=ΦLhk u k =Φ L h k
S16、将M维列向量uk,k=1,2,…,N合在一起,构成M×N阶的矩阵[u1;u2;…;uN],则有:S16. Combine the M-dimensional column vectors u k , k=1, 2,...,N together to form an M×N-order matrix [u 1 ; u 2 ;...; u N ], there are:
[u1;u2;…;uN]=ΦL[h1;h2;…;hN]=ΦLH[u 1 ; u 2 ;...;u N ]=Φ L [h 1 ;h 2 ;...;h N ]=Φ L H
S17、采用以下公式对左分离矩阵ΦL进行标定:S17. Use the following formula to calibrate the left separation matrix Φ L :
其中,表示左分离矩阵ΦL的标定矩阵,H-1=HT/N,HT表示H的转置。in, Represents the calibration matrix of the left separation matrix Φ L , H -1 =H T /N, and H T represents the transpose of H.
S2、对测量矩阵Φ的右分离矩阵ΦR进行标定,具体包括:S2, calibrate the right separation matrix Φ R of the measurement matrix Φ, specifically including:
S21、选取N幅标定图像C′k=1hk T,k=1,2,…,N,其中,1表示N维全1列向量,hk表示N×N阶的哈达玛矩阵H的第k列,hk T表示hk的转置。S21. Select N calibration images C′ k = 1h k T , k =1, 2, . Column k, h k T represents the transpose of h k .
S22、将标定图像C′k,k=1,2,…,N分成两幅图像和并分别投影到显示器上,其中表示将C′k中所有+1元素保留、-1元素设置为0得到的图像,表示将-C′k中所有+1元素保留、-1元素设置为0得到的图像。S22. Divide the calibration image C′ k , k=1,2,...,N into two images and and projected onto the monitor respectively, where represents the image obtained by keeping all +1 elements in C′ k and setting the -1 elements to 0, Represents the image obtained by keeping all +1 elements in -C' k and setting -1 elements to 0.
哈达玛矩阵H由元素+1和-1组成,导致由Hadamard模式生成的每一幅标定图像C′k,k=1,2,…,N需要分成两幅图像和 The Hadamard matrix H consists of elements +1 and -1, resulting in that each calibration image C′ k , k=1,2,...,N generated by Hadamard mode needs to be divided into two images and
S23、将两幅图像和在图像传感器上得到的M×M阶的测量值和相减,得到标定图像C′k的测量值Y′k:S23. Combine the two images and Measured values of order M×M obtained on the image sensor and Subtraction to obtain the measured value Y' k of the calibration image C' k :
S24、对测量值Y′k,k=1,2,…,N进行秩一近似,得到矩阵 S24. Perform a rank-one approximation on the measured values Y′ k , k=1, 2, ..., N to obtain a matrix
S25、对矩阵进行奇异值分解,并将分解得到的包含奇异值的对角矩阵Σ′(该对角矩阵只有第一个元素不为0,其它元素均为0)与包含右奇异向量的正交矩阵V′的转置(V′)T相乘,将相乘得到的矩阵的第1列记为vk,k=1,2,…,N,则vk为M维列向量,令:S25, pair matrix Perform singular value decomposition, and decompose the diagonal matrix Σ' containing singular values (only the first element of the diagonal matrix is not 0, and other elements are 0) and the orthogonal matrix V' containing the right singular vector Multiply the transpose (V′) T of , and denote the first column of the multiplied matrix as v k , k=1,2,...,N, then v k is an M-dimensional column vector, let:
由于Y′k=ΦLC′k(ΦR)T=(ΦL1)(ΦRhk)T,则得到:Since Y′ k =Φ L C′ k (Φ R ) T =(Φ L 1)(Φ R h k ) T , then:
vk=ΦRhk v k =Φ R h k
S26、将M维列向量vk,k=1,2,…,N合在一起,构成M×N阶的矩阵[v1;v2;…;vN],则有:S26. Combine the M-dimensional column vectors v k , k=1, 2,...,N together to form an M×N-order matrix [v 1 ; v 2 ;...; v N ], there are:
[v1;v2;…;vN]=ΦR[h1;h2;…;hN]=ΦRH[v 1 ; v 2 ;...;v N ]=Φ R [h 1 ;h 2 ;...;h N ]=Φ R H
S27、采用以下公式对右分离矩阵ΦR进行标定:S27. Use the following formula to calibrate the right separation matrix Φ R :
其中,表示右分离矩阵ΦR的标定矩阵,H-1=HT/N,HT表示H的转置。in, Represents the calibration matrix of the right separation matrix Φ R , H -1 =H T /N, and H T represents the transpose of H.
一种超薄无透镜可分离压缩成像系统的重建方法,包括以下步骤:A reconstruction method of an ultra-thin lensless separable compression imaging system, comprising the following steps:
s1、对测量矩阵Φ的左分离矩阵ΦL和右分离矩阵ΦR的标定矩阵和进行奇异值分解,并采用以下公式计算其伪逆:s1, the calibration matrix for the left separation matrix Φ L of the measurement matrix Φ and the right separation matrix Φ R and Perform singular value decomposition and compute its pseudoinverse using the following formula:
其中,表示左分离矩阵ΦL的标定矩阵的伪逆,表示右分离矩阵ΦR的标定矩阵的伪逆,UL表示对进行奇异值分解得到的包含左奇异向量的正交矩阵,ΣL表示对进行奇异值分解得到的包含奇异值的对角矩阵,VL表示对进行奇异值分解得到的包含右奇异向量的正交矩阵,表示UL的转置,表示ΣL的逆矩阵,UR表示对进行奇异值分解得到的包含左奇异向量的正交矩阵,ΣR表示对进行奇异值分解得到的包含奇异值的对角矩阵,VR表示对进行奇异值分解得到的包含右奇异向量的正交矩阵,表示UR的转置,表示ΣR的逆矩阵。in, The calibration matrix representing the left separation matrix Φ L The pseudo-inverse of , The calibration matrix representing the right separation matrix Φ R The pseudo-inverse of , U L denotes the pair Orthogonal matrix containing left singular vectors obtained by singular value decomposition, Σ L represents the pair The diagonal matrix containing singular values obtained by singular value decomposition, V L represents the pair The orthonormal matrix containing the right singular vector obtained by singular value decomposition, represents the transpose of UL, represents the inverse of Σ L , and UR represents the pair Orthogonal matrix containing left singular vectors obtained by singular value decomposition, Σ R represents the pair The diagonal matrix containing singular values obtained by singular value decomposition, VR represents the pair The orthonormal matrix containing the right singular vector obtained by singular value decomposition, represents the transpose of UR , represents the inverse of Σ R.
s2、判断左分离矩阵ΦL和右分离矩阵ΦR是否标定良好,若是,则跳转至步骤s3,若否,则跳转至步骤s4。s2. Determine whether the left separation matrix Φ L and the right separation matrix Φ R are well calibrated, if so, jump to step s3, and if not, jump to step s4.
s3、根据目标图像的测量值,采用以下公式计算得到重建的目标图像:s3. According to the measurement value of the target image, use the following formula to calculate the reconstructed target image:
其中,表示重建的目标图像,Y表示目标图像的测量值。in, represents the reconstructed target image, and Y represents the measured value of the target image.
s4、根据目标图像的测量值,采用以下公式计算得到重建的目标图像:s4. According to the measured value of the target image, use the following formula to calculate the reconstructed target image:
其中,表示重建的目标图像,Y表示目标图像的测量值,σL和σR为中间变量,σL=(ΣL)2,σR=(ΣR)2,表示σR的转置,τ表示正则化参数,1表示N维全1列向量,1T表示1的转置,表示VR的转置,·/表示点除。in, represents the reconstructed target image, Y represents the measured value of the target image, σ L and σ R are intermediate variables, σ L =(Σ L ) 2 , σ R =(Σ R ) 2 , represents the transpose of σ R , τ represents the regularization parameter, 1 represents an N-dimensional all-one column vector, 1 T represents the transpose of 1, Represents the transpose of VR , ·/ represents point division.
由上述重建方法可知,如果ΦL和ΦR都是标定良好的,那么可以通过求解一个最小二乘法问题来估计未知场景X:It can be seen from the above reconstruction method that if Φ L and Φ R are both well-calibrated, then the unknown scene X can be estimated by solving a least squares problem:
其解是闭合形式的:The solution is in closed form:
如果ΦL和ΦR标定条件不好或者不充分时,需要考虑最小二乘法估计噪声放大的影响,减小噪声的一个简单方法是在最小二乘法问题中增加正则化项:If the calibration conditions of Φ L and Φ R are not good or insufficient, it is necessary to consider the least squares estimation The effect of noise amplification, a simple way to reduce the noise is to add a regularization term to the least squares problem:
在这里τ>0,上式的解也可以使用和的SVD明确写出:where τ > 0, the solution of the above equation can also be used and The SVD explicitly writes:
以上所述实施方式仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。The above-mentioned embodiments are only to describe the preferred embodiments of the present invention, and do not limit the scope of the present invention. On the premise of not departing from the design spirit of the present invention, various modifications made by those of ordinary skill in the art to the technical solutions of the present invention and improvements, all should fall within the protection scope determined by the claims of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110055760.2A CN112802135B (en) | 2021-01-15 | 2021-01-15 | Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110055760.2A CN112802135B (en) | 2021-01-15 | 2021-01-15 | Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112802135A true CN112802135A (en) | 2021-05-14 |
CN112802135B CN112802135B (en) | 2022-12-02 |
Family
ID=75809714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110055760.2A Active CN112802135B (en) | 2021-01-15 | 2021-01-15 | Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112802135B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000316166A (en) * | 1999-05-06 | 2000-11-14 | Olympus Optical Co Ltd | Color image pickup element and device |
US20030202709A1 (en) * | 2002-04-25 | 2003-10-30 | Simard Patrice Y. | Clustering |
JP2005338545A (en) * | 2004-05-28 | 2005-12-08 | Konica Minolta Business Technologies Inc | Image forming apparatus |
JP2009229125A (en) * | 2008-03-19 | 2009-10-08 | Sharp Corp | Distance measuring device and distance measuring method |
CN101777191A (en) * | 2009-12-30 | 2010-07-14 | 北京工业大学 | Imaging spectrum rapid vector quantization coding method based on signal noise separation |
CN106067162A (en) * | 2016-06-03 | 2016-11-02 | 西安电子科技大学 | Integration imaging super-resolution micro unit pattern matrix gathers and reconstructing method |
CN107300827A (en) * | 2017-07-05 | 2017-10-27 | 中国科学院光电研究院 | Low noise without lens imaging method |
CN108416723A (en) * | 2018-02-07 | 2018-08-17 | 南京理工大学 | A Fast Reconstruction Method for Lensless Imaging Based on Total Variational Regularization and Variable Splitting |
CN108801457A (en) * | 2018-03-27 | 2018-11-13 | 浙江大学 | Three-dimensional collection of illustrative plates based on the design of coded sample plate and second energy about beam alignment obtains and method for reconstructing |
CN110392193A (en) * | 2019-06-14 | 2019-10-29 | 浙江大学 | Mask plate of a mask plate camera |
CN112055133A (en) * | 2019-06-05 | 2020-12-08 | 上海耕岩智能科技有限公司 | Image acquisition device and electronic equipment |
-
2021
- 2021-01-15 CN CN202110055760.2A patent/CN112802135B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000316166A (en) * | 1999-05-06 | 2000-11-14 | Olympus Optical Co Ltd | Color image pickup element and device |
US20030202709A1 (en) * | 2002-04-25 | 2003-10-30 | Simard Patrice Y. | Clustering |
JP2005338545A (en) * | 2004-05-28 | 2005-12-08 | Konica Minolta Business Technologies Inc | Image forming apparatus |
JP2009229125A (en) * | 2008-03-19 | 2009-10-08 | Sharp Corp | Distance measuring device and distance measuring method |
CN101777191A (en) * | 2009-12-30 | 2010-07-14 | 北京工业大学 | Imaging spectrum rapid vector quantization coding method based on signal noise separation |
CN106067162A (en) * | 2016-06-03 | 2016-11-02 | 西安电子科技大学 | Integration imaging super-resolution micro unit pattern matrix gathers and reconstructing method |
CN107300827A (en) * | 2017-07-05 | 2017-10-27 | 中国科学院光电研究院 | Low noise without lens imaging method |
CN108416723A (en) * | 2018-02-07 | 2018-08-17 | 南京理工大学 | A Fast Reconstruction Method for Lensless Imaging Based on Total Variational Regularization and Variable Splitting |
CN108801457A (en) * | 2018-03-27 | 2018-11-13 | 浙江大学 | Three-dimensional collection of illustrative plates based on the design of coded sample plate and second energy about beam alignment obtains and method for reconstructing |
CN112055133A (en) * | 2019-06-05 | 2020-12-08 | 上海耕岩智能科技有限公司 | Image acquisition device and electronic equipment |
CN110392193A (en) * | 2019-06-14 | 2019-10-29 | 浙江大学 | Mask plate of a mask plate camera |
Non-Patent Citations (5)
Title |
---|
JINJIAN WU ET AL.: "Pattern Masking Estimation in Image With Structural Uncertainty", 《IEEE TRANSACTIONS ON IMAGE PROCESSING》 * |
YANFENG LI ET AL.: "Mass detection in mammograms by bilateral analysis using convolution neural network", 《COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE》 * |
崔华坤等: "无透镜傅里叶变换数字全息术中非共面误差的自动补偿算法", 《物理学报》 * |
张成等: "基于奇异值分解的可分离压缩成像方法", 《计算机研究与发展》 * |
范晓杭等: "基于液晶显示器的无透镜单像素成像研究", 《量子电子学报》 * |
Also Published As
Publication number | Publication date |
---|---|
CN112802135B (en) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Asif et al. | Flatcam: Thin, lensless cameras using coded aperture and computation | |
US11830222B2 (en) | Bi-level optimization-based infrared and visible light fusion method | |
US9380221B2 (en) | Methods and apparatus for light field photography | |
Cheng et al. | Memory-efficient network for large-scale video compressive sensing | |
EP3816929B1 (en) | Method and apparatus for restoring image | |
Asif et al. | Flatcam: Replacing lenses with masks and computation | |
Sturm | Mixing catadioptric and perspective cameras | |
CN102823230B (en) | Camera head | |
CN108416723B (en) | Lens-free imaging fast reconstruction method based on total variation regularization and variable splitting | |
CN109783432A (en) | For carrying out the device and method of the low complex degree optimization solver of path smooth | |
US20120230549A1 (en) | Image processing device, image processing method and recording medium | |
CN110310338A (en) | A Light Field Camera Calibration Method Based on Multicenter Projection Model | |
WO2013179538A1 (en) | Depth estimation imaging device | |
CN105678736A (en) | Image processing system with aperture change depth estimation and method of operation thereof | |
CN112802135B (en) | Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof | |
WO2013027320A1 (en) | Image processing device, three-dimensional image capture device, image processing method, and image processing program | |
Lyu et al. | Identifiability-guaranteed simplex-structured post-nonlinear mixture learning via autoencoder | |
KR101807230B1 (en) | Super-resolution processing method for TV video images, super-resolution processing device for TV video images that is used in same method, first to fourteenth super-resolution processing programs, and first to fourth storage media | |
CN112950750B (en) | Camera-lens-free camera image reconstruction method based on coding mask and Learond-TSVD algorithm | |
CN110267038A (en) | Coding method and device, coding/decoding method and device | |
JPWO2012157210A1 (en) | Three-dimensional imaging apparatus, image processing apparatus, image processing method, and program | |
US11017546B2 (en) | Method and device for depth detection using stereo images | |
Lee et al. | Fast radiometric compensation accomplished by eliminating color mixing between projector and camera | |
US9438885B2 (en) | Three dimensional imaging device and image processing device | |
US20150281606A1 (en) | Dark signal modeling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |