CN112802135A - Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof - Google Patents

Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof Download PDF

Info

Publication number
CN112802135A
CN112802135A CN202110055760.2A CN202110055760A CN112802135A CN 112802135 A CN112802135 A CN 112802135A CN 202110055760 A CN202110055760 A CN 202110055760A CN 112802135 A CN112802135 A CN 112802135A
Authority
CN
China
Prior art keywords
matrix
calibration
imaging system
singular
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110055760.2A
Other languages
Chinese (zh)
Other versions
CN112802135B (en
Inventor
张�成
潘敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202110055760.2A priority Critical patent/CN112802135B/en
Publication of CN112802135A publication Critical patent/CN112802135A/en
Application granted granted Critical
Publication of CN112802135B publication Critical patent/CN112802135B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供一种超薄无透镜可分离压缩成像系统及其标定与重建方法,该成像系统包括随机编码孔径掩膜、图像传感器、前后两端开口的中空箱体和不透明固定板,所述随机编码孔径掩膜密封覆设在所述中空箱体的前端开口处,所述图像传感器和中空箱体均固定在不透明固定板上,所述图像传感器位于所述中空箱体的后端开口内。本发明通过采用随机编码孔径实现成像,不仅最大限度地提高了光通量,还大大减小了成像系统的厚度、体积和重量,降低了成本,具有结构紧凑、轻薄、成本低廉的优点;另外,本发明根据可分离压缩传感理论,将可分离矩阵应用到成像系统的测量矩阵中,显著降低了成像系统标定和重建的难度,具有光学实现和计算可行的优点。

Figure 202110055760

The invention provides an ultra-thin lensless separable compression imaging system and a calibration and reconstruction method thereof. The imaging system includes a random coded aperture mask, an image sensor, a hollow box with openings at the front and rear ends, and an opaque fixed plate. The coded aperture mask is sealed at the front opening of the hollow box, the image sensor and the hollow box are both fixed on the opaque fixing plate, and the image sensor is located in the rear opening of the hollow box. The invention realizes imaging by using random coded aperture, which not only maximizes the luminous flux, but also greatly reduces the thickness, volume and weight of the imaging system, reduces the cost, and has the advantages of compact structure, light weight and low cost; According to the separable compressed sensing theory, the invention applies the separable matrix to the measurement matrix of the imaging system, which significantly reduces the difficulty of calibration and reconstruction of the imaging system, and has the advantages of optical realization and calculation feasibility.

Figure 202110055760

Description

一种超薄无透镜可分离压缩成像系统及其标定与重建方法An ultra-thin lensless separable compression imaging system and its calibration and reconstruction method

技术领域technical field

本发明涉及编码孔径成像技术领域,具体是一种超薄无透镜可分离压缩成像系统及其标定与重建方法。The invention relates to the technical field of coded aperture imaging, in particular to an ultra-thin lensless separable compression imaging system and a calibration and reconstruction method thereof.

背景技术Background technique

现有的成像系统一般都是基于透镜的成像系统,受透镜的数目、厚度以及聚焦空间等因素的影响,存在体积大、价格高、装配繁琐、安装空间受限等问题,如基于透镜的成像系统用于可见光的镜头可以用玻璃和塑料等廉价材料制成,但是用于红外和紫外光谱的镜头非常昂贵;基于透镜的成像系统总是需要装配,降低了制造效率。The existing imaging systems are generally lens-based imaging systems, which are affected by factors such as the number, thickness, and focusing space of lenses, and have problems such as large volume, high price, cumbersome assembly, and limited installation space. For example, lens-based imaging The system's lenses for visible light can be made from inexpensive materials such as glass and plastic, but lenses for the infrared and ultraviolet spectrum are very expensive; lens-based imaging systems always require assembly, reducing manufacturing efficiency.

发明内容SUMMARY OF THE INVENTION

本发明要解决的技术问题是提供一种超薄无透镜可分离压缩成像系统及其标定与重建方法,该成像系统具有结构紧凑、轻薄、成本低廉的优点,并且通过采用可分离设计,降低该成像系统标定和重建的难度。The technical problem to be solved by the present invention is to provide an ultra-thin lensless separable compression imaging system and a calibration and reconstruction method thereof. The imaging system has the advantages of compact structure, light weight and low cost, and by adopting a separable design, it can reduce the Difficulty of imaging system calibration and reconstruction.

本发明的技术方案为:The technical scheme of the present invention is:

一种超薄无透镜可分离压缩成像系统,该成像系统包括随机编码孔径掩膜、图像传感器、前后两端开口的中空箱体和不透明固定板,所述随机编码孔径掩膜密封覆设在所述中空箱体的前端开口处,所述图像传感器和中空箱体均固定在不透明固定板上,且所述图像传感器位于所述中空箱体的后端开口内,所述图像传感器与所述随机编码孔径掩膜中心点共线,所述随机编码孔径掩膜由不透明元素和透明元素组成,所述不透明元素用于阻挡光,所述透明元素用于传输光。An ultra-thin lensless separable compression imaging system, the imaging system includes a random coded aperture mask, an image sensor, a hollow box with openings at the front and rear ends, and an opaque fixed plate, the random coded aperture mask is sealed and covered at the At the front opening of the hollow box, the image sensor and the hollow box are both fixed on the opaque fixing plate, and the image sensor is located in the rear opening of the hollow box, and the image sensor and the random The center points of the coded aperture mask are collinear, and the random coded aperture mask is composed of opaque elements and transparent elements, the opaque elements are used for blocking light, and the transparent elements are used for transmitting light.

所述的超薄无透镜可分离压缩成像系统,所述不透明固定板选用黑色板。In the ultra-thin lensless separable compression imaging system, the opaque fixed plate is a black plate.

所述的超薄无透镜可分离压缩成像系统,所述中空箱体为由不透明隔离板组成的长方体结构。In the ultra-thin lensless separable compression imaging system, the hollow box is a cuboid structure composed of opaque isolation plates.

一种超薄无透镜可分离压缩成像系统的标定方法,该成像系统的测量矩阵采用可分离矩阵,该方法包括以下步骤:A method for calibrating an ultra-thin lensless separable compression imaging system, the measurement matrix of the imaging system adopts a separable matrix, and the method comprises the following steps:

(1)对所述测量矩阵的左分离矩阵进行标定,具体包括:(1) calibrating the left separation matrix of the measurement matrix, specifically including:

(11)选取N幅标定图像Ck=hk1T,k=1,2,…,N,其中,hk表示N×N阶的哈达玛矩阵H的第k列,1表示N维全1列向量,1T表示1的转置;(11) Select N calibration images C k =h k 1 T , k=1,2,...,N, where h k represents the kth column of the Hadamard matrix H of N×N order, and 1 represents the N-dimensional full 1 column vector, 1 T represents the transpose of 1;

(12)将标定图像Ck,k=1,2,…,N分成两幅图像

Figure BDA0002900552230000021
Figure BDA0002900552230000022
并分别投影到显示器上,其中
Figure BDA0002900552230000023
表示将Ck中所有+1元素保留、-1元素设置为0得到的图像,
Figure BDA0002900552230000024
表示将-Ck中所有+1元素保留、-1元素设置为0得到的图像;(12) Divide the calibration image C k , k=1,2,...,N into two images
Figure BDA0002900552230000021
and
Figure BDA0002900552230000022
and projected onto the monitor respectively, where
Figure BDA0002900552230000023
represents the image obtained by keeping all +1 elements in C k and setting -1 elements to 0,
Figure BDA0002900552230000024
Indicates the image obtained by keeping all +1 elements in -C k and setting -1 elements to 0;

(13)将两幅图像

Figure BDA0002900552230000025
Figure BDA0002900552230000026
在图像传感器上得到的M×M阶的测量值
Figure BDA0002900552230000027
Figure BDA0002900552230000028
相减,得到标定图像Ck的测量值Yk;(13) Combine the two images
Figure BDA0002900552230000025
and
Figure BDA0002900552230000026
Measured values of order M×M obtained on the image sensor
Figure BDA0002900552230000027
and
Figure BDA0002900552230000028
Subtraction to obtain the measured value Y k of the calibration image C k ;

(14)对测量值Yk,k=1,2,…,N进行秩一近似,得到矩阵

Figure BDA0002900552230000029
(14) Perform a rank-one approximation on the measured values Y k , k=1,2,...,N to obtain a matrix
Figure BDA0002900552230000029

(15)对矩阵

Figure BDA0002900552230000031
进行奇异值分解,并将分解得到的包含左奇异向量的正交矩阵与包含奇异值的对角矩阵相乘,将相乘得到的矩阵的第1列记为uk,k=1,2,…,N,则uk为M维列向量;(15) Pair matrix
Figure BDA0002900552230000031
Perform singular value decomposition, multiply the obtained orthogonal matrix containing left singular vectors with the diagonal matrix containing singular values, and denote the first column of the multiplied matrix as u k , k=1,2, ...,N, then uk is an M-dimensional column vector;

(16)将M维列向量uk,k=1,2,…,N合在一起,构成M×N阶的矩阵[u1;u2;…;uN];(16) Combine the M-dimensional column vectors u k , k=1, 2,...,N together to form an M×N-order matrix [u 1 ; u 2 ;...;u N ];

(17)采用以下公式对左分离矩阵进行标定:(17) Use the following formula to calibrate the left separation matrix:

Figure BDA0002900552230000032
Figure BDA0002900552230000032

其中,

Figure BDA0002900552230000033
表示左分离矩阵ΦL的标定矩阵,H-1=HT/N,HT表示H的转置;in,
Figure BDA0002900552230000033
Represents the calibration matrix of the left separation matrix Φ L , H -1 =H T /N, H T represents the transpose of H;

(2)对所述测量矩阵的右分离矩阵进行标定,具体包括:(2) calibrating the right separation matrix of the measurement matrix, specifically including:

(21)选取N幅标定图像C′k=1hk T,k=1,2,…,N,其中,1表示N维全1列向量,hk表示N×N阶的哈达玛矩阵H的第k列,hk T表示hk的转置;(21) Select N calibration images C′ k =1h k T , k=1,2,...,N, where 1 represents an N-dimensional all-one column vector, and h k represents the Hadamard matrix H of N×N order In the kth column, h k T represents the transpose of h k ;

(22)将标定图像C′k,k=1,2,…,N分成两幅图像

Figure BDA0002900552230000034
Figure BDA0002900552230000035
并分别投影到显示器上,其中
Figure BDA0002900552230000036
表示将C′k中所有+1元素保留、-1元素设置为0得到的图像,
Figure BDA0002900552230000037
表示将-C′k中所有+1元素保留、-1元素设置为0得到的图像;(22) Divide the calibration image C′ k , k=1,2,...,N into two images
Figure BDA0002900552230000034
and
Figure BDA0002900552230000035
and projected onto the monitor respectively, where
Figure BDA0002900552230000036
represents the image obtained by keeping all +1 elements in C′ k and setting the -1 elements to 0,
Figure BDA0002900552230000037
Indicates the image obtained by retaining all +1 elements in -C' k and setting -1 elements to 0;

(23)将两幅图像

Figure BDA0002900552230000038
Figure BDA0002900552230000039
在图像传感器上得到的M×M阶的测量值
Figure BDA00029005522300000310
Figure BDA00029005522300000311
相减,得到标定图像C′k的测量值Y′k;(23) Combine the two images
Figure BDA0002900552230000038
and
Figure BDA0002900552230000039
Measured values of order M×M obtained on the image sensor
Figure BDA00029005522300000310
and
Figure BDA00029005522300000311
Subtraction to obtain the measured value Y' k of the calibration image C' k ;

(24)对测量值Y′k,k=1,2,…,N进行秩一近似,得到矩阵

Figure BDA00029005522300000312
(24) Perform a rank-one approximation on the measured values Y′ k , k=1,2,...,N to obtain a matrix
Figure BDA00029005522300000312

(25)对矩阵

Figure BDA00029005522300000313
进行奇异值分解,并将分解得到的包含奇异值的对角矩阵与包含右奇异向量的正交矩阵的转置相乘,将相乘得到的矩阵的第1列记为vk,k=1,2,…,N,则vk为M维列向量;(25) Pair matrix
Figure BDA00029005522300000313
Perform singular value decomposition, multiply the obtained diagonal matrix containing singular values by the transpose of the orthogonal matrix containing the right singular vector, and denote the first column of the multiplied matrix as v k , k=1 ,2,...,N, then v k is an M-dimensional column vector;

(26)将M维列向量vk,k=1,2,…,N合在一起,构成M×N阶的矩阵[v1;v2;…;vN];(26) Combine M-dimensional column vectors v k , k=1, 2,...,N to form a matrix of M×N order [v 1 ; v 2 ;...;v N ];

(27)采用以下公式对右分离矩阵进行标定:(27) Use the following formula to calibrate the right separation matrix:

Figure BDA0002900552230000041
Figure BDA0002900552230000041

其中,

Figure BDA0002900552230000042
表示右分离矩阵ΦR的标定矩阵,H-1=HT/N,HT表示H的转置。in,
Figure BDA0002900552230000042
Represents the calibration matrix of the right separation matrix Φ R , H -1 =H T /N, and H T represents the transpose of H.

一种超薄无透镜可分离压缩成像系统的重建方法,该成像系统的测量矩阵采用可分离矩阵,该方法包括以下步骤:A reconstruction method of an ultra-thin lensless separable compression imaging system, the measurement matrix of the imaging system adopts a separable matrix, and the method comprises the following steps:

(1)对所述测量矩阵的左分离矩阵和右分离矩阵的标定矩阵进行奇异值分解,并采用以下公式计算其伪逆:(1) Perform singular value decomposition on the calibration matrix of the left separation matrix of the measurement matrix and the calibration matrix of the right separation matrix, and use the following formula to calculate its pseudo-inverse:

Figure BDA0002900552230000043
Figure BDA0002900552230000043

Figure BDA0002900552230000044
Figure BDA0002900552230000044

其中,

Figure BDA0002900552230000045
表示左分离矩阵ΦL的标定矩阵
Figure BDA0002900552230000046
的伪逆,
Figure BDA0002900552230000047
表示右分离矩阵ΦR的标定矩阵
Figure BDA0002900552230000048
的伪逆,UL表示对
Figure BDA0002900552230000049
进行奇异值分解得到的包含左奇异向量的正交矩阵,ΣL表示对
Figure BDA00029005522300000410
进行奇异值分解得到的包含奇异值的对角矩阵,VL表示对
Figure BDA00029005522300000411
进行奇异值分解得到的包含右奇异向量的正交矩阵,
Figure BDA00029005522300000412
表示UL的转置,
Figure BDA00029005522300000413
表示ΣL的逆矩阵,UR表示对
Figure BDA00029005522300000414
进行奇异值分解得到的包含左奇异向量的正交矩阵,ΣR表示对
Figure BDA00029005522300000415
进行奇异值分解得到的包含奇异值的对角矩阵,VR表示对
Figure BDA00029005522300000416
进行奇异值分解得到的包含右奇异向量的正交矩阵,
Figure BDA00029005522300000417
表示UR的转置,
Figure BDA00029005522300000418
表示ΣR的逆矩阵;in,
Figure BDA0002900552230000045
The calibration matrix representing the left separation matrix Φ L
Figure BDA0002900552230000046
The pseudo-inverse of ,
Figure BDA0002900552230000047
The calibration matrix representing the right separation matrix Φ R
Figure BDA0002900552230000048
The pseudo-inverse of , U L denotes the pair
Figure BDA0002900552230000049
Orthogonal matrix containing left singular vectors obtained by singular value decomposition, Σ L represents the pair
Figure BDA00029005522300000410
The diagonal matrix containing singular values obtained by singular value decomposition, V L represents the pair
Figure BDA00029005522300000411
The orthonormal matrix containing the right singular vector obtained by singular value decomposition,
Figure BDA00029005522300000412
represents the transpose of UL,
Figure BDA00029005522300000413
represents the inverse of Σ L , and UR represents the pair
Figure BDA00029005522300000414
Orthogonal matrix containing left singular vectors obtained by singular value decomposition, Σ R represents the pair
Figure BDA00029005522300000415
The diagonal matrix containing singular values obtained by singular value decomposition, VR represents the pair
Figure BDA00029005522300000416
The orthonormal matrix containing the right singular vector obtained by singular value decomposition,
Figure BDA00029005522300000417
represents the transpose of UR ,
Figure BDA00029005522300000418
represents the inverse matrix of Σ R ;

(2)判断左分离矩阵和右分离矩阵是否标定良好,若是,则跳转至步骤(3),若否,则跳转至步骤(4);(2) Judging whether the left separation matrix and the right separation matrix are well calibrated, if so, jump to step (3), if not, jump to step (4);

(3)根据目标图像的测量值,采用以下公式计算得到重建的目标图像:(3) According to the measured value of the target image, the reconstructed target image is obtained by calculating the following formula:

Figure BDA0002900552230000051
Figure BDA0002900552230000051

其中,

Figure BDA0002900552230000052
表示重建的目标图像,Y表示目标图像的测量值;in,
Figure BDA0002900552230000052
represents the reconstructed target image, and Y represents the measured value of the target image;

(4)根据目标图像的测量值,采用以下公式计算得到重建的目标图像:(4) According to the measured value of the target image, the following formula is used to calculate the reconstructed target image:

Figure BDA0002900552230000053
Figure BDA0002900552230000053

其中,

Figure BDA0002900552230000054
表示重建的目标图像,Y表示目标图像的测量值,σL和σR为中间变量,σL=(ΣL)2,σR=(ΣR)2,
Figure BDA0002900552230000055
表示σR的转置,τ表示正则化参数,1表示N维全1列向量,1T表示1的转置,
Figure BDA0002900552230000056
表示VR的转置,·/表示点除。in,
Figure BDA0002900552230000054
represents the reconstructed target image, Y represents the measured value of the target image, σ L and σ R are intermediate variables, σ L =(Σ L ) 2 , σ R =(Σ R ) 2 ,
Figure BDA0002900552230000055
represents the transpose of σ R , τ represents the regularization parameter, 1 represents an N-dimensional all-one column vector, 1 T represents the transpose of 1,
Figure BDA0002900552230000056
Represents the transpose of VR , ·/ represents point division.

由上述技术方案可知,本发明通过采用随机编码孔径实现成像,不仅最大限度地提高了光通量,还大大减小了成像系统的厚度、体积和重量,降低了成本,具有结构紧凑、轻薄、成本低廉的优点;另外,本发明根据可分离压缩传感理论,将可分离矩阵应用到成像系统的测量矩阵中,显著降低了成像系统标定和重建的难度,具有光学实现和计算可行的优点。It can be seen from the above technical solutions that the present invention realizes imaging by using random coded apertures, which not only maximizes the luminous flux, but also greatly reduces the thickness, volume and weight of the imaging system, and reduces the cost, and has the advantages of compact structure, light weight and low cost. In addition, according to the theory of separable compressed sensing, the present invention applies the separable matrix to the measurement matrix of the imaging system, which significantly reduces the difficulty of the calibration and reconstruction of the imaging system, and has the advantages of optical implementation and computational feasibility.

附图说明Description of drawings

图1是本发明的成像系统结构示意图。FIG. 1 is a schematic structural diagram of an imaging system of the present invention.

具体实施方式Detailed ways

下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.

如图1所示,一种超薄无透镜可分离压缩成像系统,包括随机编码孔径掩膜1、图像传感器2、前后两端开口的中空箱体3和不透明固定板4。随机编码孔径掩膜1密封覆设在中空箱体3的前端开口上,图像传感器2和中空箱体3均固定在不透明固定板4上,且图像传感器2位于中空箱体3的后端开口内,图像传感器2与随机编码孔径掩膜1中心点共线。As shown in FIG. 1 , an ultra-thin lensless separable compression imaging system includes a randomly coded aperture mask 1 , an image sensor 2 , a hollow box 3 with openings at the front and rear ends, and an opaque fixing plate 4 . The random coded aperture mask 1 is sealed and covered on the front opening of the hollow box 3 , the image sensor 2 and the hollow box 3 are both fixed on the opaque fixing plate 4 , and the image sensor 2 is located in the rear opening of the hollow box 3 . , the image sensor 2 is collinear with the center point of the random coded aperture mask 1.

本发明的成像系统主要由随机编码孔径掩膜1和图像传感器2组成,随机编码孔径掩膜1对物光场信息进行随机调制,图像传感器2对随机编码孔径掩膜1的测量值进行记录。引入中空箱体3和不透明固定板4,能够保持随机编码孔径掩膜1与图像传感器2之间的距离固定,同时还能够阻挡杂散光,确保光线不会绕过随机编码孔径掩膜1从两侧照射到图像传感器2上,使测量值噪声尽可能小。中空箱体3为长方体结构,由不透明隔离板组成,不透明固定板4选用黑色板。The imaging system of the present invention is mainly composed of a random coded aperture mask 1 and an image sensor 2 . The introduction of the hollow box 3 and the opaque fixing plate 4 can keep the distance between the random coded aperture mask 1 and the image sensor 2 fixed, and can also block stray light to ensure that the light will not bypass the random coded aperture mask 1 from the two. The side irradiates onto the image sensor 2 so that the measured value noise is as small as possible. The hollow box body 3 is of a rectangular parallelepiped structure and is composed of an opaque isolation plate, and the opaque fixed plate 4 is a black plate.

随机编码孔径掩膜1和图像传感器2被认为是平面的,且彼此平行。随机编码孔径掩膜1放置在图像传感器前面距离d处(典型的测量在微米量级)。随机编码孔径掩膜1是二进制的,由不透明元素和透明元素组成,不透明元素用于阻挡光,透明元素用于传输光,理想的随机编码孔径掩膜1能够最大限度地提高光通量。本发明可以在非相干光下成像,物体处在自然光下即可成像。The randomly coded aperture mask 1 and the image sensor 2 are considered to be planar and parallel to each other. A randomly coded aperture mask 1 is placed in front of the image sensor at a distance d (typically measured on the order of microns). The random coded aperture mask 1 is binary and consists of opaque elements and transparent elements. The opaque elements are used to block light and the transparent elements are used to transmit light. The ideal random code aperture mask 1 can maximize the light flux. The present invention can be imaged under incoherent light, and the object can be imaged under natural light.

编码孔径的设计在成像中起着重要的作用。一个理想的设计将最大限度地提高光通量,同时提供一个条件良好的场景-图像传感器传递函数,以方便反演。随机编码孔径的主要目的是提供更随机化的信息调制,尽可能多地保存信息。The design of the coded aperture plays an important role in imaging. An ideal design would maximize luminous flux while providing a well-conditioned scene-to-image sensor transfer function for easy inversion. The main purpose of random coded apertures is to provide a more randomized modulation of information, preserving as much information as possible.

在本发明的成像系统中,随机编码孔径起着对真实世界中的场景进行测量映射到图像传感器2上的作用,其数学模型可以用测量矩阵(即场景-图像传感器传递函数矩阵)Φ表示为一个M×N阶的投影矩阵。在使用本发明的成像系统进行真实实验之前,必须对测量矩阵Φ进行标定,以确定场景与图像传感器2的测量值之间的映射,从而能够从图像传感器2的测量值中实现场景的恢复。In the imaging system of the present invention, the random coded aperture plays the role of measuring the scene in the real world and mapping it to the image sensor 2, and its mathematical model can be represented by the measurement matrix (ie the scene-image sensor transfer function matrix) Φ as A projection matrix of order M×N. Before conducting real experiments using the imaging system of the present invention, the measurement matrix Φ must be calibrated to determine the mapping between the scene and the measurement values of the image sensor 2 so that scene recovery can be achieved from the measurement values of the image sensor 2 .

为减小测量矩阵Φ存储的维度,采用可分离设计思想改进本发明成像系统的测量矩阵Φ,降低成像系统标定和重建的难度。测量矩阵Φ可以表示为:In order to reduce the storage dimension of the measurement matrix Φ, a separable design idea is adopted to improve the measurement matrix Φ of the imaging system of the present invention, thereby reducing the difficulty of calibration and reconstruction of the imaging system. The measurement matrix Φ can be expressed as:

Figure BDA0002900552230000071
Figure BDA0002900552230000071

其中,ΦL、ΦR分别表示测量矩阵Φ的左分离矩阵和右分离矩阵,

Figure BDA0002900552230000072
表示Kronecker积,可以是直接乘积或张量积。Among them, Φ L and Φ R represent the left separation matrix and the right separation matrix of the measurement matrix Φ, respectively,
Figure BDA0002900552230000072
Represents the Kronecker product, which can be a direct product or a tensor product.

因此,对测量矩阵Φ进行标定就转换成对其左分离矩阵ΦL和右分离矩阵ΦR的标定。Therefore, the calibration of the measurement matrix Φ is transformed into the calibration of its left separation matrix Φ L and right separation matrix Φ R.

一种超薄无透镜可分离压缩成像系统的标定方法,包括以下步骤:A method for calibrating an ultra-thin lensless separable compression imaging system, comprising the following steps:

S1、对测量矩阵Φ的左分离矩阵ΦL进行标定,具体包括:S1, calibrate the left separation matrix Φ L of the measurement matrix Φ, which specifically includes:

S11、选取N幅标定图像Ck=hk1T,k=1,2,…,N,其中,hk表示N×N阶的哈达玛矩阵H的第k列,1表示N维全1列向量,1T表示1的转置。S11. Select N calibration images C k =h k 1 T , k =1, 2, . Column vector, 1 T represents the transpose of 1.

S12、将标定图像Ck,k=1,2,…,N分成两幅图像

Figure BDA0002900552230000081
Figure BDA0002900552230000082
并分别投影到显示器上,其中
Figure BDA0002900552230000083
表示将Ck中所有+1元素保留、-1元素设置为0得到的图像,
Figure BDA0002900552230000084
表示将-Ck中所有+1元素保留、-1元素设置为0得到的图像。S12. Divide the calibration image C k , k=1,2,...,N into two images
Figure BDA0002900552230000081
and
Figure BDA0002900552230000082
and projected onto the monitor respectively, where
Figure BDA0002900552230000083
represents the image obtained by keeping all +1 elements in C k and setting -1 elements to 0,
Figure BDA0002900552230000084
Represents the image obtained by keeping all +1 elements in -C k and setting -1 elements to 0.

哈达玛矩阵H由元素+1和-1组成,导致由Hadamard模式生成的每一幅标定图像Ck,k=1,2,…,N需要分成两幅图像

Figure BDA0002900552230000085
Figure BDA0002900552230000086
The Hadamard matrix H consists of elements +1 and -1, resulting in that each calibration image C k , k=1,2,...,N generated by Hadamard mode needs to be split into two images
Figure BDA0002900552230000085
and
Figure BDA0002900552230000086

Figure BDA0002900552230000087
Figure BDA0002900552230000087

S13、将两幅图像

Figure BDA0002900552230000088
Figure BDA0002900552230000089
在图像传感器上得到的M×M阶的测量值
Figure BDA00029005522300000810
Figure BDA00029005522300000811
相减,得到标定图像Ck的测量值Yk:S13. Combine the two images
Figure BDA0002900552230000088
and
Figure BDA0002900552230000089
Measured values of order M×M obtained on the image sensor
Figure BDA00029005522300000810
and
Figure BDA00029005522300000811
Subtraction to obtain the measured value Y k of the calibration image C k :

Figure BDA00029005522300000812
Figure BDA00029005522300000812

Figure BDA00029005522300000813
Figure BDA00029005522300000813

Figure BDA00029005522300000814
Figure BDA00029005522300000814

S14、对测量值yk,k=1,2,…,N进行秩一近似,得到矩阵

Figure BDA00029005522300000815
S14. Perform a rank-one approximation on the measured values y k , k=1, 2, ..., N to obtain a matrix
Figure BDA00029005522300000815

S15、对矩阵

Figure BDA00029005522300000816
进行奇异值分解,并将分解得到的包含左奇异向量的正交矩阵U与包含奇异值的对角矩阵Σ(该对角矩阵只有第一个元素不为0,其它元素均为0)相乘,将相乘得到的矩阵的第1列记为uk,k=1,2,…,N,则uk为M维列向量,令:S15, pair matrix
Figure BDA00029005522300000816
Perform singular value decomposition, and multiply the resulting orthogonal matrix U containing left singular vectors with a diagonal matrix Σ containing singular values (only the first element of the diagonal matrix is not 0, and other elements are 0) , denote the first column of the multiplied matrix as u k , k=1,2,...,N, then u k is an M-dimensional column vector, let:

Figure BDA00029005522300000817
Figure BDA00029005522300000817

由于Yk=ΦLCkR)T=(ΦLhk)(ΦR1)T,则得到:Since Y kL C kR ) T =(Φ L h k )(Φ R 1) T , then:

uk=ΦLhk u kL h k

S16、将M维列向量uk,k=1,2,…,N合在一起,构成M×N阶的矩阵[u1;u2;…;uN],则有:S16. Combine the M-dimensional column vectors u k , k=1, 2,...,N together to form an M×N-order matrix [u 1 ; u 2 ;...; u N ], there are:

[u1;u2;…;uN]=ΦL[h1;h2;…;hN]=ΦLH[u 1 ; u 2 ;...;u N ]=Φ L [h 1 ;h 2 ;...;h N ]=Φ L H

S17、采用以下公式对左分离矩阵ΦL进行标定:S17. Use the following formula to calibrate the left separation matrix Φ L :

Figure BDA0002900552230000091
Figure BDA0002900552230000091

其中,

Figure BDA0002900552230000092
表示左分离矩阵ΦL的标定矩阵,H-1=HT/N,HT表示H的转置。in,
Figure BDA0002900552230000092
Represents the calibration matrix of the left separation matrix Φ L , H -1 =H T /N, and H T represents the transpose of H.

S2、对测量矩阵Φ的右分离矩阵ΦR进行标定,具体包括:S2, calibrate the right separation matrix Φ R of the measurement matrix Φ, specifically including:

S21、选取N幅标定图像C′k=1hk T,k=1,2,…,N,其中,1表示N维全1列向量,hk表示N×N阶的哈达玛矩阵H的第k列,hk T表示hk的转置。S21. Select N calibration images C′ k = 1h k T , k =1, 2, . Column k, h k T represents the transpose of h k .

S22、将标定图像C′k,k=1,2,…,N分成两幅图像

Figure BDA0002900552230000093
Figure BDA0002900552230000094
并分别投影到显示器上,其中
Figure BDA0002900552230000095
表示将C′k中所有+1元素保留、-1元素设置为0得到的图像,
Figure BDA0002900552230000096
表示将-C′k中所有+1元素保留、-1元素设置为0得到的图像。S22. Divide the calibration image C′ k , k=1,2,...,N into two images
Figure BDA0002900552230000093
and
Figure BDA0002900552230000094
and projected onto the monitor respectively, where
Figure BDA0002900552230000095
represents the image obtained by keeping all +1 elements in C′ k and setting the -1 elements to 0,
Figure BDA0002900552230000096
Represents the image obtained by keeping all +1 elements in -C' k and setting -1 elements to 0.

哈达玛矩阵H由元素+1和-1组成,导致由Hadamard模式生成的每一幅标定图像C′k,k=1,2,…,N需要分成两幅图像

Figure BDA0002900552230000097
Figure BDA0002900552230000098
The Hadamard matrix H consists of elements +1 and -1, resulting in that each calibration image C′ k , k=1,2,...,N generated by Hadamard mode needs to be divided into two images
Figure BDA0002900552230000097
and
Figure BDA0002900552230000098

Figure BDA0002900552230000099
Figure BDA0002900552230000099

S23、将两幅图像

Figure BDA00029005522300000910
Figure BDA00029005522300000911
在图像传感器上得到的M×M阶的测量值
Figure BDA00029005522300000912
Figure BDA00029005522300000913
相减,得到标定图像C′k的测量值Y′k:S23. Combine the two images
Figure BDA00029005522300000910
and
Figure BDA00029005522300000911
Measured values of order M×M obtained on the image sensor
Figure BDA00029005522300000912
and
Figure BDA00029005522300000913
Subtraction to obtain the measured value Y' k of the calibration image C' k :

Figure BDA00029005522300000914
Figure BDA00029005522300000914

Figure BDA00029005522300000915
Figure BDA00029005522300000915

Figure BDA00029005522300000916
Figure BDA00029005522300000916

S24、对测量值Y′k,k=1,2,…,N进行秩一近似,得到矩阵

Figure BDA0002900552230000101
S24. Perform a rank-one approximation on the measured values Y′ k , k=1, 2, ..., N to obtain a matrix
Figure BDA0002900552230000101

S25、对矩阵

Figure BDA0002900552230000102
进行奇异值分解,并将分解得到的包含奇异值的对角矩阵Σ′(该对角矩阵只有第一个元素不为0,其它元素均为0)与包含右奇异向量的正交矩阵V′的转置(V′)T相乘,将相乘得到的矩阵的第1列记为vk,k=1,2,…,N,则vk为M维列向量,令:S25, pair matrix
Figure BDA0002900552230000102
Perform singular value decomposition, and decompose the diagonal matrix Σ' containing singular values (only the first element of the diagonal matrix is not 0, and other elements are 0) and the orthogonal matrix V' containing the right singular vector Multiply the transpose (V′) T of , and denote the first column of the multiplied matrix as v k , k=1,2,...,N, then v k is an M-dimensional column vector, let:

Figure BDA0002900552230000103
Figure BDA0002900552230000103

由于Y′k=ΦLC′kR)T=(ΦL1)(ΦRhk)T,则得到:Since Y′ kL C′ kR ) T =(Φ L 1)(Φ R h k ) T , then:

vk=ΦRhk v kR h k

S26、将M维列向量vk,k=1,2,…,N合在一起,构成M×N阶的矩阵[v1;v2;…;vN],则有:S26. Combine the M-dimensional column vectors v k , k=1, 2,...,N together to form an M×N-order matrix [v 1 ; v 2 ;...; v N ], there are:

[v1;v2;…;vN]=ΦR[h1;h2;…;hN]=ΦRH[v 1 ; v 2 ;...;v N ]=Φ R [h 1 ;h 2 ;...;h N ]=Φ R H

S27、采用以下公式对右分离矩阵ΦR进行标定:S27. Use the following formula to calibrate the right separation matrix Φ R :

Figure BDA0002900552230000104
Figure BDA0002900552230000104

其中,

Figure BDA0002900552230000105
表示右分离矩阵ΦR的标定矩阵,H-1=HT/N,HT表示H的转置。in,
Figure BDA0002900552230000105
Represents the calibration matrix of the right separation matrix Φ R , H -1 =H T /N, and H T represents the transpose of H.

一种超薄无透镜可分离压缩成像系统的重建方法,包括以下步骤:A reconstruction method of an ultra-thin lensless separable compression imaging system, comprising the following steps:

s1、对测量矩阵Φ的左分离矩阵ΦL和右分离矩阵ΦR的标定矩阵

Figure BDA0002900552230000106
Figure BDA0002900552230000107
进行奇异值分解,并采用以下公式计算其伪逆:s1, the calibration matrix for the left separation matrix Φ L of the measurement matrix Φ and the right separation matrix Φ R
Figure BDA0002900552230000106
and
Figure BDA0002900552230000107
Perform singular value decomposition and compute its pseudoinverse using the following formula:

Figure BDA0002900552230000108
Figure BDA0002900552230000108

Figure BDA0002900552230000109
Figure BDA0002900552230000109

其中,

Figure BDA00029005522300001010
表示左分离矩阵ΦL的标定矩阵
Figure BDA00029005522300001011
的伪逆,
Figure BDA00029005522300001012
表示右分离矩阵ΦR的标定矩阵
Figure BDA00029005522300001013
的伪逆,UL表示对
Figure BDA00029005522300001014
进行奇异值分解得到的包含左奇异向量的正交矩阵,ΣL表示对
Figure BDA0002900552230000111
进行奇异值分解得到的包含奇异值的对角矩阵,VL表示对
Figure BDA0002900552230000112
进行奇异值分解得到的包含右奇异向量的正交矩阵,
Figure BDA0002900552230000113
表示UL的转置,
Figure BDA0002900552230000114
表示ΣL的逆矩阵,UR表示对
Figure BDA0002900552230000115
进行奇异值分解得到的包含左奇异向量的正交矩阵,ΣR表示对
Figure BDA0002900552230000116
进行奇异值分解得到的包含奇异值的对角矩阵,VR表示对
Figure BDA0002900552230000117
进行奇异值分解得到的包含右奇异向量的正交矩阵,
Figure BDA0002900552230000118
表示UR的转置,
Figure BDA0002900552230000119
表示ΣR的逆矩阵。in,
Figure BDA00029005522300001010
The calibration matrix representing the left separation matrix Φ L
Figure BDA00029005522300001011
The pseudo-inverse of ,
Figure BDA00029005522300001012
The calibration matrix representing the right separation matrix Φ R
Figure BDA00029005522300001013
The pseudo-inverse of , U L denotes the pair
Figure BDA00029005522300001014
Orthogonal matrix containing left singular vectors obtained by singular value decomposition, Σ L represents the pair
Figure BDA0002900552230000111
The diagonal matrix containing singular values obtained by singular value decomposition, V L represents the pair
Figure BDA0002900552230000112
The orthonormal matrix containing the right singular vector obtained by singular value decomposition,
Figure BDA0002900552230000113
represents the transpose of UL,
Figure BDA0002900552230000114
represents the inverse of Σ L , and UR represents the pair
Figure BDA0002900552230000115
Orthogonal matrix containing left singular vectors obtained by singular value decomposition, Σ R represents the pair
Figure BDA0002900552230000116
The diagonal matrix containing singular values obtained by singular value decomposition, VR represents the pair
Figure BDA0002900552230000117
The orthonormal matrix containing the right singular vector obtained by singular value decomposition,
Figure BDA0002900552230000118
represents the transpose of UR ,
Figure BDA0002900552230000119
represents the inverse of Σ R.

s2、判断左分离矩阵ΦL和右分离矩阵ΦR是否标定良好,若是,则跳转至步骤s3,若否,则跳转至步骤s4。s2. Determine whether the left separation matrix Φ L and the right separation matrix Φ R are well calibrated, if so, jump to step s3, and if not, jump to step s4.

s3、根据目标图像的测量值,采用以下公式计算得到重建的目标图像:s3. According to the measurement value of the target image, use the following formula to calculate the reconstructed target image:

Figure BDA00029005522300001110
Figure BDA00029005522300001110

其中,

Figure BDA00029005522300001111
表示重建的目标图像,Y表示目标图像的测量值。in,
Figure BDA00029005522300001111
represents the reconstructed target image, and Y represents the measured value of the target image.

s4、根据目标图像的测量值,采用以下公式计算得到重建的目标图像:s4. According to the measured value of the target image, use the following formula to calculate the reconstructed target image:

Figure BDA00029005522300001112
Figure BDA00029005522300001112

其中,

Figure BDA00029005522300001113
表示重建的目标图像,Y表示目标图像的测量值,σL和σR为中间变量,σL=(ΣL)2,σR=(ΣR)2,
Figure BDA00029005522300001114
表示σR的转置,τ表示正则化参数,1表示N维全1列向量,1T表示1的转置,
Figure BDA00029005522300001115
表示VR的转置,·/表示点除。in,
Figure BDA00029005522300001113
represents the reconstructed target image, Y represents the measured value of the target image, σ L and σ R are intermediate variables, σ L =(Σ L ) 2 , σ R =(Σ R ) 2 ,
Figure BDA00029005522300001114
represents the transpose of σ R , τ represents the regularization parameter, 1 represents an N-dimensional all-one column vector, 1 T represents the transpose of 1,
Figure BDA00029005522300001115
Represents the transpose of VR , ·/ represents point division.

由上述重建方法可知,如果ΦL和ΦR都是标定良好的,那么可以通过求解一个最小二乘法问题来估计未知场景X:It can be seen from the above reconstruction method that if Φ L and Φ R are both well-calibrated, then the unknown scene X can be estimated by solving a least squares problem:

Figure BDA0002900552230000121
Figure BDA0002900552230000121

其解是闭合形式的:The solution is in closed form:

Figure BDA0002900552230000122
Figure BDA0002900552230000122

如果ΦL和ΦR标定条件不好或者不充分时,需要考虑最小二乘法估计

Figure BDA0002900552230000123
噪声放大的影响,减小噪声的一个简单方法是在最小二乘法问题中增加正则化项:If the calibration conditions of Φ L and Φ R are not good or insufficient, it is necessary to consider the least squares estimation
Figure BDA0002900552230000123
The effect of noise amplification, a simple way to reduce the noise is to add a regularization term to the least squares problem:

Figure BDA0002900552230000124
Figure BDA0002900552230000124

在这里τ>0,上式的解也可以使用

Figure BDA0002900552230000125
Figure BDA0002900552230000126
的SVD明确写出:where τ > 0, the solution of the above equation can also be used
Figure BDA0002900552230000125
and
Figure BDA0002900552230000126
The SVD explicitly writes:

Figure BDA0002900552230000127
Figure BDA0002900552230000127

以上所述实施方式仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。The above-mentioned embodiments are only to describe the preferred embodiments of the present invention, and do not limit the scope of the present invention. On the premise of not departing from the design spirit of the present invention, various modifications made by those of ordinary skill in the art to the technical solutions of the present invention and improvements, all should fall within the protection scope determined by the claims of the present invention.

Claims (5)

1.一种超薄无透镜可分离压缩成像系统,其特征在于:该成像系统包括随机编码孔径掩膜、图像传感器、前后两端开口的中空箱体和不透明固定板,所述随机编码孔径掩膜密封覆设在所述中空箱体的前端开口处,所述图像传感器和中空箱体均固定在不透明固定板上,且所述图像传感器位于所述中空箱体的后端开口内,所述图像传感器与所述随机编码孔径掩膜中心点共线,所述随机编码孔径掩膜由不透明元素和透明元素组成,所述不透明元素用于阻挡光,所述透明元素用于传输光。1. An ultra-thin lensless separable compression imaging system, characterized in that: the imaging system comprises a random coded aperture mask, an image sensor, a hollow box body and an opaque fixed plate opened at the front and rear ends, and the random coded aperture mask The film is sealed and covered at the front opening of the hollow box, the image sensor and the hollow box are both fixed on the opaque fixing plate, and the image sensor is located in the rear opening of the hollow box, the The image sensor is collinear with the center point of the random coded aperture mask, the random coded aperture mask is composed of opaque elements and transparent elements, the opaque elements are used to block light, and the transparent elements are used to transmit light. 2.根据权利要求1所述的超薄无透镜可分离压缩成像系统,其特征在于:所述不透明固定板选用黑色板。2 . The ultra-thin lensless separable compression imaging system according to claim 1 , wherein the opaque fixed plate is a black plate. 3 . 3.根据权利要求1所述的超薄无透镜可分离压缩成像系统,其特征在于:所述中空箱体为由不透明隔离板组成的长方体结构。3 . The ultra-thin lensless separable compression imaging system according to claim 1 , wherein the hollow box is a cuboid structure composed of opaque isolation plates. 4 . 4.一种超薄无透镜可分离压缩成像系统的标定方法,该成像系统的测量矩阵采用可分离矩阵,其特征在于,该方法包括以下步骤:4. A calibration method of an ultra-thin lensless separable compression imaging system, the measurement matrix of the imaging system adopts a separable matrix, and it is characterized in that, the method comprises the following steps: (1)对所述测量矩阵的左分离矩阵进行标定,具体包括:(1) calibrating the left separation matrix of the measurement matrix, specifically including: (11)选取N幅标定图像Ck=hk1T,k=1,2,…,N,其中,hk表示N×N阶的哈达玛矩阵H的第k列,1表示N维全1列向量,1T表示1的转置;(11) Select N calibration images C k =h k 1 T , k=1,2,...,N, where h k represents the kth column of the Hadamard matrix H of N×N order, and 1 represents the N-dimensional full 1 column vector, 1 T represents the transpose of 1; (12)将标定图像Ck,k=1,2,…,N分成两幅图像
Figure FDA0002900552220000011
Figure FDA0002900552220000012
并分别投影到显示器上,其中
Figure FDA0002900552220000013
表示将Ck中所有+1元素保留、-1元素设置为0得到的图像,
Figure FDA0002900552220000014
表示将-Ck中所有+1元素保留、-1元素设置为0得到的图像;
(12) Divide the calibration image C k , k=1,2,...,N into two images
Figure FDA0002900552220000011
and
Figure FDA0002900552220000012
and projected onto the monitor respectively, where
Figure FDA0002900552220000013
represents the image obtained by keeping all +1 elements in C k and setting -1 elements to 0,
Figure FDA0002900552220000014
Indicates the image obtained by keeping all +1 elements in -C k and setting -1 elements to 0;
(13)将两幅图像
Figure FDA0002900552220000021
Figure FDA0002900552220000022
在图像传感器上得到的M×M阶的测量值
Figure FDA0002900552220000023
Figure FDA0002900552220000024
相减,得到标定图像Ck的测量值Yk
(13) Combine the two images
Figure FDA0002900552220000021
and
Figure FDA0002900552220000022
Measured values of order M×M obtained on the image sensor
Figure FDA0002900552220000023
and
Figure FDA0002900552220000024
Subtraction to obtain the measured value Y k of the calibration image C k ;
(14)对测量值Yk,k=1,2,…,N进行秩一近似,得到矩阵
Figure FDA0002900552220000025
(14) Perform a rank-one approximation on the measured values Y k , k=1,2,...,N to obtain a matrix
Figure FDA0002900552220000025
(15)对矩阵
Figure FDA0002900552220000026
进行奇异值分解,并将分解得到的包含左奇异向量的正交矩阵与包含奇异值的对角矩阵相乘,将相乘得到的矩阵的第1列记为uk,k=1,2,…,N,则uk为M维列向量;
(15) Pair matrix
Figure FDA0002900552220000026
Perform singular value decomposition, multiply the obtained orthogonal matrix containing left singular vectors with the diagonal matrix containing singular values, and denote the first column of the multiplied matrix as u k , k=1,2, ...,N, then uk is an M-dimensional column vector;
(16)将M维列向量uk,k=1,2,…,N合在一起,构成M×N阶的矩阵[u1;u2;…;uN];(16) Combine the M-dimensional column vectors u k , k=1, 2,...,N together to form an M×N-order matrix [u 1 ; u 2 ;...;u N ]; (17)采用以下公式对左分离矩阵进行标定:(17) Use the following formula to calibrate the left separation matrix:
Figure FDA0002900552220000027
Figure FDA0002900552220000027
其中,
Figure FDA0002900552220000028
表示左分离矩阵ΦL的标定矩阵,H-1=HT/N,HT表示H的转置;
in,
Figure FDA0002900552220000028
Represents the calibration matrix of the left separation matrix Φ L , H -1 =H T /N, H T represents the transpose of H;
(2)对所述测量矩阵的右分离矩阵进行标定,具体包括:(2) calibrating the right separation matrix of the measurement matrix, specifically including: (21)选取N幅标定图像C′k=1hk T,k=1,2,…,N,其中,1表示N维全1列向量,hk表示N×N阶的哈达玛矩阵H的第k列,hk T表示hk的转置;(21) Select N calibration images C′ k =1h k T , k=1,2,...,N, where 1 represents an N-dimensional all-one column vector, and h k represents the Hadamard matrix H of N×N order In the kth column, h k T represents the transpose of h k ; (22)将标定图像C′k,k=1,2,…,N分成两幅图像
Figure FDA0002900552220000029
Figure FDA00029005522200000210
并分别投影到显示器上,其中
Figure FDA00029005522200000211
表示将C′k中所有+1元素保留、-1元素设置为0得到的图像,
Figure FDA00029005522200000212
表示将-C′k中所有+1元素保留、-1元素设置为0得到的图像;
(22) Divide the calibration image C′ k , k=1,2,...,N into two images
Figure FDA0002900552220000029
and
Figure FDA00029005522200000210
and projected onto the monitor respectively, where
Figure FDA00029005522200000211
represents the image obtained by keeping all +1 elements in C′ k and setting the -1 elements to 0,
Figure FDA00029005522200000212
Indicates the image obtained by retaining all +1 elements in -C' k and setting -1 elements to 0;
(23)将两幅图像
Figure FDA00029005522200000213
Figure FDA00029005522200000214
在图像传感器上得到的M×M阶的测量值
Figure FDA00029005522200000215
Figure FDA00029005522200000216
相减,得到标定图像C′k的测量值Y′k
(23) Combine the two images
Figure FDA00029005522200000213
and
Figure FDA00029005522200000214
Measured values of order M×M obtained on the image sensor
Figure FDA00029005522200000215
and
Figure FDA00029005522200000216
Subtraction to obtain the measured value Y' k of the calibration image C' k ;
(24)对测量值Y′k,k=1,2,…,N进行秩一近似,得到矩阵
Figure FDA0002900552220000031
(24) Perform a rank-one approximation on the measured values Y′ k , k=1,2,...,N to obtain a matrix
Figure FDA0002900552220000031
(25)对矩阵
Figure FDA0002900552220000032
进行奇异值分解,并将分解得到的包含奇异值的对角矩阵与包含右奇异向量的正交矩阵的转置相乘,将相乘得到的矩阵的第1列记为vk,k=1,2,…,N,则vk为M维列向量;
(25) Pair matrix
Figure FDA0002900552220000032
Perform singular value decomposition, multiply the obtained diagonal matrix containing singular values by the transpose of the orthogonal matrix containing the right singular vector, and denote the first column of the multiplied matrix as v k , k=1 ,2,...,N, then v k is an M-dimensional column vector;
(26)将M维列向量vk,k=1,2,…,N合在一起,构成M×N阶的矩阵[v1;v2;…;vN];(26) Combine M-dimensional column vectors v k , k=1, 2,...,N to form a matrix of M×N order [v 1 ; v 2 ;...;v N ]; (27)采用以下公式对右分离矩阵进行标定:(27) Use the following formula to calibrate the right separation matrix:
Figure FDA0002900552220000033
Figure FDA0002900552220000033
其中,
Figure FDA0002900552220000034
表示右分离矩阵ΦR的标定矩阵,H-1=HT/N,HT表示H的转置。
in,
Figure FDA0002900552220000034
Represents the calibration matrix of the right separation matrix Φ R , H -1 =H T /N, and H T represents the transpose of H.
5.一种超薄无透镜可分离压缩成像系统的重建方法,该成像系统的测量矩阵采用可分离矩阵,其特征在于,该方法包括以下步骤:5. A reconstruction method of an ultra-thin lensless separable compression imaging system, the measurement matrix of the imaging system adopts a separable matrix, and it is characterized in that, the method comprises the following steps: (1)对所述测量矩阵的左分离矩阵和右分离矩阵的标定矩阵进行奇异值分解,并采用以下公式计算其伪逆:(1) Perform singular value decomposition on the calibration matrix of the left separation matrix of the measurement matrix and the calibration matrix of the right separation matrix, and use the following formula to calculate its pseudo-inverse:
Figure FDA0002900552220000035
Figure FDA0002900552220000035
Figure FDA0002900552220000036
Figure FDA0002900552220000036
其中,
Figure FDA0002900552220000037
表示左分离矩阵ΦL的标定矩阵
Figure FDA0002900552220000038
的伪逆,
Figure FDA0002900552220000039
表示右分离矩阵ΦR的标定矩阵
Figure FDA00029005522200000310
的伪逆,UL表示对
Figure FDA00029005522200000311
进行奇异值分解得到的包含左奇异向量的正交矩阵,ΣL表示对
Figure FDA00029005522200000312
进行奇异值分解得到的包含奇异值的对角矩阵,VL表示对
Figure FDA00029005522200000313
进行奇异值分解得到的包含右奇异向量的正交矩阵,
Figure FDA00029005522200000314
表示UL的转置,
Figure FDA00029005522200000315
表示ΣL的逆矩阵,UR表示对
Figure FDA00029005522200000316
进行奇异值分解得到的包含左奇异向量的正交矩阵,ΣR表示对
Figure FDA00029005522200000317
进行奇异值分解得到的包含奇异值的对角矩阵,VR表示对
Figure FDA0002900552220000041
进行奇异值分解得到的包含右奇异向量的正交矩阵,
Figure FDA0002900552220000042
表示UR的转置,
Figure FDA0002900552220000043
表示ΣR的逆矩阵;
in,
Figure FDA0002900552220000037
The calibration matrix representing the left separation matrix Φ L
Figure FDA0002900552220000038
The pseudo-inverse of ,
Figure FDA0002900552220000039
The calibration matrix representing the right separation matrix Φ R
Figure FDA00029005522200000310
The pseudo-inverse of , U L denotes the pair
Figure FDA00029005522200000311
Orthogonal matrix containing left singular vectors obtained by singular value decomposition, Σ L represents the pair
Figure FDA00029005522200000312
The diagonal matrix containing singular values obtained by singular value decomposition, V L represents the pair
Figure FDA00029005522200000313
The orthonormal matrix containing the right singular vector obtained by singular value decomposition,
Figure FDA00029005522200000314
represents the transpose of UL,
Figure FDA00029005522200000315
represents the inverse of Σ L , and UR represents the pair
Figure FDA00029005522200000316
Orthogonal matrix containing left singular vectors obtained by singular value decomposition, Σ R represents the pair
Figure FDA00029005522200000317
The diagonal matrix containing singular values obtained by singular value decomposition, VR represents the pair
Figure FDA0002900552220000041
The orthonormal matrix containing the right singular vector obtained by singular value decomposition,
Figure FDA0002900552220000042
represents the transpose of UR ,
Figure FDA0002900552220000043
represents the inverse matrix of Σ R ;
(2)判断左分离矩阵和右分离矩阵是否标定良好,若是,则跳转至步骤(3),若否,则跳转至步骤(4);(2) Judging whether the left separation matrix and the right separation matrix are well calibrated, if so, jump to step (3), if not, jump to step (4); (3)根据目标图像的测量值,采用以下公式计算得到重建的目标图像:(3) According to the measured value of the target image, the reconstructed target image is obtained by calculating the following formula:
Figure FDA0002900552220000044
Figure FDA0002900552220000044
其中,
Figure FDA0002900552220000045
表示重建的目标图像,Y表示目标图像的测量值;
in,
Figure FDA0002900552220000045
represents the reconstructed target image, and Y represents the measured value of the target image;
(4)根据目标图像的测量值,采用以下公式计算得到重建的目标图像:(4) According to the measured value of the target image, the following formula is used to calculate the reconstructed target image:
Figure FDA0002900552220000046
Figure FDA0002900552220000046
其中,
Figure FDA0002900552220000047
表示重建的目标图像,Y表示目标图像的测量值,σL和σR为中间变量,σL=(ΣL)2,σR=(ΣR)2,
Figure FDA0002900552220000048
表示σR的转置,τ表示正则化参数,1表示N维全1列向量,1T表示1的转置,
Figure FDA0002900552220000049
表示VR的转置,·/表示点除。
in,
Figure FDA0002900552220000047
represents the reconstructed target image, Y represents the measured value of the target image, σ L and σ R are intermediate variables, σ L =(Σ L ) 2 , σ R =(Σ R ) 2 ,
Figure FDA0002900552220000048
represents the transpose of σ R , τ represents the regularization parameter, 1 represents an N-dimensional all-one column vector, 1 T represents the transpose of 1,
Figure FDA0002900552220000049
Represents the transpose of VR , ·/ represents point division.
CN202110055760.2A 2021-01-15 2021-01-15 Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof Active CN112802135B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110055760.2A CN112802135B (en) 2021-01-15 2021-01-15 Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110055760.2A CN112802135B (en) 2021-01-15 2021-01-15 Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof

Publications (2)

Publication Number Publication Date
CN112802135A true CN112802135A (en) 2021-05-14
CN112802135B CN112802135B (en) 2022-12-02

Family

ID=75809714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110055760.2A Active CN112802135B (en) 2021-01-15 2021-01-15 Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof

Country Status (1)

Country Link
CN (1) CN112802135B (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316166A (en) * 1999-05-06 2000-11-14 Olympus Optical Co Ltd Color image pickup element and device
US20030202709A1 (en) * 2002-04-25 2003-10-30 Simard Patrice Y. Clustering
JP2005338545A (en) * 2004-05-28 2005-12-08 Konica Minolta Business Technologies Inc Image forming apparatus
JP2009229125A (en) * 2008-03-19 2009-10-08 Sharp Corp Distance measuring device and distance measuring method
CN101777191A (en) * 2009-12-30 2010-07-14 北京工业大学 Imaging spectrum rapid vector quantization coding method based on signal noise separation
CN106067162A (en) * 2016-06-03 2016-11-02 西安电子科技大学 Integration imaging super-resolution micro unit pattern matrix gathers and reconstructing method
CN107300827A (en) * 2017-07-05 2017-10-27 中国科学院光电研究院 Low noise without lens imaging method
CN108416723A (en) * 2018-02-07 2018-08-17 南京理工大学 A Fast Reconstruction Method for Lensless Imaging Based on Total Variational Regularization and Variable Splitting
CN108801457A (en) * 2018-03-27 2018-11-13 浙江大学 Three-dimensional collection of illustrative plates based on the design of coded sample plate and second energy about beam alignment obtains and method for reconstructing
CN110392193A (en) * 2019-06-14 2019-10-29 浙江大学 Mask plate of a mask plate camera
CN112055133A (en) * 2019-06-05 2020-12-08 上海耕岩智能科技有限公司 Image acquisition device and electronic equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316166A (en) * 1999-05-06 2000-11-14 Olympus Optical Co Ltd Color image pickup element and device
US20030202709A1 (en) * 2002-04-25 2003-10-30 Simard Patrice Y. Clustering
JP2005338545A (en) * 2004-05-28 2005-12-08 Konica Minolta Business Technologies Inc Image forming apparatus
JP2009229125A (en) * 2008-03-19 2009-10-08 Sharp Corp Distance measuring device and distance measuring method
CN101777191A (en) * 2009-12-30 2010-07-14 北京工业大学 Imaging spectrum rapid vector quantization coding method based on signal noise separation
CN106067162A (en) * 2016-06-03 2016-11-02 西安电子科技大学 Integration imaging super-resolution micro unit pattern matrix gathers and reconstructing method
CN107300827A (en) * 2017-07-05 2017-10-27 中国科学院光电研究院 Low noise without lens imaging method
CN108416723A (en) * 2018-02-07 2018-08-17 南京理工大学 A Fast Reconstruction Method for Lensless Imaging Based on Total Variational Regularization and Variable Splitting
CN108801457A (en) * 2018-03-27 2018-11-13 浙江大学 Three-dimensional collection of illustrative plates based on the design of coded sample plate and second energy about beam alignment obtains and method for reconstructing
CN112055133A (en) * 2019-06-05 2020-12-08 上海耕岩智能科技有限公司 Image acquisition device and electronic equipment
CN110392193A (en) * 2019-06-14 2019-10-29 浙江大学 Mask plate of a mask plate camera

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JINJIAN WU ET AL.: "Pattern Masking Estimation in Image With Structural Uncertainty", 《IEEE TRANSACTIONS ON IMAGE PROCESSING》 *
YANFENG LI ET AL.: "Mass detection in mammograms by bilateral analysis using convolution neural network", 《COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE》 *
崔华坤等: "无透镜傅里叶变换数字全息术中非共面误差的自动补偿算法", 《物理学报》 *
张成等: "基于奇异值分解的可分离压缩成像方法", 《计算机研究与发展》 *
范晓杭等: "基于液晶显示器的无透镜单像素成像研究", 《量子电子学报》 *

Also Published As

Publication number Publication date
CN112802135B (en) 2022-12-02

Similar Documents

Publication Publication Date Title
Asif et al. Flatcam: Thin, lensless cameras using coded aperture and computation
US11830222B2 (en) Bi-level optimization-based infrared and visible light fusion method
US9380221B2 (en) Methods and apparatus for light field photography
Cheng et al. Memory-efficient network for large-scale video compressive sensing
EP3816929B1 (en) Method and apparatus for restoring image
Asif et al. Flatcam: Replacing lenses with masks and computation
Sturm Mixing catadioptric and perspective cameras
CN102823230B (en) Camera head
CN108416723B (en) Lens-free imaging fast reconstruction method based on total variation regularization and variable splitting
CN109783432A (en) For carrying out the device and method of the low complex degree optimization solver of path smooth
US20120230549A1 (en) Image processing device, image processing method and recording medium
CN110310338A (en) A Light Field Camera Calibration Method Based on Multicenter Projection Model
WO2013179538A1 (en) Depth estimation imaging device
CN105678736A (en) Image processing system with aperture change depth estimation and method of operation thereof
CN112802135B (en) Ultrathin lens-free separable compression imaging system and calibration and reconstruction method thereof
WO2013027320A1 (en) Image processing device, three-dimensional image capture device, image processing method, and image processing program
Lyu et al. Identifiability-guaranteed simplex-structured post-nonlinear mixture learning via autoencoder
KR101807230B1 (en) Super-resolution processing method for TV video images, super-resolution processing device for TV video images that is used in same method, first to fourteenth super-resolution processing programs, and first to fourth storage media
CN112950750B (en) Camera-lens-free camera image reconstruction method based on coding mask and Learond-TSVD algorithm
CN110267038A (en) Coding method and device, coding/decoding method and device
JPWO2012157210A1 (en) Three-dimensional imaging apparatus, image processing apparatus, image processing method, and program
US11017546B2 (en) Method and device for depth detection using stereo images
Lee et al. Fast radiometric compensation accomplished by eliminating color mixing between projector and camera
US9438885B2 (en) Three dimensional imaging device and image processing device
US20150281606A1 (en) Dark signal modeling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant